Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(3): e14324, 2024.
Article in English | MEDLINE | ID: mdl-38705866

ABSTRACT

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Subject(s)
Brassinosteroids , Helianthus , Orobanche , Seeds , Helianthus/drug effects , Helianthus/immunology , Helianthus/physiology , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Orobanche/physiology , Orobanche/drug effects , Seeds/drug effects , Seeds/immunology , Plant Weeds/drug effects , Plant Weeds/physiology , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Immunity/drug effects , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Plant Roots/immunology , Plant Roots/drug effects , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Malondialdehyde/metabolism
2.
Mol Nutr Food Res ; 65(18): e2100369, 2021 09.
Article in English | MEDLINE | ID: mdl-34331387

ABSTRACT

SCOPE: Food allergy to sunflower seed (SFS) protein is not frequent and only non-specific lipid transfert protein (nsLTP) Hel a 3 is officially recognized as a food allergen. Out of the eleven seed storage 2S-albumins (SESA) detected in SFS, only SFA-8 allergenicity has been investigated so far. The study aimed then to evaluate SFS protein allergenicity and particularly, to compare the sensitization potency of SESA in a mouse model. METHODS AND RESULTS: The most abundant SESA and nsLTP were isolated from SFS through a combination of chromatographic methods. Purified proteins were then used to measure specific IgG1 and IgE responses in BALB/c mice orally sensitized to different SFS protein isolates. The study, thus, confirmed the allergenicity of SFA-8 and Hel a 3 but mice were also highly sensitized to other SESA such as SESA2-1 or SESA20-2. Furthermore, competitive inhibition of IgE-binding revealed that SFA-8 IgE-reactivity was due to cross-reactivity with other SESA. 11S-globulins were weakly immunogenic and were rapidly degraded in an in vitro model of gastroduodenal digestion. In contrast, Hel a 3, SESA2-1 and SFA-8 were more resistant to proteolysis and gastroduodenal digestion did not affect their IgE-reactivity. CONCLUSIONS: SESA2-1 or SESA20-2 were more potent allergens than SFA-8 in this mouse model. Allergenicity of SESA must be now confirmed in SFS-allergic patients.


Subject(s)
2S Albumins, Plant/immunology , Antigens, Plant/immunology , Food Hypersensitivity/immunology , Seed Storage Proteins/immunology , 2S Albumins, Plant/adverse effects , 2S Albumins, Plant/isolation & purification , 2S Albumins, Plant/pharmacokinetics , Animals , Antigens, Plant/adverse effects , Cross Reactions , Digestion , Disease Models, Animal , Female , Helianthus/chemistry , Helianthus/immunology , Immunity, Humoral , Immunoglobulin E/chemistry , Mice, Inbred BALB C , Seed Storage Proteins/chemistry , Seed Storage Proteins/isolation & purification , Seed Storage Proteins/pharmacokinetics , Spleen/drug effects , Spleen/immunology
3.
Sci Rep ; 11(1): 11644, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078972

ABSTRACT

Sunflower Verticillium Wilt and Leaf Mottle (SVW), caused by Verticillium dahliae (Kleb.; Vd), is a soil-borne disease affecting sunflower worldwide. A single dominant locus, known as V1, was formerly effective in controlling North-American Vd races, whereas races from Argentina, Europe and an emerging race from USA overcome its resistance. This emphasizes the need for identifying broad-spectrum genetic resistance (BSR) sources. Here we characterize two sunflower mapping populations (MPs) for SVW resistance: a biparental MP and the association MP from the National Institute of Agricultural Technology (INTA), under field growing conditions. Nine field-trials (FTs) were conducted in highly infested fields in the most SVW-affected region of Argentina. Several disease descriptors (DDs), including incidence and severity, were scored across four phenological stages. Generalized linear models were fitted according to the nature of each variable, adjusting mean phenotypes for inbred lines across and within FTs. Comparison of these responses allowed the identification of novel BSR sources. Furthermore, we present the first report of SVW resistance heritability, with estimates ranging from 35 to 45% for DDs related to disease incidence and severity, respectively. This study constitutes the largest SVW resistance characterization reported to date in sunflower, identifying valuable genetic resources for BSR-breeding to cope with a pathogen of increasing importance worldwide.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Genome, Plant , Helianthus/genetics , Plant Diseases/genetics , Argentina , Chromosome Mapping , Helianthus/immunology , Helianthus/microbiology , Phenotype , Plant Breeding/methods , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Quantitative Trait Loci
4.
Plant Physiol ; 185(2): 424-440, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33721890

ABSTRACT

Orobanche cumana is a holoparasitic plant that attaches to host-plant roots and seriously reduces the yield of sunflower (Helianthus annuus L.). Effective control methods are lacking with only a few known sources of genetic resistance. In this study, a seed-soak agroinoculation (SSA) method was established, and recombinant tobacco rattle virus vectors were constructed to express RNA interference (RNAi) inducers to cause virus-induced gene silencing (VIGS) in sunflower. A host target gene HaTubulin was systemically silenced in both leaf and root tissues by the SSA-VIGS approach. Trans-species silencing of O. cumana genes were confirmed for 10 out of 11 target genes with silencing efficiency of 23.43%-92.67%. Knockdown of target OcQR1, OcCKX5, and OcWRI1 genes reduced the haustoria number, and silencing of OcEXPA6 caused further phenotypic abnormalities such as shorter tubercles and necrosis. Overexpression of OcEXPA6 caused retarded root growth in alfalfa (Medicago sativa). The results demonstrate that these genes play an important role in the processes of O. cumana parasitism. High-throughput small RNA (sRNA) sequencing and bioinformatics analyses unveiled the distinct features of target gene-derived siRNAs in O. cumana such as siRNA transitivity, strand polarity, hotspot region, and 21/22-nt siRNA predominance, the latter of which was confirmed by Northern blot experiments. The possible RNAi mechanism is also discussed by analyzing RNAi machinery genes in O. cumana. Taken together, we established an efficient host-induced gene silencing technology for both functional genetics studies and potential control of O. cumana. The ease and effectiveness of this strategy could potentially be useful for other species provided they are amenable to SSA.


Subject(s)
Disease Resistance/genetics , Helianthus/genetics , Orobanche/physiology , Plant Diseases/immunology , Plant Proteins/genetics , Computational Biology , Gene Expression , Gene Silencing , Helianthus/immunology , High-Throughput Nucleotide Sequencing , Medicago sativa/genetics , Medicago sativa/growth & development , Necrosis , Orobanche/genetics , Plant Leaves/genetics , Plant Leaves/immunology , Plant Roots/genetics , Plant Roots/immunology , Plant Viruses/genetics , RNA Interference , Seeds/genetics , Seeds/immunology , Sequence Analysis, RNA , Tubulin/genetics
5.
Int J Mol Sci ; 21(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339111

ABSTRACT

Downy mildew (DM) is one of the severe biotic threats to sunflower production worldwide. The inciting pathogen, Plasmopara halstedii, could overwinter in the field for years, creating a persistent threat to sunflower. The dominant genes Pl18 and Pl20 conferring resistance to known DM races have been previously mapped to 1.5 and 1.8 cM intervals on sunflower chromosomes 2 and 8, respectively. Utilizing a whole-genome resequencing strategy combined with reference sequence-based chromosome walking and high-density mapping in the present study, Pl18 was placed in a 0.7 cM interval on chromosome 2. A candidate gene HanXRQChr02g0048181 for Pl18 was identified from the XRQ reference genome and predicted to encode a protein with typical NLR domains for disease resistance. The Pl20 gene was placed in a 0.2 cM interval on chromosome 8. The putative gene with the NLR domain for Pl20, HanXRQChr08g0210051, was identified within the Pl20 interval. SNP markers closely linked to Pl18 and Pl20 were evaluated with 96 diverse sunflower lines, and a total of 13 diagnostic markers for Pl18 and four for Pl20 were identified. These markers will facilitate to transfer these new genes to elite sunflower lines and to pyramid these genes with broad-spectrum DM resistance in sunflower breeding.


Subject(s)
Disease Resistance , Genes, Plant , Helianthus/genetics , Chromosomes, Plant/genetics , Genes, Dominant , Helianthus/immunology , Helianthus/microbiology , Oomycetes/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide
6.
Sci Rep ; 10(1): 20177, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214682

ABSTRACT

Sunflower pollen was reported to contain respiratory allergens responsible for occupational allergy and pollinosis. The present study describes the comprehensive characterization of a major sunflower allergen Hel a 6. Natural Hel a 6 was purified from sunflower pollen by anion exchange and gel filtration chromatography. Hel a 6 reacted with IgE-antibodies from 57% of 39 sunflower-sensitized patient sera suggesting it to be a major allergen. The patients were of Indian origin and suffering from pollinosis and allergic rhinitis. Hel a 6 exhibited allergenic activity by stimulating mediator release from basophils. Monomeric Hel a 6 displayed pectate lyase activity. The effect of various physicochemical parameters such as temperature, pH, and calcium ion on the functional activity of Hel a 6 revealed a stable nature of the protein. Hel a 6 was folded, and its melting curve showed reversible denaturation in which it refolded back to its native conformation from a denatured state. Hel a 6 displayed a high degree of sequence conservation with the pectate lyase allergens from related taxonomic families such as Amb a 1 (67%) and Art v 6 (57%). The IgE-cross reactivity was observed between Hel a 6 and its ragweed and mugwort homologs. The cross-reactivity was further substantiated by the mediator release when Hel a 6-sensitized effector cells were cross-stimulated with Art v 6 and Amb a 1. Several putative B cell epitopes were predicted and mapped on these 3 allergens. Two antigenic regions were found to be commonly shared by these 3 allergens, which could be crucial for cross-reactivity. In conclusion, Hel a 6 serves as a candidate molecule for diagnosis and immunotherapy for weed allergy.


Subject(s)
Allergens/chemistry , Allergens/immunology , Helianthus/chemistry , Hypersensitivity/immunology , Polysaccharide-Lyases/immunology , Allergens/isolation & purification , Allergens/metabolism , Ambrosia/immunology , Circular Dichroism , Cross Reactions , Epitopes/immunology , Farms , Helianthus/immunology , Histamine/metabolism , Humans , Hydrogen-Ion Concentration , Immune Sera , Mass Spectrometry , Plant Proteins/chemistry , Plant Proteins/immunology , Plant Proteins/isolation & purification , Pollen/enzymology , Pollen/immunology , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/isolation & purification , Polysaccharide-Lyases/metabolism , Protein Folding , Skin Tests , Temperature
7.
PLoS One ; 14(3): e0213065, 2019.
Article in English | MEDLINE | ID: mdl-30822322

ABSTRACT

Sclerotinia basal stalk rot (BSR) and downy mildew are major diseases of sunflowers worldwide. Breeding for BSR resistance traditionally relies upon cultivated sunflower germplasm that has only partial resistance thus lacking an effective resistance against the pathogen. In this study, we report the transfer of BSR resistance from sunflower wild species, Helianthus praecox, into cultivated sunflower and molecular assessment of the introgressed segments potentially associated with BSR resistance using the genotyping-by-sequencing (GBS) approach. Eight highly BSR-resistant H. praecox introgression lines (ILs), H.pra 1 to H.pra 8, were developed. The mean BSR disease incidence (DI) for H.pra 1 to H.pra 8 across environments for four years ranged from 1.2 to 11.1%, while DI of Cargill 270 (susceptible check), HA 89 (recurrent parent), HA 441 and Croplan 305 (resistant checks) was 36.1, 31.0, 19.5, and 11.6%, respectively. Molecular assessment using GBS detected the presence of H. praecox chromosome segments in chromosomes 1, 8, 10, 11, and 14 of the ILs. Both shared and unique polymorphic SNP loci were detected throughout the entire genomes of the ILs, suggesting the successful transfer of common and novel introgression regions that are potentially associated with BSR resistance. Downy mildew (DM) disease screening and molecular tests revealed that a DM resistance gene, Pl17, derived from one of the inbred parent HA 458 was present in four ILs. Introgression germplasms possessing resistance to both Sclerotinia BSR and DM will extend the useful diversity of the primary gene pool in the fight against two destructive sunflower diseases.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance , Genotype , Helianthus/genetics , Chromosomes, Plant/genetics , Helianthus/immunology , Helianthus/microbiology , Polymorphism, Genetic
9.
Proteomics ; 18(16): e1700418, 2018 08.
Article in English | MEDLINE | ID: mdl-29920934

ABSTRACT

Powdery mildew (PM, caused by Golovinomyces orontii) is one of the major diseases on sunflower that causes severe yield losses in the tropics. Sources of resistance to PM are reported in an exotic accession and some wild Helianthus species. The present study aims at quantitative proteomic analysis of susceptible, resistant, and immune genotypes of sunflower in response to PM infection at 3, 7, 10 days post infection. The majority of differentially expressed proteins in the resistant genotype belonged to oxidative stress (catalase, ATP-sulfurylase, and formate dehydrogenase), defense (HSP-70, heat shock transcription factors), and photosynthesis (LHCB3). In case of immune genotype, 50% of proteins are related to photosynthesis, which play a key role in plant immunity, whereas a few similar proteins are also expressed in the susceptible genotype, but in their reduced abundance besides being inadequate in timing of expression probably leading to its susceptibility to PM. KEGG enrichment analysis shows that carbon metabolism (6-phosphogluconate dehydrogenase, pyruvate dehydrogenase, glutamine synthetase), photosynthesis, and plant-pathogen protein pathways are key pathways governing the resistance. The transcriptional expression of eight of nine differentially expressed proteins are in agreement with the expression of proteins at the corresponding time. The present study provides information on the key proteins that are upregulated in resistant and immune genotypes which restrict the disease progression and constitutes the first quantitative proteomic data of sunflower-PM infection process.


Subject(s)
Ascomycota/physiology , Helianthus/genetics , Helianthus/immunology , Plant Diseases/genetics , Proteomics/methods , Disease Resistance , Gene Expression Regulation, Plant , Genotype , Helianthus/microbiology , Photosynthesis , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Proteomics ; 17(13-14)2017 Jul.
Article in English | MEDLINE | ID: mdl-28618117

ABSTRACT

Orobanche cumana is an obligate root parasite causing severe damage to many economically important crops, including sunflowers worldwide. For efficient control measures, it is necessary to understand the resistant mechanism during interaction at molecular level. The present study emphasizes on comparative proteomics to investigate the mechanistic basis of compatible and incompatible interaction of O. cumana with resistant (JY207) and susceptible (TK0409) sunflowers. More than 3500 proteins were identified from two cultivars by iTRAQ analysis. Identified proteins associated with general functions, posttranslational modification, energy production and conversion, carbohydrate transport and metabolism, and signal transduction mechanisms were the most represented category of induced proteins in both cultivars. The resistant interaction was characterized by alteration of defense-related proteins involved in recognition of parasites, accumulation of pathogenesis-related proteins, biosynthesis of lignin, and detoxification of toxic metabolites in JY207 after inoculation. The susceptible interaction was characterized by decreased abundance of proteins involved in biosynthesis and signaling of plant growth regulators including auxin, gibberellin, brassinosteroid, and ethylene in TK0409 after inoculation. The present study provides comprehensive details of proteins and differential modulation of pathways regulated under compatible and incompatible interaction, allowing the identification of important molecular components for development of sustainable resistance against this parasite.


Subject(s)
Helianthus/immunology , Orobanche/growth & development , Orobanche/immunology , Plant Diseases/parasitology , Plant Proteins/metabolism , Proteomics/methods , Disease Resistance , Helianthus/growth & development , Helianthus/parasitology , Host-Parasite Interactions , Isotope Labeling , Orobanche/physiology , Seeds/growth & development , Seeds/metabolism , Seeds/parasitology , Tandem Mass Spectrometry/methods
13.
Int J Immunopathol Pharmacol ; 29(3): 498-503, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27222528

ABSTRACT

Sunflower seeds are a rare source of allergy, but several cases of occupational allergies to sunflowers have been described. Sunflower allergens on the whole, however, still await precise and systematic description. We present an interesting case of a 40-year-old male patient, admitted to hospital due to shortness of breath and urticaria, both of which appeared shortly after the patient ingested sunflower seeds. Our laryngological examination revealed swelling of the pharynx with retention of saliva and swelling of the mouth and tongue. During diagnostics, 2 months later, we found that skin prick tests were positive to mugwort pollen (12/9 mm), oranges (6/6 mm), egg protein (3/3 mm), and hazelnuts (3/3 mm). A native prick by prick test with sunflower seeds was strongly positive (8/5 mm). Elevated concentrations of specific IgE against weed mix (inc. lenscale, mugwort, ragweed) allergens (1.04 IU/mL), Artemisia vulgaris (1.36 IU/mL), and Artemisia absinthium (0.49 IU/mL) were found. An ImmunoCap ISAC test found an average level of specific IgE against mugwort pollen allergen component Art v 1 - 5,7 ISU-E, indicating an allergy to mugwort pollen and low to medium levels of specific IgE against lipid transfer proteins (LTP) found in walnuts, peanuts, mugwort pollen, and hazelnuts. Through the ISAC inhibition test we proved that sunflower seed allergen extracts contain proteins cross-reactive with patients' IgE specific to Art v 1, Art v 3, and Jug r 3. Based on our results and the clinical pattern of the disease we confirmed that the patient is allergic to mugwort pollen and that he had an anaphylactic reaction as a result of ingesting sunflower seeds. We suspected that hypersensitivity to sunflower LTP and defensin-like proteins, both cross-reactive with mugwort pollen allergens, were the main cause of the patient's anaphylactic reaction.


Subject(s)
Allergens/immunology , Antigens, Plant/immunology , Helianthus/immunology , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Seeds/immunology , Adult , Ambrosia/immunology , Artemisia/immunology , Humans , Male , Pollen/immunology , Rhinitis, Allergic, Seasonal/diagnosis , Rhinitis, Allergic, Seasonal/immunology , Skin Tests/methods
14.
New Phytol ; 209(4): 1720-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26583880

ABSTRACT

Leaf defenses are widely recognized as key adaptations and drivers of plant evolution. Across environmentally diverse habitats, the macroevolution of leaf defenses can be predicted by the univariate trade-off model, which predicts that defenses are functionally redundant and thus trade off, and the resource availability hypothesis, which predicts that defense investment is determined by inherent growth rate and that higher defense will evolve in lower resource environments. Here, we examined the evolution of leaf physical and chemical defenses and secondary metabolites in relation to environmental characteristics and leaf economic strategy across 28 species of Helianthus (the sunflowers). Using a phylogenetic comparative approach, we found few evolutionary trade-offs among defenses and no evidence for defense syndromes. We also found that leaf defenses are strongly related to leaf economic strategy, with higher defense in more resource-conservative species, although there is little support for the evolution of higher defense in low-resource habitats. A wide variety of physical and chemical defenses predict resistance to different insect herbivores, fungal pathogens, and a parasitic plant, suggesting that most sunflower defenses are not redundant in function and that wild Helianthus represents a rich source of variation for the improvement of crop sunflower.


Subject(s)
Biological Evolution , Helianthus/immunology , Helianthus/metabolism , Plant Leaves/immunology , Plant Leaves/metabolism , Secondary Metabolism , Animals , Disease Resistance , Herbivory , Plant Diseases/immunology , Quantitative Trait, Heritable
15.
PLoS One ; 10(9): e0138992, 2015.
Article in English | MEDLINE | ID: mdl-26418046

ABSTRACT

BACKGROUND: Respiratory allergy triggered by pollen allergens is increasing at an alarming rate worldwide. Sunflower pollen is thought to be an important source of inhalant allergens. Present study aims to identify the prevalence of sunflower pollinosis among the Indian allergic population and characterizes the pollen allergens using immuno-proteomic tools. METHODOLOGY: Clinico-immunological tests were performed to understand the prevalence of sensitivity towards sunflower pollen among the atopic population. Sera from selected sunflower positive patients were used as probe to detect the IgE-reactive proteins from the one and two dimensional electrophoretic separated proteome of sunflower pollen. The antigenic nature of the sugar moiety of the glycoallergens was studied by meta-periodate modification of IgE-immunoblot. Finally, these allergens were identified by mass-spectrometry. RESULTS: Prevalence of sunflower pollen sensitization was observed among 21% of the pollen allergic population and associated with elevated level of specific IgE and histamine in the sera of these patients. Immunoscreening of sunflower pollen proteome with patient sera detected seven IgE-reactive proteins with varying molecular weight and pI. Hierarchical clustering of 2D-immunoblot data highlighted three allergens characterized by a more frequent immuno-reactivity and increased levels of IgE antibodies in the sera of susceptible patients. These allergens were considered as the major allergens of sunflower pollen and were found to have their glycan moiety critical for inducing IgE response. Homology driven search of MS/MS data of these IgE-reactive proteins identified seven previously unreported allergens from sunflower pollen. Three major allergenic proteins were identified as two pectate lyases and a cysteine protease. CONCLUSION: Novelty of the present report is the identification of a panel of seven sunflower pollen allergens for the first time at immuno-biochemical and proteomic level, which substantiated the clinical evidence of sunflower allergy. Further purification and recombinant expression of these allergens will improve component-resolved diagnosis and therapy of pollen allergy.


Subject(s)
Allergens/immunology , Antigens, Plant/immunology , Helianthus/immunology , Plant Proteins/immunology , Pollen/immunology , Proteome/analysis , Proteomics/methods , Adolescent , Adult , Allergens/metabolism , Antigens, Plant/metabolism , Case-Control Studies , Electrophoresis, Gel, Two-Dimensional , Female , Helianthus/metabolism , Humans , Hypersensitivity, Immediate/diagnosis , Hypersensitivity, Immediate/immunology , Hypersensitivity, Immediate/metabolism , Immunoblotting , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Male , Middle Aged , Plant Proteins/metabolism , Pollen/metabolism , Respiratory System/immunology , Respiratory System/metabolism , Rhinitis, Allergic, Seasonal/diagnosis , Rhinitis, Allergic, Seasonal/immunology , Skin/immunology , Skin/metabolism , Tandem Mass Spectrometry , Young Adult
16.
Plant Signal Behav ; 10(9): e992285, 2015.
Article in English | MEDLINE | ID: mdl-25875793

ABSTRACT

Nitric oxide (NO) is a major plant signaling molecule that plays key roles during plant-pathogen interactions and plant development. Previous work showed the participation of NO in the development and lignin composition of sunflower roots. Thereby, we have hypothesized that NO applications could control the attack of the fungal pathogen Verticillium dahliae in sunflowers. Seedlings growing hydroponically were pretreated with NO donors and further inoculated with the fungus. Evaluation of disease symptoms showed that NO pretreatments could not reduce Verticillium wilt. Strikingly, NO donors appear to promote the fungal infection. These results indicate that NO applications were unable to protect sunflowers from Verticillium attack and highlight the role played by the fine tuning regulation of NO levels required to balance plant responses between development and defense.


Subject(s)
Helianthus/growth & development , Helianthus/immunology , Nitric Oxide/pharmacology , Plant Development/drug effects , Seedlings/growth & development , Seedlings/immunology , Helianthus/drug effects , Helianthus/microbiology , Hydroponics , Nitric Oxide Donors/pharmacology , Plant Diseases/microbiology , Seedlings/drug effects , Seedlings/microbiology , Verticillium/drug effects , Verticillium/physiology
17.
PLoS One ; 9(7): e98628, 2014.
Article in English | MEDLINE | ID: mdl-25014030

ABSTRACT

A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman's rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping.


Subject(s)
Genome, Plant , Helianthus/genetics , Plant Diseases/genetics , Plant Immunity/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Basidiomycota/pathogenicity , Basidiomycota/physiology , Breeding , Chromosome Mapping , Genetic Linkage , Genetic Markers , Genotype , Helianthus/immunology , Helianthus/microbiology , Phenotype , Plant Diseases/immunology
18.
Methods ; 66(1): 55-66, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-23806644

ABSTRACT

Weeds represent a botanically unrelated group of plants that usually lack commercial or aesthetical value. Pollen of allergenic weeds are able to trigger type I reactions in allergic patients and can be found in the plant families of Asteraceae, Amaranthaceae, Plantaginaceae, Urticaceae, and Euphorbiaceae. To date, 34 weed pollen allergens are listed in the IUIS allergen nomenclature database, which were physicochemically and immunologically characterized to varying degrees. Relevant allergens of weeds belong to the pectate lyase family, defensin-like family, Ole e 1-like family, non-specific lipid transfer protein 1 family and the pan-allergens profilin and polcalcins. This review provides an overview on weed pollen allergens primarily focusing on the molecular level. In particular, the characteristics and properties of purified recombinant allergens and hypoallergenic derivatives are described and their potential use in diagnosis and therapy of weed pollen allergy is discussed.


Subject(s)
Plant Weeds/immunology , Pollen/immunology , Rhinitis, Allergic, Seasonal/immunology , Amaranthus/immunology , Animals , Artemisia/immunology , Asteraceae/immunology , Helianthus/immunology , Humans , Plant Proteins/immunology , Recombinant Proteins/immunology , Salsola/immunology
19.
Theor Appl Genet ; 126(8): 2039-49, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23719761

ABSTRACT

Few widely effective resistance sources to sunflower rust, incited by Puccinia helianthi Schwein., have been identified in confection sunflower (Helianthus annuus L.). The USDA inbred line HA-R6 is one of the few confection sunflower lines resistant to rust. A previous allelism test indicated that rust resistance genes in HA-R6 and RHA 397, an oilseed-type restorer line, are either allelic or closely linked; however, neither have been characterized nor molecularly mapped. The objectives of this study are (1) to locate the rust resistance genes in HA-R6 and RHA 397 on a molecular map, (2) to develop closely linked molecular markers for rust resistance diagnostics, and (3) to determine the resistance spectrum of two lines when compared with other rust-resistant lines. Two populations of 140 F2:3 families each from the crosses of HA 89, as susceptible parent, with HA-R6 and RHA 397 were inoculated with race 336 of P. helianthi in the greenhouse. The resistance genes (R-genes) in HA-R6 and RHA 397 were molecularly mapped to the lower end of linkage group 13, which encompasses a large R-gene cluster, and were designated as R 13a and R 13b, respectively. In the initial maps, SSR (simple sequence repeat) and InDel (insertion and deletion) markers revealed 2.8 and 8.2 cM flanking regions for R 13a and R 13b, respectively, linked with a common marker set of four co-segregating markers, ORS191, ORS316, ORS581, and ZVG61, in the distal side and one marker ORS464 in the proximal side. To identify new markers closer to the genes, sunflower RGC (resistance gene candidate) markers linked to the downy mildew R-gene Pl 8 and located at the same region as R 13a and R 13b were selected to screen the two F2 populations. The RGC markers RGC15/16 and a newly developed marker SUN14 designed from a BAC contig anchored by RGC251 further narrowed down the region flanking R 13a and R 13b to 1.1 and 0.1 cM, respectively. Both R 13a and R 13b are highly effective against all rust races tested so far. Our newly developed molecular markers will facilitate breeding efforts to pyramid the R 13 genes with other rust R-genes and accelerate the development of rust-resistant sunflower hybrids in both confection and oilseed sunflowers.


Subject(s)
Disease Resistance/genetics , Helianthus/genetics , Mycoses/immunology , Plant Diseases/immunology , Basidiomycota , Breeding , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Genes, Plant , Genetic Linkage/genetics , Genetic Markers , Genetic Variation , Genotype , Helianthus/immunology , Helianthus/microbiology , INDEL Mutation/genetics , Plant Diseases/microbiology , Plant Oils , Polymorphism, Genetic , Sunflower Oil
20.
Theor Appl Genet ; 126(2): 359-67, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23052021

ABSTRACT

The resistance of sunflower to Plasmopara halstedii is conferred by major resistance genes denoted Pl. Previous genetic studies indicated that the majority of these genes are clustered on linkage groups 8 and 13. The Pl6 locus is one of the main clusters to have been identified, and confers resistance to several P. halstedii races. In this study, a map-based cloning strategy was implemented using a large segregating F2 population to establish a fine physical map of this cluster. A marker derived from a bacterial artificial chromosome (BAC) clone was found to be very tightly linked to the gene conferring resistance to race 300, and the corresponding BAC clone was sequenced and annotated. It contains several putative genes including three toll-interleukin receptor-nucleotide binding site-leucine rich repeats (TIR-NBS-LRR) genes. However, only one TIR-NBS-LRR appeared to be expressed, and thus constitutes a candidate gene for resistance to P. halstedii race 300.


Subject(s)
Disease Resistance/genetics , Genes, Plant/genetics , Helianthus/genetics , Oomycetes/physiology , Plant Diseases/genetics , Quantitative Trait Loci , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Cloning, Molecular , Crosses, Genetic , DNA, Plant/genetics , Helianthus/immunology , Helianthus/microbiology , Immunity, Innate , Molecular Sequence Data , Oomycetes/pathogenicity , Plant Diseases/immunology , Plant Diseases/microbiology , RNA, Plant/genetics , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...