Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 911260, 2022.
Article in English | MEDLINE | ID: mdl-35967388

ABSTRACT

Medulloblastoma, a common pediatric malignant tumor, has been recognized to have four molecular subgroups [wingless (WNT), sonic hedgehog (SHH), group 3, group 4], which are defined by the characteristic gene transcriptomic and DNA methylomic profiles, and has distinct clinical features within each subgroup. The tumor immune microenvironment is integral in tumor initiation and progression and might be associated with therapeutic responses. However, to date, the immune infiltrative landscape of medulloblastoma has not yet been elucidated. Thus, we proposed MethylCIBERSORT to estimate the degree of immune cell infiltration and weighted correlation network analysis (WGCNA) to find modules of highly correlated genes. Synthesizing the hub genes in the protein-protein interaction (PPI) network and modules of the co-expression network, we identify three candidate biomarkers [GRB2-associated-binding protein 1 (GAB1), Abelson 1 (ABL1), and CXC motif chemokine receptor type 4 (CXCR4)] via the molecular profiles of medulloblastoma. Given this, we investigated the correlation between these three immune hub genes and immune checkpoint blockade response and the potential of drug prediction further. In addition, this study demonstrated a higher presence of endothelial cells and infiltrating immune cells in Group 3 tumor bulk. The above results will be conducive to better comprehending the immune-related pathogenesis and treatment of medulloblastoma.


Subject(s)
Adaptor Proteins, Signal Transducing , Cerebellar Neoplasms , Medulloblastoma , Proto-Oncogene Proteins c-abl , Receptors, CXCR4 , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Biomarkers , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Child , Endothelial Cells/immunology , Hedgehog Proteins/immunology , Humans , Medulloblastoma/genetics , Medulloblastoma/immunology , Medulloblastoma/pathology , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/immunology , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
2.
Hepatology ; 74(3): 1560-1577, 2021 09.
Article in English | MEDLINE | ID: mdl-33765345

ABSTRACT

BACKGROUND AND AIMS: The cluster of differentiation 47 (CD47)-signal regulatory protein alpha (SIRPα) signaling pathway plays important roles in immune homeostasis and tissue inflammatory response. Activation of the Hedgehog/smoothened (SMO)/GLI family zinc finger 1 (Gli1) pathway regulates cell growth, differentiation, and immune function. However, it remains unknown whether and how the CD47-SIRPα interaction may regulate Hedgehog/SMO/Gli1 signaling in mesenchymal stem cell (MSC)-mediated immune regulation during sterile inflammatory liver injury. APPROACH AND RESULTS: In a mouse model of ischemia/reperfusion (IR)-induced sterile inflammatory liver injury, we found that adoptive transfer of MSCs increased CD47 expression and ameliorated liver IR injury. However, deletion of CD47 in MSCs exacerbated IR-induced liver damage, with increased serum ALT levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators. MSC treatment augmented SIRPα, Hedgehog/SMO/Gli1, and Notch1 intracellular domain (NICD), whereas CD47-deficient MSC treatment reduced these gene expressions in IR-stressed livers. Moreover, disruption of myeloid SMO or Notch1 increased IR-triggered liver inflammation with diminished Gli1 and NICD, but enhanced NIMA related kinase 7 (NEK7) and NLR family pyrin domain containing 3 (NLRP3) activation in MSC-transferred mice. Using a MSC/macrophage co-culture system, we found that MSC CD47 and macrophage SIRPα expression were increased after LPS stimulation. The CD47-SIRPα interaction increased macrophage Gli1 and NICD nuclear translocation, whereby NICD interacted with Gli1 and regulated its target gene Dvl2 (dishevelled segment polarity protein 2), which in turn inhibited NEK7/NLRP3 activity. CONCLUSIONS: The CD47-SIRPα signaling activates the Hedgehog/SMO/Gli1 pathway, which controls NEK7/NLRP3 activity through a direct interaction between Gli1 and NICD. NICD is a coactivator of Gli1, and the target gene Dvl2 regulated by the NICD-Gli1 complex is crucial for the modulation of NLRP3-driven inflammatory response in MSC-mediated immune regulation. Our findings provide potential therapeutic targets in MSC-mediated immunotherapy of sterile inflammatory liver injury.


Subject(s)
CD47 Antigen/immunology , Hedgehog Proteins/immunology , Inflammation/immunology , Liver/immunology , Mesenchymal Stem Cells/immunology , Receptors, Immunologic/immunology , Reperfusion Injury/immunology , Smoothened Receptor/immunology , Zinc Finger Protein GLI1/immunology , Alanine Transaminase/blood , Animals , Dishevelled Proteins/immunology , Inflammation/metabolism , Inflammation/pathology , Liver/metabolism , Liver/pathology , Macrophages/immunology , Mesenchymal Stem Cell Transplantation , Mice , NIMA-Related Kinases/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Receptor, Notch1/immunology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction
3.
Brain ; 144(6): 1670-1683, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33723591

ABSTRACT

The concerted actions of the CNS and the immune system are essential to coordinating the outcome of neuroinflammatory responses. Yet, the precise mechanisms involved in this crosstalk and their contribution to the pathophysiology of neuroinflammatory diseases largely elude us. Here, we show that the CNS-endogenous hedgehog pathway, a signal triggered as part of the host response during the inflammatory phase of multiple sclerosis and experimental autoimmune encephalomyelitis, attenuates the pathogenicity of human and mouse effector CD4 T cells by regulating their production of inflammatory cytokines. Using a murine genetic model, in which the hedgehog signalling is compromised in CD4 T cells, we show that the hedgehog pathway acts on CD4 T cells to suppress the pathogenic hallmarks of autoimmune neuroinflammation, including demyelination and axonal damage, and thus mitigates the development of experimental autoimmune encephalomyelitis. Impairment of hedgehog signalling in CD4 T cells exacerbates brain-brainstem-cerebellum inflammation and leads to the development of atypical disease. Moreover, we present evidence that hedgehog signalling regulates the pathogenic profile of CD4 T cells by limiting their production of the inflammatory cytokines granulocyte-macrophage colony-stimulating factor and interferon-γ and by antagonizing their inflammatory program at the transcriptome level. Likewise, hedgehog signalling attenuates the inflammatory phenotype of human CD4 memory T cells. From a therapeutic point of view, our study underlines the potential of harnessing the hedgehog pathway to counteract ongoing excessive CNS inflammation, as systemic administration of a hedgehog agonist after disease onset effectively halts disease progression and significantly reduces neuroinflammation and the underlying neuropathology. We thus unveil a previously unrecognized role for the hedgehog pathway in regulating pathogenic inflammation within the CNS and propose to exploit its ability to modulate this neuroimmune network as a strategy to limit the progression of ongoing neuroinflammation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Hedgehog Proteins/immunology , Inflammation/immunology , Animals , Brain/immunology , Brain/pathology , CD4-Positive T-Lymphocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Hedgehog Proteins/metabolism , Humans , Inflammation/metabolism , Mice , Spinal Cord/immunology , Spinal Cord/pathology
4.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L888-L899, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32130032

ABSTRACT

We have previously demonstrated that upregulation of Sonic hedgehog (SHH) expression in allergic airway epithelia essentially contributes to the goblet cell metaplasia and mucous hypersecretion. However, the mechanism underlying the upregulation of SHH expression remains completely unknown. In cultured human airway epithelial cells, IL-4/IL-13 but not IL-5 robustly induces the mRNA and protein expression of SHH and in turn activates SHH signaling by promoting the JAK/STAT6-controlling transcription of SHH gene. Moreover, intratracheal instillation of IL-4 and/or IL-13 robustly activates STAT6 and concomitantly upregulates SHH expression in mouse airway epithelia, whereas, in Club cell 10-kDa protein (CC10)-positive airway epithelial cells of children with asthma, activated STAT6 closely correlates with the increased expression of SHH and high activity of SHH signaling. Finally, intratracheal inhibition of STAT6 by AS-1517499 significantly diminished the allergen-induced upregulation of SHH expression, goblet cell phenotypes, and airway hyperresponsiveness, in an ovalbumin- or house dust mite-induced mouse model with allergic airway inflammation,. Together, upregulation of SHH expression by IL-4/IL-13-induced JAK/STAT6 signaling contributes to allergic airway epithelial remodeling, and this study thus provides insight into how morphogen signaling is coordinated with Th2 cytokine pathways to regulate tissue remodeling in chronic airway diseases.


Subject(s)
Asthma/genetics , Hedgehog Proteins/genetics , Interleukin-13/genetics , Interleukin-4/genetics , Respiratory Mucosa/immunology , Animals , Anti-Asthmatic Agents/pharmacology , Asthma/chemically induced , Asthma/drug therapy , Asthma/pathology , Cell Line , Child , Female , Gene Expression Regulation , Goblet Cells/drug effects , Goblet Cells/immunology , Goblet Cells/pathology , Hedgehog Proteins/immunology , Humans , Interleukin-13/immunology , Interleukin-13/pharmacology , Interleukin-4/immunology , Interleukin-4/pharmacology , Interleukin-5/genetics , Interleukin-5/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/administration & dosage , Primary Cell Culture , Pyrimidines/pharmacology , Pyroglyphidae/chemistry , Pyroglyphidae/immunology , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology , STAT6 Transcription Factor/antagonists & inhibitors , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology , Signal Transduction , Transcription, Genetic , Uteroglobin/genetics , Uteroglobin/immunology
5.
PLoS One ; 15(2): e0229362, 2020.
Article in English | MEDLINE | ID: mdl-32078657

ABSTRACT

In the mature rodent brain, Sonic Hedgehog (Shh) signaling regulates stem and progenitor cell maintenance, neuronal and glial circuitry and brain repair. However, the sources and distribution of Shh mediating these effects are still poorly characterized. Here, we report in the adult mouse brain, a broad expression pattern of Shh recognized by the specific monoclonal C9C5 antibody in a subset (11-12%) of CC1+ mature oligodendrocytes that do not express carbonic anhydrase II. These cells express also Olig2 and Sox10, two oligodendrocyte lineage-specific markers, but not PDGFRα, a marker of oligodendrocyte progenitors. In agreement with oligodendroglial cells being a source of Shh in the adult mouse brain, we identify Shh transcripts by single molecule fluorescent in situ hybridization in a subset of cells expressing Olig2 and Sox10 mRNAs. These findings also reveal that Shh expression is more extensive than originally reported. The Shh-C9C5-associated signal labels the oligodendroglial cell body and decorates by intense puncta the processes. C9C5+ cells are distributed in a grid-like manner. They constitute small units that could deliver locally Shh to its receptor Patched expressed in GFAP+ and S100ß+ astrocytes, and in HuC/D+ neurons as shown in PtcLacZ/+ reporter mice. Postnatally, C9C5 immunoreactivity overlaps the myelination peak that occurs between P10 and P20 and is down regulated during ageing. Thus, our data suggest that C9C5+CC1+ oligodendroglial cells are a source of Shh in the mouse postnatal brain.


Subject(s)
Antibodies, Monoclonal/immunology , Brain/metabolism , Hedgehog Proteins/immunology , Hedgehog Proteins/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Animals , Brain/immunology , Cells, Cultured , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/immunology , Oligodendroglia/immunology , Patched Receptors/immunology , Patched Receptors/metabolism
6.
Front Immunol ; 10: 1629, 2019.
Article in English | MEDLINE | ID: mdl-31379834

ABSTRACT

Here we investigate the function of Hedgehog (Hh) signaling in thymic γδ T-cell maturation and subset differentiation. Analysis of Hh mutants showed that Hh signaling promotes γδ T-cell development in the thymus and influences γδ T-cell effector subset distribution. Hh-mediated transcription in thymic γδ cells increased γδ T-cell number, and promoted their maturation and increased the γδNKT subset, whereas inhibition of Hh-mediated transcription reduced the thymic γδ T-cell population and increased expression of many genes that are normally down-regulated during γδ T-cell maturation. These changes were also evident in spleen, where increased Hh signaling increased γδNKT cells, but reduced CD27-CD44+ and Vγ2+ populations. Systemic in vivo pharmacological Smoothened-inhibition reduced γδ T-cell and γδNKT cells in the thymus, and also reduced splenic γδ T-cell and γδNKT populations, indicating that Hh signaling also influences homeostasis of peripheral γδ T-cell populations. Taken together our data indicate that Sonic Hedgehog is an important determinant of γδ T-cell effector subset differentiation.


Subject(s)
Hedgehog Proteins/immunology , T-Lymphocyte Subsets/immunology , Thymus Gland/immunology , Animals , Cell Differentiation , Mice, Inbred C57BL , Mice, Transgenic , Smoothened Receptor/immunology , Spleen/immunology
7.
J Clin Invest ; 129(8): 3153-3170, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31264977

ABSTRACT

Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin, and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor-ß (TGF-ß) in Tregs signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4+ T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4+ T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven Treg cell-mediated immune suppression, paving the way for a potential new therapeutic strategy.


Subject(s)
Dermatitis, Atopic/immunology , Hedgehog Proteins/immunology , Signal Transduction/immunology , Skin/immunology , T-Lymphocytes, Regulatory/immunology , Zinc Finger Protein Gli2/immunology , Animals , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation/immunology , Hedgehog Proteins/genetics , Mice , Mice, Knockout , Signal Transduction/genetics , Skin/pathology , T-Lymphocytes, Regulatory/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Zinc Finger Protein Gli2/genetics
8.
Front Immunol ; 9: 2847, 2018.
Article in English | MEDLINE | ID: mdl-30568656

ABSTRACT

Fibroblast-like synoviocytes (FLSs) are the major effector cells that lead to rheumatoid arthritis (RA) synovitis and joint destruction. Our previous studies showed that Sonic Hedgehog (SHH) signaling pathway is involved in aberrant activation of RA-FLSs and inhibition of SHH pathway decreases proliferation and migration of RA-FLSs. The objective of this study was to investigate if the SHH pathway mediates proliferation and migration of RA-FLSs via the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. SHH signaling was studied by using SHH agonist (Purmorphamine) and antagonist (Cyclopamine) targeting the Smoothened (SMO) in FLSs. U0126-EtOH was used to inhibit the MAPK/ERK signaling pathway. The phosphorylation of ERK 1/2 (p-ERKl/2) was examined by western blot. Cell viability was detected using cell proliferation and cytotoxicity kit-8 (CCK8), and cell cycle distribution and proliferating cells were evaluated by the flow cytometry. Cell migration was examined by Transwell assay. Results showed that, compared with the control group, Purmorphamine increased the levels of p-ERK1/2 in concentration-and time-dependent manners (P < 0.01). Co-treated with Purmorphamine and U0126-EtOH or Cyclopamine both decreased the levels of p-ERK1/2 (P < 0.05). RA-FLSs treated with Purmorphamine resulted in alteration of cell cycle distribution, increasing of proliferating cells, cell viability, and migration cells compared to controls (P < 0.01). However, the above phenomenon can be abolished by U0126-EtOH (P < 0.05). The findings suggest that SHH signaling pathway mediates proliferation and migration of RA-FLSs via MAPK/ERK pathway and may contribute to progression of RA. Targeting SHH signaling may have a therapeutic potential in patients with RA.


Subject(s)
Arthritis, Rheumatoid/immunology , Cell Movement/immunology , Cell Proliferation , Fibroblasts/immunology , Hedgehog Proteins/immunology , MAP Kinase Signaling System/immunology , Synoviocytes/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Female , Fibroblasts/pathology , Humans , Male , Middle Aged , Synoviocytes/pathology
9.
Front Immunol ; 9: 349, 2018.
Article in English | MEDLINE | ID: mdl-29535725

ABSTRACT

Activation and reprogramming of hematopoietic stem/progenitor cells play a critical role in the granulopoietic response to bacterial infection. Our current study determined the significance of Sonic hedgehog (SHH) signaling in the regulation of hematopoietic precursor cell activity during the host defense response to systemic bacterial infection. Bacteremia was induced in male Balb/c mice via intravenous injection (i.v.) of Escherichia coli (5 × 107 CFUs/mouse). Control mice received i.v. saline. SHH protein level in bone marrow cell (BMC) lysates was markedly increased at both 24 and 48 h of bacteremia. By contrast, the amount of soluble SHH ligand in marrow elutes was significantly reduced. These contrasting alterations suggested that SHH ligand release from BMCs was reduced and/or binding of soluble SHH ligand to BMCs was enhanced. At both 12 and 24 h of bacteremia, SHH mRNA expression by BMCs was significantly upregulated. This upregulation of SHH mRNA expression was followed by a marked increase in SHH protein expression in BMCs. Activation of the ERK1/2-SP1 pathway was involved in mediating the upregulation of SHH gene expression. The major cell type showing the enhancement of SHH expression in the bone marrow was lineage positive cells. Gli1 positioned downstream of the SHH receptor activation serves as a key component of the hedgehog (HH) pathway. Primitive hematopoietic precursor cells exhibited the highest level of baseline Gli1 expression, suggesting that they were active cells responding to SHH ligand stimulation. Along with the increased expression of SHH in the bone marrow, expression of Gli1 by marrow cells was significantly upregulated at both mRNA and protein levels following bacteremia. This enhancement of Gli1 expression was correlated with activation of hematopoietic stem/progenitor cell proliferation. Mice with Gli1 gene deletion showed attenuation in activation of marrow hematopoietic stem/progenitor cell proliferation and inhibition of increase in blood granulocytes following bacteremia. Our results indicate that SHH signaling is critically important in the regulation of hematopoietic stem/progenitor cell activation and reprogramming during the granulopoietic response to serious bacterial infection.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli/immunology , Hedgehog Proteins/immunology , Hematopoietic Stem Cells/immunology , Leukopoiesis/immunology , Signal Transduction/immunology , Animals , Bacteremia/immunology , Bacteremia/pathology , Escherichia coli Infections/pathology , Gene Expression Regulation/immunology , Hematopoietic Stem Cells/pathology , Male , Mice , Mice, Inbred BALB C , Zinc Finger Protein GLI1/immunology
10.
J Leukoc Biol ; 102(4): 965-976, 2017 10.
Article in English | MEDLINE | ID: mdl-28235772

ABSTRACT

The pathophysiology of allergic asthma is driven by Th2 immune responses after aeroallergen inhalation. The mechanisms that initiate, potentiate, and regulate airway allergy are incompletely characterized. We have shown that Hh signaling to T cells, via downstream Gli transcription factors, enhances T cell conversion to a Th2 phenotype. In this study, we showed for the first time, to our knowledge, that Gli-dependent transcription is activated in T cells in vivo during murine AAD, a model for the immunopathology of asthma, and that genetic repression of Gli signaling in T cells decreases the differentiation and recruitment of Th2 cells to the lung. T cells were not the only cells that expressed activated Gli during AAD. A substantial proportion of eosinophils and lung epithelial cells, both central mediators of the immunopathology of asthma, also underwent Hh/Gli signaling. Finally, Shh increased Il-4 expression in eosinophils. We therefore propose that Hh signaling during AAD is complex, involving multiple cell types, signaling in an auto- or paracrine fashion. Improved understanding of the role of this major morphogenetic pathway in asthma may give rise to new drug targets for this chronic condition.


Subject(s)
Asthma/immunology , Hedgehog Proteins/immunology , Lung/immunology , Signal Transduction/immunology , Th2 Cells/immunology , Zinc Finger Protein GLI1/immunology , Animals , Asthma/pathology , Autocrine Communication/genetics , Autocrine Communication/immunology , Disease Models, Animal , Hedgehog Proteins/genetics , Interleukin-4/genetics , Interleukin-4/immunology , Lung/pathology , Mice , Mice, Transgenic , Paracrine Communication/genetics , Paracrine Communication/immunology , Signal Transduction/genetics , Th2 Cells/pathology , Zinc Finger Protein GLI1/genetics
11.
Br J Cancer ; 116(1): 50-57, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27875522

ABSTRACT

BACKGROUND: The Hedgehog (Hh) pathway is upregulated in cervical cancer and associated with poor outcome. We explored the effects of Hh pathway inhibition in combination with RTCT in a patient derived orthotopic cervical cancer xenograft model (OCICx). METHODS: 5E1, a monoclonal antibody for SHH, or Sonidegib (LDE225), a clinical SMO inhibitor (Novartis) were added to RTCT. We investigated tumour growth delay, metastasis and GI toxicity using orthotopic cervical cancer xenografts models. The xenografts were treated with radiotherapy (15 × 2 Gy daily fractions over 3 weeks) and weekly cisplatin 4 mg kg-1 concurrently, with or without 5E1 or Sonidegib (LDE225). The Hh inhibitors were administered by subcutaneous injection (5E1; 20 mg kg-1 weekly for 3 weeks), or by oral gavage (Sonidegib; 60 mg kg-1 daily for 3 weeks). RESULTS: We observed that both Hh inhibitors administered with RTCT were well tolerated and showed increased tumour growth delay, and reduced metastasis, with no increase in acute GI-toxicity relative to RTCT alone. CONCLUSIONS: Our data suggest Hh can be a valid therapeutic target in cervical cancer and supports data suggesting a potential therapeutic role for targeting Hh in patients undergoing RTCT. This warrants further investigation in clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cisplatin/administration & dosage , Hedgehog Proteins/antagonists & inhibitors , Radiation-Sensitizing Agents/administration & dosage , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/radiotherapy , Animals , Antibodies, Monoclonal/administration & dosage , Biphenyl Compounds/administration & dosage , Drug Synergism , Female , Hedgehog Proteins/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Pyridines/administration & dosage , Transplantation, Heterologous , Tumor Cells, Cultured , Uterine Cervical Neoplasms/pathology , Xenograft Model Antitumor Assays
12.
Biochem Biophys Res Commun ; 482(4): 980-986, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27899315

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder in which dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) region are selectively destroyed. Sonic hedgehog (Shh) has been well known to play a key role in a variety of processes such as embryogenesis, cell proliferation and protection, and tissue repair during inflammation. However, the evidences for the innate role of Shh in adult brain injury are presently lacking and studies have been needed to unveil the importance of Shh in the process of neurodegeneration. Here, we investigated the role of Shh in the pathologic progress of Parkinson's disease in MPTP-induced animal model system. Interestingly, we observed that Shh expression was gradually increased in MPTP affected SNpc region. Activated microglia exclusively expressed SHH in vivo and we could recapitulate Shh induction in activated cultured primary microglia cells. Using the SHH responsive Cre-loxP binary genetic reporter transgenic mouse system, we also found that most of the cell types except for oligodendrocyte in the SNpc region reacted to the SHH by MPTP injection. Taken together, activated microglia induced Shh expression and most neural cells except oligodendrocyte responded to microglia-derived SHH in MPTP-treated SN. These results suggest that SHH in activated microglia by MPTP-injection might be involved in the innate processes of recovery from neurotoxin induced injury in the PD animal model system.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Hedgehog Proteins/genetics , Parkinson Disease, Secondary/genetics , Parkinson Disease, Secondary/pathology , Substantia Nigra/pathology , Up-Regulation , Animals , Cells, Cultured , Disease Models, Animal , Hedgehog Proteins/analysis , Hedgehog Proteins/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Lipopolysaccharides/immunology , Male , Mice, Inbred C57BL , Microglia , Parkinson Disease, Secondary/immunology , Substantia Nigra/immunology , Substantia Nigra/metabolism
13.
J Huazhong Univ Sci Technolog Med Sci ; 36(3): 372-376, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27376806

ABSTRACT

Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-ß gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.


Subject(s)
Antigens, Helminth/pharmacology , Culture Media, Conditioned/pharmacology , Hedgehog Proteins/genetics , Hepatic Stellate Cells/drug effects , Macrophages/drug effects , Pentoxifylline/pharmacology , Schistosoma japonicum/chemistry , Animals , Antigens, Helminth/isolation & purification , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Line , Culture Media, Conditioned/chemistry , Gene Expression Regulation , Hedgehog Proteins/agonists , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/immunology , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/parasitology , Liver Cirrhosis/prevention & control , Macrophage Activation/drug effects , Macrophages/cytology , Macrophages/immunology , Models, Biological , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Phosphodiesterase Inhibitors/pharmacology , RNA, Messenger/genetics , RNA, Messenger/immunology , Signal Transduction , Tetradecanoylphorbol Acetate/pharmacology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/immunology , Zygote/chemistry
14.
J Clin Invest ; 126(5): 1649-63, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27018594

ABSTRACT

Both the WNT/ß-catenin and hedgehog signaling pathways are important in the regulation of limb development, chondrocyte differentiation, and degeneration of articular cartilage in osteoarthritis (OA). It is not clear how these signaling pathways interact in interzone cell differentiation and synovial joint morphogenesis. Here, we determined that constitutive activation of hedgehog signaling specifically within interzone cells induces joint morphological changes by selectively inhibiting ß-catenin-induced Fgf18 expression. Stabilization of ß-catenin or treatment with FGF18 rescued hedgehog-induced phenotypes. Hedgehog signaling induced expression of a dominant negative isoform of TCF7L2 (dnTCF7L2) in interzone progeny, which may account for the selective regulation of ß-catenin target genes observed. Knockdown of TCF7L2 isoforms in mouse chondrocytes rescued hedgehog signaling-induced Fgf18 downregulation, while overexpression of the human dnTCF7L2 orthologue (dnTCF4) in human chondrocytes promoted the expression of catabolic enzymes associated with OA. Similarly, expression of dnTCF4 in human chondrocytes positively correlated with the aggrecanase ADAMTS4. Consistent with our developmental findings, activation of ß-catenin also attenuated hedgehog-induced or surgically induced articular cartilage degeneration in mouse models of OA. Thus, our results demonstrate that hedgehog inhibits selective ß-catenin target gene expression to direct interzone progeny fates and articular cartilage development and disease. Moreover, agents that increase ß-catenin activity have the potential to therapeutically attenuate articular cartilage degeneration as part of OA.


Subject(s)
Chondrocytes/immunology , Hedgehog Proteins/immunology , Osteoarthritis/immunology , Synovial Membrane/immunology , Wnt Signaling Pathway/immunology , beta Catenin/immunology , ADAMTS4 Protein/genetics , ADAMTS4 Protein/immunology , Animals , Chondrocytes/pathology , Disease Models, Animal , Down-Regulation/immunology , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/immunology , Hedgehog Proteins/genetics , Humans , Mice , Mice, Knockout , Osteoarthritis/genetics , Osteoarthritis/pathology , Synovial Membrane/metabolism , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/immunology , Wnt Signaling Pathway/genetics , beta Catenin/genetics
15.
Mol Immunol ; 68(2 Pt A): 280-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432261

ABSTRACT

Immune responses during fungal infections are predominately mediated by 5/15-lipoxygenases (LO)- or cyclooxygenase (COX)-2-catalysed bioactive eicosanoid metabolites like leukotrienes, lipoxins and prostaglandins. Although few host mediators of fungi-triggered eicosanoid production have been established, the molecular mechanism of expression and regulation of 5-LO, 15-LO and COX-2 are not well-defined. Here, we demonstrate that, macrophages infected with representative fungi Candida albicans, Aspergillus flavus or Aspergillus fumigatus or those treated with Curdlan, a selective agonist of pattern recognition receptor for fungi Dectin-1, displays increased expression of 5-LO, 15-LO and COX-2. Interestingly, Dectin-1-responsive Syk pathway activates mTOR-sonic hedgehog (SHH) signaling cascade to stimulate the expression of these lipid metabolizing enzymes. Loss-of-function analysis of the identified intermediaries indicates that while Syk-mTOR-SHH pathway-induced 5-LO and 15-LO suppressed the Dectin-1-responsive pro-inflammatory signature cytokines like TNF-α, IL-1ß and IL-12, Syk-mTOR-SHH-induced COX-2 positively regulated these cytokines. Dectin-1-stimulated IL-6, however, is dependent on 5-LO, 15-LO and COX-2 activity. Together, the current study establishes Dectin-1-arbitrated host mediators that direct the differential regulation of immune responses during fungal infections and thus are potential candidates of therapeutic intervention.


Subject(s)
Arachidonate 15-Lipoxygenase/immunology , Arachidonate 5-Lipoxygenase/immunology , Cyclooxygenase 2/immunology , Hedgehog Proteins/immunology , Lectins, C-Type/immunology , Macrophages, Peritoneal/immunology , Animals , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/genetics , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Aspergillus flavus/immunology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/growth & development , Aspergillus fumigatus/immunology , Candida albicans/drug effects , Candida albicans/growth & development , Candida albicans/immunology , Cell Line , Cyclooxygenase 2/genetics , Gene Expression Regulation , Hedgehog Proteins/genetics , Host-Pathogen Interactions , Interleukin-12/biosynthesis , Interleukin-12/immunology , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Lectins, C-Type/agonists , Lectins, C-Type/genetics , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/microbiology , Mice , Primary Cell Culture , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/immunology , Signal Transduction , Syk Kinase , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology , beta-Glucans/pharmacology
17.
J Immunoassay Immunochem ; 36(1): 1-15, 2015.
Article in English | MEDLINE | ID: mdl-24547891

ABSTRACT

Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, ß-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, ß-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics.


Subject(s)
Hedgehog Proteins/immunology , Mesenchymal Stem Cells/drug effects , Neural Stem Cells/drug effects , Tretinoin/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Neural Stem Cells/cytology , Neural Stem Cells/immunology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
Autophagy ; 10(2): 311-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24343269

ABSTRACT

Autophagy is one of the major immune mechanisms engaged to clear intracellular infectious agents. However, several pathogens have evolved strategies to evade autophagy. Here, we demonstrated that Mycobacteria, Shigella, and Listeria but not Klebsiella, Staphylococcus, and Escherichia inhibit IFNG-induced autophagy in macrophages by evoking selective and robust activation of WNT and SHH pathways via MTOR. Utilization of gain- or loss-of-function analyses as well as mir155-null macrophages emphasized the role of MTOR-responsive epigenetic modifications in the induction of Mir155 and Mir31. Importantly, cellular levels of PP2A, a phosphatase, were regulated by Mir155 and Mir31 to fine-tune autophagy. Diminished expression of PP2A led to inhibition of GSK3B, thus facilitating the prolonged activation of WNT and SHH signaling pathways. Sustained WNT and SHH signaling effectuated the expression of anti-inflammatory lipoxygenases, which in tandem inhibited IFNG-induced JAK-STAT signaling and contributed to evasion of autophagy. Altogether, these results established a role for new host factors and inhibitory mechanisms employed by the pathogens to limit autophagy, which could be targeted for therapeutic interventions.


Subject(s)
Autophagy/genetics , Interferon-gamma/pharmacology , MicroRNAs/genetics , Signal Transduction/drug effects , Animals , Autophagy/drug effects , Cells, Cultured , Hedgehog Proteins/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/genetics , Wnt Proteins/immunology , Wnt-5a Protein
19.
Mol Cancer Ther ; 13(2): 386-98, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24344235

ABSTRACT

The hedgehog pathway has been implicated in the tumorigenesis, tumor progression, and metastasis of numerous human cancers. We generated the first fully human hedgehog antibody MEDI-5304 and characterized its antitumor activity and preclinical toxicology. MEDI-5304 bound sonic hedgehog (SHH) and Indian hedgehog (IHH) with low picomolar affinity and neutralized SHH and IHH activity in cellular mGLI1 reporter assays. The antibody inhibited transcription of hedgehog target genes and osteoblast differentiation of C3H10T1/2 cells. We evaluated the activity of MEDI-5304 in vivo in model systems that allowed us to evaluate two primary hypotheses of hedgehog function in human cancer, paracrine signaling between tumor and stromal cells and cancer stem cell (CSC) self-renewal. MEDI-5304 displayed robust pharmacodynamic effects in stromal cells that translated to antitumor efficacy as a single agent in an HT-29/MEF coimplantation model of paracrine hedgehog signaling. MEDI-5304 also improved responses to carboplatin in the HT-29/MEF model. The antibody, however, had no effect as a single agent or in combination with gemcitabine on the CSC frequency or growth of several primary pancreatic cancer explant models. These findings support the conclusion that hedgehog contributes to tumor biology via paracrine tumor-stromal signaling but not via CSC maintenance or propagation. Finally, the only safety study finding associated with MEDI-5304 was ondontodysplasia in rats. Thus, MEDI-5304 represents a potent dual hedgehog inhibitor suitable for continued development to evaluate efficacy and safety in human patients with tumors harboring elevated levels of SHH or IHH.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/pharmacology , Hedgehog Proteins/antagonists & inhibitors , Paracrine Communication/drug effects , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/immunology , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacokinetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Female , HT29 Cells , Hedgehog Proteins/immunology , Humans , Kinetics , Macaca fascicularis , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , NIH 3T3 Cells , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Paracrine Communication/immunology , Protein Binding/immunology , Rats, Wistar , Stromal Cells/drug effects , Stromal Cells/immunology , Stromal Cells/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
20.
Salvador; s.n; 2014. 91 p. ilus, tab.
Thesis in Portuguese | LILACS | ID: biblio-1000953

ABSTRACT

INTRODUÇÃO/OBJETIVO: O Carcinoma Escamocelular de Boca (CEB) corresponde a mais de 95% dos casos de câncer diagnosticados na cavidade bucal e consiste numa neoplasia invasiva e agressiva. Sabendo-se que a via Hedgehog (HH) está envolvida na patogênese de diversos tumores, o presente trabalho propôs-se a avaliar a expressão de componentes desta via em CEB, associando a expressão destas moléculas com aspectos clínicos, angiogênese, graus de diferenciação tumoral, potencial proliferativo e macrófagos CD163+. MATERIAL E MÉTODOS: Vinte e oito casos de CEB, 9 casos de margens tumorais (MAT) e 4 casos de mucosa bucal não neoplásica (MNN) foram submetidos à reação imuno-histoquímica para as proteínas MCM3, SHH, IHH, GLI1, CD163 e CD105 utilizando o sistema polimérico AdvanceTM. A co-localização das proteínas IHH/CD163 e GLI1/CD105 foi avaliada através de dupla marcação imuno-histoquímica. As análises das proteínas MCM3, SHH, IHH e GLI1 foram realizadas em 5 áreas coincidentes de cada caso, de acordo com os parâmetros semi-quantitativos descritos por Gurgel et al. (2008). A densidade de macrófagos (DM) e microdensidade vascular (MDV) foram mensuradas considerando-se a população destas células e vasos neoformados em 5 áreas e os resultados expressos em cel/mm² e vasos/mm². A análise estatística foi realizada utilizando GraphPad Prism versão 6.03. RESULTADOS: Todos os casos de CEB foram positivos para a proteína MCM3, em citoplasma e núcleo de células do parênquima tumoral, sendo o escore 4+ predominante (n=19; 67,85%)...


INTRODUCTION/OBJETIVE: The Oral Squamous Cell Carcinoma (OSCC) accounts for over 95% of all cancers diagnosed in the oral cavity and it consists on an invasive and aggressive type of tumor. The Hedgehog pathway (HH) has been involved in the pathogenesis of different tumors. The aim of this study was to evaluate the components of the HH pathway in OSCC, correlating the results with clinical aspects, angiogenesis, tumor differentiation, proliferative potential and macrophages CD163+. MATERIAL AND METHODS: Twenty-eight cases of OSCC, 9 cases of tumor margins (TM) and 4 cases of non-neoplastic oral mucosa (NNM) were submitted to immunohistochemical reaction for MCM3, SHH, IHH, GLI1, CD163 and CD105 proteins using the AdvanceTM polymer system. Co-localization for IHH/GLI1 and CD163/CD105 proteins was evaluated using double staining method. The analysis of MCM3, SHH, IHH and GLI1 proteins were conducted in 5-matching areas and data described using the semi-quantitative parameters described by Gurgel et al. (2008). The density of macrophages (MD) and microvessel density (MVD) were measured considering the population of these cells and newly formed vessels in 5-matching areas and the results expressed in cells/mm² and vessels/mm², respectively. Statistical analysis were performed using GraphPad Prism v. 6.03. RESULTS: All cases of OSCC were positive for MCM3 protein on the cytoplasm and nucleus of tumor cells, and 4+ was the main score (n= 19; 67.85%)...


Subject(s)
Humans , Carcinoma, Squamous Cell/complications , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/prevention & control , Carcinoma, Squamous Cell/drug therapy , Hedgehog Proteins/analysis , Hedgehog Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...