Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.284
Filter
1.
Dev Biol ; 512: 57-69, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750688

ABSTRACT

Understanding the developmental processes and signaling pathways involved in larval myogenesis and metamorphosis is crucial for comprehending the life history and adaptive strategies of marine organisms. In this study, we investigated the temporal and spatial patterns of myogenesis in the mussel Mytilus coruscus (Mc), focusing on the emergence and transformation of major muscle groups during different larval stages. We also explored the role of the Hedgehog (Hh) signaling pathway in regulating myogenesis and larval metamorphosis. The results revealed distinct developmental stages characterized by the emergence of specific muscular components, such as velum retractor muscles and anterior adductor muscles, in D-veliger and umbo larvae, which are responsible for the planktonic stage. In the pediveliger stage, posterior ventral, posterior adductor, and foot muscles appeared. After larval metamorphosis, the velum structure and its corresponding retractor muscles degenerate, indicating the transition from planktonic to benthic life. We observed a conserved pattern of larval musculature development and revealed a high degree of conservation across bivalve species, with comparable emergence times during myogenesis. Furthermore, exposure to the Hh signaling inhibitor cyclopamine impaired larval muscle development, reduced larval swimming activity, and inhibited larval metamorphosis in M. coruscus. Cyclopamine-mediated inhibition of Hh signaling led to reduced expression of four key genes within the Hh signaling pathway (McHh, McPtc, McSmo, and McGli) and the striated myosin heavy chain gene (McMHC). It is hypothesised that the abnormal larval muscle development in cyclopamine-treated groups may be an indirect effect due to disrupted McMHC expression. We provide evidence for the first time that cyclopamine treatment inhibited larval metamorphosis in bivalves, highlighting the potential involvement of Hh signaling in mediating larval muscle development and metamorphosis in M. coruscus. The present study provides insights into the dynamic nature of myogenesis and the regulatory role of the Hh signaling pathway during larval development and metamorphosis in M. coruscus. The results obtained in this study contribute to a better understanding of the evolutionary significance of Hh signaling in bivalves and shed light on the mechanisms underlying larval muscle development and metamorphosis in marine invertebrates.


Subject(s)
Gene Expression Regulation, Developmental , Hedgehog Proteins , Larva , Metamorphosis, Biological , Muscle Development , Mytilus , Signal Transduction , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Larva/growth & development , Larva/metabolism , Mytilus/growth & development , Mytilus/metabolism , Veratrum Alkaloids/pharmacology , Muscles/metabolism
2.
Int Rev Cell Mol Biol ; 386: 49-80, 2024.
Article in English | MEDLINE | ID: mdl-38782501

ABSTRACT

In this chapter, we have made an attempt to elucidate the relevance of hedgehog signaling pathway in tumorigenesis. Here, we have described different types of hedgehog signaling (canonical and non-canonical) with emphasis on the different mechanisms (mutation-driven, autocrine, paracrine and reverse paracrine) it adopts during tumorigenesis. We have discussed the role of hedgehog signaling in regulating cell proliferation, invasion and epithelial-to-mesenchymal transition in both local and advanced cancer types, as reported in different studies based on preclinical and clinical models. We have specifically addressed the role of hedgehog signaling in aggressive neuroendocrine tumors as well. We have also elaborated on the studies showing therapeutic relevance of the inhibitors of hedgehog signaling in cancer. Evidence of the crosstalk of hedgehog signaling components with other signaling pathways and treatment resistance due to tumor heterogeneity have also been briefly discussed. Together, we have tried to put forward a compilation of the studies on therapeutic potential of hedgehog signaling in various cancers, specifically aggressive tumor types with a perspective into what is lacking and demands further investigation.


Subject(s)
Hedgehog Proteins , Neoplasms , Signal Transduction , Hedgehog Proteins/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Animals , Epithelial-Mesenchymal Transition
3.
Genesis ; 62(3): e23602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721990

ABSTRACT

Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.


Subject(s)
Cilia , Neural Tube Defects , Neural Tube , Animals , Cilia/metabolism , Cilia/genetics , Mice , Neural Tube/metabolism , Neural Tube/embryology , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Signal Transduction , Point Mutation
4.
Cell Transplant ; 33: 9636897241244943, 2024.
Article in English | MEDLINE | ID: mdl-38695366

ABSTRACT

Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.


Subject(s)
Cell Differentiation , Hedgehog Proteins , Mesenchymal Stem Cells , Signal Transduction , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hedgehog Proteins/metabolism , Humans , Cell Differentiation/physiology , Animals , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism
5.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719753

ABSTRACT

We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.


Subject(s)
Adenylyl Cyclases , Cell Proliferation , Cilia , Hedgehog Proteins , Histone Deacetylase 6 , Signal Transduction , Animals , Mice , Acetylation , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Cell Proliferation/genetics , Cilia/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Mice, Knockout , Stem Cells/metabolism , Stem Cells/cytology
6.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 190-197, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814217

ABSTRACT

Circular RNA hsa_circ_0001322 (circ1322) was demonstrated to be significantly reduced in expression in gastric cancer patients in our previous study, and changes in its expression were significantly correlated with lymph node metastasis. However, the underlying workings of circ1322 in gastric cancer are still not fully understood. Therefore, to confirm the effect of circ1322 on gastric cancer, we examined the expression of circ1322 in gastric cancer cells and tissues. The results showed that circ1322 was lowly expressed in GC tissues and cells. Subsequently, we further performed cellular assays and animal experiments, which showed that Circ1322 upregulation inhibited GC cell proliferation, migration and invasion. while promoting GC cell apoptosis, and inhibited tumor growth in mice. The direct targeting of circ1322 to miR-1264 was confirmed by bioinformatics prediction and validation of luciferase reporter gene assay. Circ1322 can act as a miR-1264 sponge to alleviate the inhibitory effect of miR-1264 on its target gene, QKI. miR-1264 regulates the expression of QKI and the activity of the hedgehog pathway. That is, circ1322 may act as a competing endogenous RNA (ceRNA) to inhibit the hedgehog pathway by targeting the miR-1264/QKI axis, which in turn promotes GC progression.


Subject(s)
Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Hedgehog Proteins , MicroRNAs , RNA, Circular , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Signal Transduction/genetics , Cell Movement/genetics , Mice, Nude , Apoptosis/genetics , Mice , Male , Mice, Inbred BALB C , Female , Base Sequence , Middle Aged
7.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 238-242, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814213

ABSTRACT

Patients with sepsis are often complicated by acute kidney injury (AKI), which greatly increases mortality. In this study, our purpose was to explore the expression and function of CDGSH iron sulfur domain 2 (CISD2) in septic AKI, and the underlying molecular mechanism. Western blot and quantitative real-time polymerase chain reaction (RT-PCR) were employed to detect protein and mRNA levels in cells. The inflammation level of cells was evaluated by detecting the content of inflammatory factors (TNF-α, IL-1ß, IL-6). Apoptosis of cells was evaluated by Caspase-3 activity assay, flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP Nick-End Labeling (TUNEL) staining. CISD2 was down-regulated in HK-2 cells treated with lipopolysaccharide (LPS). LPS treatment increased the level of inflammatory factors, the activity of Caspase-3, and the rate of apoptosis in HK-2 cells. However, overexpression of CISD2 significantly suppressed these effects. Moreover, overexpression of CISD2 activated the Sonic Hedgehog (SHH) signaling pathway. The use of cyclopamine (Cyc), a SHH signaling pathway inhibitor, eliminated the effect of overexpressing CISD2, that is, inhibiting LPS-induced inflammation and apoptosis of HK-2 cells. LPS treatment down-regulated CISD2 in HK-2 cells, and overexpression of CISD2 could inhibit LPS-induced inflammation and apoptosis of HK-2 cells by activating the SHH signaling pathway.


Subject(s)
Acute Kidney Injury , Apoptosis , Hedgehog Proteins , Lipopolysaccharides , Sepsis , Signal Transduction , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Humans , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Signal Transduction/drug effects , Apoptosis/drug effects , Sepsis/metabolism , Sepsis/complications , Cell Line , Caspase 3/metabolism , Caspase 3/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics
8.
Eur J Pharm Sci ; 198: 106792, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714237

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-ß, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.


Subject(s)
HSP90 Heat-Shock Proteins , Hedgehog Proteins , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Non-alcoholic Fatty Liver Disease , Signal Transduction , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Male , Humans , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hep G2 Cells , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Drug Therapy, Combination , Rats , Rats, Sprague-Dawley , Cholesterol/metabolism
9.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731849

ABSTRACT

Tumors of the head and neck, more specifically the squamous cell carcinoma, often show upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2 (GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues, suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog pathway inhibitors are being tested in combination with other therapies for head and neck squamous cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma as well.


Subject(s)
Adenocarcinoma , Hedgehog Proteins , Immunohistochemistry , Signal Transduction , Zinc Finger Protein Gli2 , Humans , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Male , Female , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Middle Aged , Pilot Projects , Aged , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Paranasal Sinus Neoplasms/metabolism , Paranasal Sinus Neoplasms/pathology , Adult , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins , Nuclear Proteins
10.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713624

ABSTRACT

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cerebral Cortex , ErbB Receptors , Hedgehog Proteins , Nerve Tissue Proteins , Neural Stem Cells , Neurogenesis , Oligodendrocyte Transcription Factor 2 , PAX6 Transcription Factor , Animals , Neurogenesis/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Neuroglia/metabolism , Neuroglia/cytology , Gene Expression Regulation, Developmental , Signal Transduction , Olfactory Bulb/metabolism , Olfactory Bulb/cytology , Cell Lineage , Humans
11.
Ecotoxicol Environ Saf ; 276: 116311, 2024 May.
Article in English | MEDLINE | ID: mdl-38615639

ABSTRACT

Prenatal environmental exposure could be an essential health risk factor associated with neurodevelopmental disorders in offspring. However, the exact mechanisms underlying the impact of prenatal PM2.5 exposure on offspring cognition remain unclear. In our recent study using a PM2.5 exposed pregnant mouse model, we observed significant synaptic dysfunction in the hippocampi of the offspring. Concurrently, the epigenetic regulator of KDM5A and the Shh signaling pathway exhibited decreased activities. Significantly, changes in hippocampal KDM5A and Shh levels directly correlated with PM2.5 exposure intensity. Subsequent experiments revealed a marked reduction in the expression of Shh signaling and related synaptic proteins when KDM5A was silenced in cells. Notably, the effects of KDM5A deficiency were reversed significantly with the supplementation of a Shh activator. Furthermore, our findings indicate that Shh activation significantly attenuates PM2.5-induced synaptic impairments in hippocampal neurons. We further demonstrated that EGR1, a transcriptional inhibitor, plays a direct role in KDM5A's regulation of the Shh pathway under conditions of PM2.5 exposure. Our results suggest that the KDM5A's inhibitory regulation on the Shh pathway through the EGR1 gene is a crucial epigenetic mechanism underlying the synaptic dysfunction in hippocampal neurons caused by maternal PM2.5 exposure. This emphasizes the role of epigenetic regulations in neurodevelopmental disorders caused by environmental factors.


Subject(s)
Epigenesis, Genetic , Hedgehog Proteins , Hippocampus , Particulate Matter , Prenatal Exposure Delayed Effects , Signal Transduction , Hippocampus/drug effects , Animals , Female , Pregnancy , Signal Transduction/drug effects , Epigenesis, Genetic/drug effects , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Mice , Particulate Matter/toxicity , Retinoblastoma-Binding Protein 2/genetics , Maternal Exposure/adverse effects , Synapses/drug effects , Air Pollutants/toxicity
12.
Mol Biol Rep ; 51(1): 542, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642200

ABSTRACT

BACKGROUND: Inflammatory cancer-associated fibroblasts (iCAFs) was first identified by co-culture of pancreatic stellate cells and tumor organoids. The key feature of iCAFs is IL-6high/αSMAlow. We examine this phenomenon in gastric cancer using two cell lines of gastric fibroblasts (HGF and YS-1). METHODS AND RESULTS: HGF or YS-1 were co-cultured with MKN7 (a gastric adenocarcinoma cell line) in Matrigel. IL-6 protein levels in the culture supernatant were measured by ELISA. The increased production of IL-6 was not observed in any of the combinations. Instead, the supernatant of YS-1 exhibited the higher levels of IL-6. YS-1 showed IL-6high/αSMA (ACTA2)low in real-time PCR, mRNA-seq and immunohistochemistry. In mRNA-seq, iCAFs-associated genes and signaling pathways were up-regulated in YS-1. No transition to myofibroblastic phenotype was observed by monolayer culture, or the exposure to sonic hedgehog (SHH) or TGF-ß. YS-1 conditioned medium induced changes of morphology and stem-ness/differentiation in NUGC-3 (a human gastric adenocarcinoma cell line) and UBE6T-15 (a human bone marrow-derived mesenchymal stem cell line). CONCLUSIONS: YS-1 is a stable cell line of gastric iCAFs. This discovery will promote further research on iCAFs for many researchers.


Subject(s)
Adenocarcinoma , Cancer-Associated Fibroblasts , Stomach Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Hedgehog Proteins/metabolism , Cell Line, Tumor , Stomach Neoplasms/metabolism , Fibroblasts/metabolism , Adenocarcinoma/metabolism , RNA, Messenger/metabolism
13.
Cells ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38667291

ABSTRACT

Both Hedgehog and androgen signaling pathways are known to promote myelin regeneration in the central nervous system. Remarkably, the combined administration of agonists of each pathway revealed their functional cooperation towards higher regeneration in demyelination models in males. Since multiple sclerosis, the most common demyelinating disease, predominates in women, and androgen effects were reported to diverge according to sex, it seemed essential to assess the existence of such cooperation in females. Here, we developed an intranasal formulation containing the Hedgehog signaling agonist SAG, either alone or in combination with testosterone. We show that SAG promotes myelin regeneration and presumably a pro-regenerative phenotype of microglia, thus mimicking the effects previously observed in males. However, unlike in males, the combined molecules failed to cooperate in the demyelinated females, as shown by the level of functional improvement observed. Consistent with this observation, SAG administered in the absence of testosterone amplified peripheral inflammation by presumably activating NK cells and thus counteracting a testosterone-induced reduction in Th17 cells when the molecules were combined. Altogether, the data uncover a sex-dependent effect of the Hedgehog signaling agonist SAG on the peripheral innate immune system that conditions its ability to cooperate or not with androgens in the context of demyelination.


Subject(s)
Demyelinating Diseases , Testosterone , Animals , Female , Male , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Demyelinating Diseases/drug therapy , Mice , Testosterone/pharmacology , Hedgehog Proteins/metabolism , Hedgehog Proteins/agonists , Mice, Inbred C57BL , Central Nervous System/drug effects , Central Nervous System/immunology , Central Nervous System/pathology , Central Nervous System/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/agonists , Myelin Sheath/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Immune System/drug effects , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , Sex Characteristics
14.
Theranostics ; 14(6): 2379-2395, 2024.
Article in English | MEDLINE | ID: mdl-38646644

ABSTRACT

Background: It is poorly understood what cellular types participate in ductular reaction (DR) and whether DR facilitates recovery from injury or accelerates hepatic fibrosis. The aim of this study is to gain insights into the role of hepatic progenitor cell (HPC)-originated DR during fibrotic progression. Methods: DR in liver specimens of PBC, chronic HBV infection (CHB) or NAFLD, and four rodent fibrotic models by different pathogenic processes was evaluated. Gli1 expression was inhibited in rodent models or cell culture and organoid models by AAV-shGli1 or treating with GANT61. Results: Severity of liver fibrosis was positively correlated with DR extent in patients with PBC, CHB or NAFLD. HPCs were activated, expanded, differentiated into reactive cholangiocytes and constituted "HPC-originated DR", accompanying with exacerbated fibrosis in rodent models of HPC activation & proliferation (CCl4/2-AAF-treated), Μdr2-/- spontaneous PSC, BDL-cholestatic fibrosis or WD-fed/CCl4-treated NASH-fibrosis. Gli1 expression was significantly increased in enriched pathways in vivo and in vitro. Enhanced Gli1 expression was identified in KRT19+-reactive cholangiocytes. Suppressing Gli1 expression by administration of AAV-shGli1 or GANT61 ameliorated HPC-originated DR and fibrotic extent. KRT19 expression was reduced after GANT61 treatment in sodium butyrate-stimulated WB-F344 cells or organoids or in cells transduced with Gli1 knockdown lentiviral vectors. In contrast, KRT19 expression was elevated after transducing Gli1 overexpression lentiviral vectors in these cells. Conclusions: During various modes of chronic injury, Gli1 acted as an important mediator of HPC activation, expansion, differentiation into reactive cholangiocytes that formed DR, and subsequently provoked hepatic fibrogenesis.


Subject(s)
Hedgehog Proteins , Liver Cirrhosis , Signal Transduction , Stem Cells , Zinc Finger Protein GLI1 , Animals , Female , Humans , Male , Mice , Rats , Cell Differentiation , Disease Models, Animal , Hedgehog Proteins/metabolism , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/complications , Liver/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Pyridines/pharmacology , Pyrimidines/pharmacology , Stem Cells/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics
15.
Biomed Pharmacother ; 174: 116625, 2024 May.
Article in English | MEDLINE | ID: mdl-38643543

ABSTRACT

AIMS: The purpose of this study was to explore the impacts of salidroside on vascular regeneration, vascular structural changes and long-term neurological recuperation following cerebral ischemia and its possible mechanism. MAIN METHODS: From Day 1 to Day 28, young male mice with middle cerebral artery blockage received daily doses of salidroside and measured neurological deficits. On the 7th day after stroke, the volume of cerebral infarction was determined using TTC and HE staining. Microvascular density, astrocyte coverage, angiogenesis and the expression of the Shh signaling pathway were detected by IF, qRTPCR and WB at 7, 14 and 28 days after stroke. Changes in blood flow, blood vessel density and diameter from stroke to 28 days were measured by the LSCI and TPMI. KEY FINDINGS: Compared with the dMACO group, the salidroside treatment group significantly promoted the recovery of neurological function. Salidroside was found to enhance cerebral blood flow perfusion and reduce the infarct on the 7th day after stroke. From the 7th to the 28th day after stroke, salidroside treatment boosted the expression of CD31, CD31+/BrdU+, and GFAP in the cortex around the infarction site. On the 14th day after stroke, salidroside significantly enhanced the width and density of blood vessels. Salidroside increased the expression of histones and genes in the Shh signaling pathway during treatment, and this effect was weakened by the Shh inhibitor Cyclopamine. SIGNIFICANCE: Salidroside can restore nerve function, improve cerebral blood flow, reduce cerebral infarction volume, increase microvessel density and promote angiogenesis via the Shh signaling pathway.


Subject(s)
Brain Ischemia , Glucosides , Hedgehog Proteins , Neovascularization, Physiologic , Phenols , Signal Transduction , Animals , Glucosides/pharmacology , Phenols/pharmacology , Male , Hedgehog Proteins/metabolism , Signal Transduction/drug effects , Mice , Neovascularization, Physiologic/drug effects , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Disease Models, Animal , Cerebrovascular Circulation/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Angiogenesis
16.
Cells ; 13(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38607081

ABSTRACT

Increased activation of ovarian primordial follicles in Erß knockout (ErßKO) rats becomes evident as early as postnatal day 8.5. To identify the ERß-regulated genes that may control ovarian primordial follicle activation, we analyzed the transcriptome profiles of ErßKO rat ovaries collected on postnatal days 4.5, 6.5, and 8.5. Compared to wildtype ovaries, ErßKO ovaries displayed dramatic downregulation of Indian hedgehog (Ihh) expression. IHH-regulated genes, including Hhip, Gli1, and Ptch1, were also downregulated in ErßKO ovaries. This was associated with a downregulation of steroidogenic enzymes Cyp11a1, Cyp19a1, and Hsd17b1. The expression of Ihh remained very low in ErßKO ovaries despite the high levels of Gdf9 and Bmp15, which are known upregulators of Ihh expression in the granulosa cells of activated ovarian follicles. Strikingly, the downregulation of the Ihh gene in ErßKO ovaries began to disappear on postnatal day 16.5 and recovered on postnatal day 21.5. In rat ovaries, the first wave of primordial follicles is rapidly activated after their formation, whereas the second wave of primordial follicles remains dormant in the ovarian cortex and slowly starts activating after postnatal day 12.5. We localized the expression of Ihh mRNA in postnatal day 8.5 wildtype rat ovaries but not in the age-matched ErßKO ovaries. In postnatal day 21.5 ErßKO rat ovaries, we detected Ihh mRNA mainly in the activated follicles in the ovaries' peripheral regions. Our findings indicate that the expression of Ihh in the granulosa cells of the activated first wave of ovarian follicles depends on ERß.


Subject(s)
Estrogen Receptor beta , Hedgehog Proteins , Animals , Female , Rats , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , RNA, Messenger/metabolism
17.
Eur J Dermatol ; 34(1): 68-72, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38557461

ABSTRACT

Oral targeted therapy with hedgehog pathway inhibitors has revolutionized the standard of care for patients with advanced basal cell carcinoma (BCC). These patients are frail and elderly, have various comorbidities, and receive pharmacological polytherapy. Moreover, adverse events may have a significant impact on therapeutic adherence, which must be managed by the clinician. We evaluated the impact of caregivers on the treatment of patients with advanced BCC in terms of continuation of therapy over time. All patients included in this observational prospective study had histologically confirmed metastatic or locally advanced BCC (LaBCC) and were treated with hedgehog pathway inhibitors from January 2016 to December 2021 at the Department of Dermatology at the University of Florence, Italy. The collected patient data included: age, sex, BCC site and area of spread; number of cycles, dose, duration and tolerability of therapy; marital status (single, divorced, married/living with a partner, widow/widower); and information such as living with someone, and the presence of any caregivers. Of the 34 patients included, 33 had LaBCC and one metastatic BCC. There were 11 females (32.4%) and 23 males (67.6%). Patients who were married or living with a caregiver -tolerated therapy better than single patients who lived alone. Indeed, patients with married/live-in caregivers and/or those with an adequate caregiver experienced greater therapeutic adherence and tolerance of adverse events. Given the greater therapeutic adherence of patients with live-in caregivers as partners, it is essential to consider patients' marital status. It is advisable to involve the caregiver early on, and there should be a training discussion on the various possible adverse events and the best way to mitigate them. Therapeutic success is linked not only to patients being informed but also to training of caregivers.


Subject(s)
Antineoplastic Agents , Carcinoma, Basal Cell , Skin Neoplasms , Male , Female , Humans , Aged , Skin Neoplasms/pathology , Prospective Studies , Caregivers , Hedgehog Proteins/metabolism , Pyridines/adverse effects , Carcinoma, Basal Cell/pathology , Antineoplastic Agents/therapeutic use , Anilides/therapeutic use
18.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572590

ABSTRACT

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Exosomes , Mesenchymal Stem Cells , Humans , Rats , Animals , Diabetic Nephropathies/metabolism , Exosomes/metabolism , Smoothened Receptor , Hedgehog Proteins/metabolism , Fibrosis , Mesenchymal Stem Cells/metabolism , Umbilical Cord/metabolism , Diabetes Mellitus/metabolism
19.
Nat Commun ; 15(1): 3365, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664376

ABSTRACT

Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.


Subject(s)
Cerebellum , Cilia , Hedgehog Proteins , Nerve Tissue Proteins , Patched-1 Receptor , Signal Transduction , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Cilia/metabolism , Animals , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cerebellum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Endocytosis , Cell Differentiation , Cell Proliferation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice, Knockout
20.
PLoS One ; 19(4): e0297531, 2024.
Article in English | MEDLINE | ID: mdl-38687774

ABSTRACT

Basal cell carcinoma (BCC) is highly curable by surgical excision or radiation. In rare cases, BCC can be locally destructive or difficult to surgically remove. Hedgehog inhibition (HHI) with vismodegib or sonidegib induces a 50-60% response rate. Long-term toxicity includes muscle spasms and weight loss leading to dose decreases. This retrospective chart review also investigates the impact of CoQ10 and calcium supplementation in patients treated with HHI drugs at a single academic medical center from 2012 to 2022. We reviewed the charts of adult patients diagnosed with locally advanced or metastatic BCC treated with vismodegib or sonidegib primarily for progression-free survival (PFS). Secondary objectives included overall survival, BCC-specific survival, time to and reasons for discontinuation, overall response rate, safety and tolerability, use of CoQ10 and calcium supplements, and insurance coverage. Of 55 patients assessable for outcome, 34 (61.8%) had an overall clinical benefit, with 25 (45.4%) having a complete response and 9 (16.3%) a partial response. Stable disease was seen in 14 (25.4%) and 7 (12.7%) progressed. Of the 34 patients who responded to treatment, 9 recurred. Patients who were rechallenged with HHI could respond again. The median overall BCC-specific survival rate at 5 years is 89%. Dose reductions or discontinuations for vismodegib and sonidegib occurred in 59% versus 24% of cases, or 30% versus 9% of cases, respectively. With CoQ10 and calcium supplementation, only 17% required a dose reduction versus 42% without. HHI is highly effective for treating advanced BCC but may require dosing decreases. Sonidegib was better tolerated than vismodegib. CoQ10 and calcium supplementation can effectively prevent muscle spasms.


Subject(s)
Anilides , Carcinoma, Basal Cell , Hedgehog Proteins , Pyridines , Ubiquinone/analogs & derivatives , Humans , Carcinoma, Basal Cell/drug therapy , Carcinoma, Basal Cell/pathology , Retrospective Studies , Male , Female , Middle Aged , Aged , Pyridines/therapeutic use , Pyridines/administration & dosage , Anilides/therapeutic use , Anilides/administration & dosage , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Biphenyl Compounds/therapeutic use , Adult , Ubiquinone/therapeutic use , Ubiquinone/administration & dosage , Aged, 80 and over , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...