Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.589
Filter
1.
Front Immunol ; 15: 1397005, 2024.
Article in English | MEDLINE | ID: mdl-38779660

ABSTRACT

As major components of the tumor microenvironment, both mesenchymal stem cells (MSCs) and macrophages can be remodelled and exhibit different phenotypes and functions during tumor initiation and progression. In recent years, increasing evidence has shown that tumor-associated macrophages (TAMs) play a crucial role in the growth, metastasis, and chemotherapy resistance of hematological malignancies, and are associated with poor prognosis. Consequently, TAMs have emerged as promising therapeutic targets. Notably, MSCs exert a profound influence on modulating immune cell functions such as macrophages and granulocytes, thereby playing a crucial role in shaping the immunosuppressive microenvironment surrounding tumors. However, in hematological malignancies, the cellular and molecular mechanisms underlying the interaction between MSCs and macrophages have not been clearly elucidated. In this review, we provide an overview of the role of TAMs in various common hematological malignancies, and discuss the latest advances in understanding the interaction between MSCs and macrophages in disease progression. Additionally, potential therapeutic approaches targeting this relationship are outlined.


Subject(s)
Mesenchymal Stem Cells , Tumor Microenvironment , Humans , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment/immunology , Animals , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Macrophages/immunology , Macrophages/metabolism , Cell Communication/immunology
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731863

ABSTRACT

The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.


Subject(s)
B-Lymphocytes , Hematologic Neoplasms , Proteomics , Humans , Proteomics/methods , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/pathology , B-Lymphocytes/metabolism , Biomarkers, Tumor/metabolism , Mass Spectrometry/methods , Flow Cytometry/methods
3.
Cell Death Dis ; 15(5): 328, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734740

ABSTRACT

We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.


Subject(s)
Liposomes , Animals , Humans , Mice , Xenograft Model Antitumor Assays , Cell Death/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/immunology , Cell Line, Tumor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
4.
Med Oncol ; 41(6): 128, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656461

ABSTRACT

Myeloid neoplasms are a group of bone marrow diseases distinguished by disruptions in the molecular pathways that regulate the balance between hematopoietic stem cell (HSC) self-renewal and the generation of specialized cells. Cytokines and chemokines, two important components of the inflammatory process, also influence hematological differentiation. In this scenario, immunological dysregulation plays a pivotal role in the pathogenesis of bone marrow neoplasms. The STING pathway recognizes DNA fragments in the cell cytoplasm and triggers an immune response by type I interferons. The role of STING in cancer has not yet been established; however, both actions, as an oncogene or tumor suppressor, have been documented in other types of cancer. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42023407512) to discuss the role of STING pathway in the advancement of pathogenesis and/or prognosis for different myeloid neoplasms. In brief, scientific evidence supports investigations that primarily use cell lines from myeloid neoplasms, such as leukemia. More high-quality research and clinical trials are needed to understand the role of the STING pathway in the pathology of hematological malignancies. Finally, the STING pathway suggests being a promising therapeutic molecular target, particularly when combined with current drug therapies.


Subject(s)
Hematologic Neoplasms , Membrane Proteins , Humans , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Hematologic Neoplasms/immunology , Membrane Proteins/metabolism , Myeloproliferative Disorders/metabolism , Signal Transduction
5.
Leukemia ; 38(5): 1086-1098, 2024 May.
Article in English | MEDLINE | ID: mdl-38600314

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison. DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters (IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2) differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN offers novel molecular insights and potential diagnostic applications.


Subject(s)
DNA Methylation , Dendritic Cells , Humans , Dendritic Cells/pathology , Dendritic Cells/metabolism , Female , Male , Middle Aged , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Tumor Microenvironment/genetics , Aged , Adult , Prognosis , Gene Expression Regulation, Neoplastic , Mutation , Biomarkers, Tumor/genetics
6.
Ann Hematol ; 103(6): 2165-2168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584216

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive myeloid malignancy associated with a poor prognosis. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) has emerged as a potential treatment strategy for BPDCN, standardized conditioning regimens remain lacking. In this manuscript, we present two cases of BPDCN that were treated with a thiotepa-busulfan-fludarabine (TBF)-based conditioning regimen prior to allo-HSCT. Both cases demonstrated complete remission post-transplantation, sustained donor chimerism, and remission maintenance, suggesting the potential efficacy of the TBF conditioning regimen for BPDCN transplantation. Given the small sample size in our study, we emphasize caution and advocate for larger studies to confirm the efficacy of TBF in the treatment of BPDCN.


Subject(s)
Busulfan , Dendritic Cells , Hematopoietic Stem Cell Transplantation , Thiotepa , Transplantation Conditioning , Vidarabine , Humans , Vidarabine/analogs & derivatives , Vidarabine/administration & dosage , Vidarabine/therapeutic use , Transplantation Conditioning/methods , Dendritic Cells/pathology , Thiotepa/administration & dosage , Thiotepa/therapeutic use , Male , Busulfan/administration & dosage , Busulfan/therapeutic use , Middle Aged , Hematologic Neoplasms/therapy , Hematologic Neoplasms/pathology , Female , Transplantation, Homologous , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Allografts
7.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38688280

ABSTRACT

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Subject(s)
Hematologic Neoplasms , Mutation , Phosphoproteins , RNA Splicing Factors , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Humans , Animals , Phosphoproteins/genetics , Phosphoproteins/metabolism , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Mice , RNA Splicing , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Hematopoiesis/genetics , HEK293 Cells , Introns , RNA Helicases/genetics , RNA Helicases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
BMC Med Genomics ; 17(1): 105, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664735

ABSTRACT

BACKGROUND: Research on the fatty acid metabolism related gene SLC27A2 is currently mainly focused on solid tumors, and its mechanism of action in hematological tumors has not been reported. METHOD: This study aims to explore the pathological and immune mechanisms of the fatty acid metabolism related gene SLC27A2 in hematological tumors and verify its functional role in hematological tumors through cell experiments to improve treatment decisions and clinical outcomes of hematological tumors. RESULT: This study identified the fatty acid metabolism related gene SLC27A2 as a common differentially expressed gene between DLBCL and AML. Immune microenvironment analysis showed that SLC27A2 was significantly positively correlated with T cell CD4 + , T cell CD8 + , endothelial cells, macrophages, and NK cells in DLBCL. In AML, there is a significant negative correlation between SLC27A2 and B cells, T cell CD8 + , and macrophages. SLC27A2 participates in the immune process of hematological tumors through T cell CD8 + and macrophages. The GESA results indicate that high expression of SLC27A2 is mainly involved in the fatty acid pathway, immune pathway, and cell cycle pathway of DLBCL. The low expression of SLC27A2 is mainly involved in the immune pathway of AML. Therefore, SLC27A2 is mainly involved in the pathological mechanisms of hematological tumors through immune pathways, and cell experiments have also confirmed that SLC27A2 is involved in the regulation of DLBCL cells. CONCLUSION: In summary, our research results comprehensively report for the first time the mechanism of action of SLC27A2 in the immune microenvironment of DLBCL and AML, and for the first time verify the cycle and apoptotic effects of the fatty acid related gene SLC27A2 in DLBCL cells through cell experiments. Research can help improve the treatment of AML and DLBCL patients.


Subject(s)
Cell Cycle , Lymphoma, Large B-Cell, Diffuse , Tumor Microenvironment , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Cell Line, Tumor , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Fatty Acids/metabolism
9.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674139

ABSTRACT

The role of metalloproteinases (MMPs) in hematological malignancies, like acute myeloid leukemia (AML), myelodysplastic neoplasms (MDS), and multiple myeloma (MM), is well-documented, and these pathologies remain with poor outcomes despite treatment advancements. In this study, we investigated the effects of batimastat (BB-94), an MMP inhibitor (MMPi), in single-administration and daily administration schemes in AML, MDS, and MM cell lines. We used four hematologic neoplasia cell lines: the HL-60 and NB-4 cells as AML models, the F36-P cells as an MDS model, and the H929 cells as a model of MM. We also tested batimastat toxicity in a normal human lymphocyte cell line (IMC cells). BB-94 decreases cell viability and density in a dose-, time-, administration-scheme-, and cell-line-dependent manner, with the AML cells displaying higher responses. The efficacy in inducing apoptosis and cell cycle arrests is dependent on the cell line (higher effects in AML cells), especially with lower daily doses, which may mitigate treatment toxicity. Furthermore, BB-94 activated apoptosis via caspases and ERK1/2 pathways. These findings highlight batimastat's therapeutic potential in hematological malignancies, with daily dosing emerging as a strategy to minimize adverse effects.


Subject(s)
Apoptosis , Hematologic Neoplasms , Phenylalanine/analogs & derivatives , Thiophenes , Humans , Apoptosis/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Cytostatic Agents/pharmacology , Cell Proliferation/drug effects , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , HL-60 Cells , Matrix Metalloproteinase Inhibitors/pharmacology , Cell Cycle Checkpoints/drug effects , MAP Kinase Signaling System/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology
10.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473775

ABSTRACT

This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Humans , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Mesenchymal Stem Cells/metabolism , Hematologic Neoplasms/pathology , Biology , Tumor Microenvironment
11.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474011

ABSTRACT

Homeobox genes encode developmental transcription factors regulating tissue-specific differentiation processes and drive cancerogenesis when deregulated. Dendritic cells (DCs) are myeloid immune cells occurring as two types, either conventional or plasmacytoid DCs. Recently, we showed that the expression of NKL-subclass homeobox gene VENTX is restricted to conventional DCs, regulating developmental genes. Here, we identified and investigated homeobox genes specifically expressed in plasmacytoid DCs (pDCs) and derived blastic plasmacytoid dendritic cell neoplasm (BPDCN). We analyzed gene expression data, performed RQ-PCR, protein analyses by Western blot and immuno-cytology, siRNA-mediated knockdown assays and subsequent RNA-sequencing and live-cell imaging. Screening of public gene expression data revealed restricted activity of the CUT-class homeobox gene CUX2 in pDCs. An extended analysis of this homeobox gene class in myelopoiesis showed that additional CUX2 activity was restricted to myeloid progenitors, while BPDCN patients aberrantly expressed ONECUT2, which remained silent in the complete myeloid compartment. ONECUT2 expressing BPDCN cell line CAL-1 served as a model to investigate its regulation and oncogenic activity. The ONECUT2 locus at 18q21 was duplicated and activated by IRF4, AUTS2 and TNF-signaling and repressed by BMP4-, TGFb- and IL13-signalling. Functional analyses of ONECUT2 revealed the inhibition of pDC differentiation and of CDKN1C and CASP1 expression, while SMAD3 and EPAS1 were activated. EPAS1 in turn enhanced survival under hypoxic conditions which thus may support dendritic tumor cells residing in hypoxic skin lesions. Collectively, we revealed physiological and aberrant activities of CUT-class homeobox genes in myelopoiesis including pDCs and in BPDCN, respectively. Our data may aid in the diagnosis of BPDCN patients and reveal novel therapeutic targets for this fatal malignancy.


Subject(s)
Genes, Homeobox , Hematologic Neoplasms , Humans , Cell Differentiation , Cell Line , Myeloid Cells/metabolism , Dendritic Cells/metabolism , Hematologic Neoplasms/pathology , Transcription Factors/metabolism , Homeodomain Proteins/genetics
13.
Mod Pathol ; 37(5): 100466, 2024 May.
Article in English | MEDLINE | ID: mdl-38460674

ABSTRACT

This manuscript represents a review of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia/lymphoblastic lymphoma), acute leukemias of ambiguous lineage, mixed-phenotype acute leukemias, myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangements, histiocytic and dendritic neoplasms, and genetic tumor syndromes of the 5th edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The diagnostic, clinicopathologic, cytogenetic, and molecular genetic features are discussed. The differences in comparison to the 4th revised edition of the World Health Organization classification of hematolymphoid neoplasms are highlighted.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , World Health Organization , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification , Eosinophilia/pathology , Eosinophilia/genetics , Histiocytic Disorders, Malignant/genetics , Histiocytic Disorders, Malignant/pathology , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/classification , Phenotype
14.
Leukemia ; 38(5): 936-946, 2024 May.
Article in English | MEDLINE | ID: mdl-38514772

ABSTRACT

Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors from the bone marrow (BM) niche, which complicates the prediction of a mutant cell's fate in a shifting pre-malignant microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes. Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued development and progression of CH. We also provide an overview of the latest technology developments to study the spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we discuss aspects of CH carrier management in clinical practice, based on work from our group and others.


Subject(s)
Aging , Clonal Hematopoiesis , Stem Cell Niche , Humans , Clonal Hematopoiesis/genetics , Aging/genetics , Aging/physiology , Bone Marrow/metabolism , Bone Marrow/pathology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Mutation , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Animals , Hematopoiesis/genetics
15.
Blood ; 143(21): 2123-2144, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38457665

ABSTRACT

ABSTRACT: The DNA damage response (DDR) encompasses the detection and repair of DNA lesions and is fundamental to the maintenance of genome integrity. Germ line DDR alterations underlie hereditary chromosome instability syndromes by promoting the acquisition of pathogenic structural variants in hematopoietic cells, resulting in increased predisposition to hematologic malignancies. Also frequent in hematologic malignancies are somatic mutations of DDR genes, typically arising from replication stress triggered by oncogene activation or deregulated tumor proliferation that provides a selective pressure for DDR loss. These defects impair homology-directed DNA repair or replication stress response, leading to an excessive reliance on error-prone DNA repair mechanisms that results in genomic instability and tumor progression. In hematologic malignancies, loss-of-function DDR alterations confer clonal growth advantage and adverse prognostic impact but may also provide therapeutic opportunities. Selective targeting of functional dependencies arising from these defects could achieve synthetic lethality, a therapeutic concept exemplified by inhibition of poly-(adenosine 5'-diphosphate ribose) polymerase or the ataxia telangiectasia and Rad 3 related-CHK1-WEE1 axis in malignancies harboring the BRCAness phenotype or genetic defects that increase replication stress. Furthermore, the role of DDR defects as a source of tumor immunogenicity, as well as their impact on the cross talk between DDR, inflammation, and tumor immunity are increasingly recognized, thus providing rationale for combining DDR modulation with immune modulation. The nature of the DDR-immune interface and the cellular vulnerabilities conferred by DDR defects may nonetheless be disease-specific and remain incompletely understood in many hematologic malignancies. Their comprehensive elucidation will be critical for optimizing therapeutic strategies to target DDR defects in these diseases.


Subject(s)
DNA Damage , DNA Repair , Hematologic Neoplasms , Humans , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Animals , Genomic Instability
16.
Int J Biol Macromol ; 265(Pt 1): 130642, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460644

ABSTRACT

How selectively increase blood-tumor barrier (BTB) permeability is crucial to enhance the delivery of chemotherapeutic agents to brain tumor tissues. In this study, we established in vitro models of the blood-brain barrier (BBB) and BTB using endothelial cells (ECs) co-cultured with human astrocytes (AECs) and glioma cells (GECs), respectively. The findings revealed high expressions of the RNA-binding protein FXR1 and SNORD63 in GECs, where FXR1 was found to bind and stabilize SNORD63. Knockdown of FXR1 resulted in decreased expression of tight-junction-related proteins and increased BTB permeability by down-regulating SNORD63. SNORD63 played a role in mediating the 2'-O-methylation modification of POU6F1 mRNA, leading to the downregulation of POU6F1 protein expression. POU6F1 showed low expression in GECs and acted as a transcription factor to regulate BTB permeability by binding to the promoter regions of ZO-1, occludin, and claudin-5 mRNAs and negatively regulating their expressions. Finally, the targeted regulation of FXR1, SNORD63, and POU6F1 expressions, individually or in combination, effectively enhanced doxorubicin passage through the BTB and induced apoptosis in glioma cells. This study aims to elucidate the underlying mechanism of the FXR1/SNORD63/POU6F1 axis in regulating BTB permeability, offering a novel strategy to improve the efficacy of glioma chemotherapy.


Subject(s)
Brain Neoplasms , Glioma , Hematologic Neoplasms , MicroRNAs , POU Domain Factors , Humans , MicroRNAs/genetics , Endothelial Cells/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism , Brain Neoplasms/pathology , Glioma/pathology , Blood-Brain Barrier/metabolism , Tight Junction Proteins/metabolism , Occludin/genetics , Hematologic Neoplasms/pathology , Permeability , Methylation , Capillary Permeability , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
17.
PLoS One ; 19(2): e0289904, 2024.
Article in English | MEDLINE | ID: mdl-38412186

ABSTRACT

Proteasome inhibitors such as Bortezomib represent an established type of targeted treatment for several types of hematological malignancies, including multiple myeloma, Waldenstrom's macroglobulinemia, and mantle cell lymphoma, based on the cancer cell's susceptibility to impairment of the proteasome-ubiquitin system. However, a major problem limiting their efficacy is the emergence of resistance. Their application to solid tumors is currently being studied, while simultaneously, a wide spectrum of hematological cancers, such as Myelodysplastic Syndromes show minimal or no response to Bortezomib treatment. In this study, we utilize the prostate cancer cell line DU-145 to establish a model of Bortezomib resistance, studying the underlying mechanisms. Evaluating the resulting resistant cell line, we observed restoration of proteasome chymotrypsin-like activity, regardless of drug presence, an induction of pro-survival pathways, and the substitution of the Ubiquitin-Proteasome System role in proteostasis by induction of autophagy. Finally, an estimation of the oxidative condition of the cells indicated that the resistant clones reduce the generation of reactive oxygen species induced by Bortezomib to levels even lower than those induced in non-resistant cells. Our findings highlight the role of autophagy and oxidative stress regulation in Bortezomib resistance and elucidate key proteins of signaling pathways as potential pharmaceutical targets, which could increase the efficiency of proteasome-targeting therapies, thus expanding the group of molecular targets for neoplastic disorders.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Multiple Myeloma , Prostatic Neoplasms , Humans , Adult , Male , Bortezomib/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Multiple Myeloma/drug therapy , Hematologic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Oxidative Stress , Autophagy , Ubiquitins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
18.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338733

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic cancer originating from the malignant transformation of plasmacytoid dendritic cell precursors. This malignancy progresses rapidly, with frequent relapses and a poor overall survival rate, underscoring the urgent need for effective treatments. However, diagnosing and treating BPDCN have historically been challenging due to its rarity and the lack of standardized approaches. The recognition of BPDCN as a distinct disease entity is recent, and standardized treatment protocols are yet to be established. Traditionally, conventional chemotherapy and stem cell transplantation have been the primary methods for treating BPDCN patients. Advances in immunophenotyping and molecular profiling have identified potential therapeutic targets, leading to a shift toward CD123-targeted immunotherapies in both clinical and research settings. Ongoing developments with SL-401, IMGN632, CD123 chimeric antigen receptor (CAR) T-cells, and bispecific antibodies (BsAb) show promising advancements. However, the therapeutic effectiveness of CD123-targeting treatments needs improvement through innovative approaches and combinations of treatments with other anti-leukemic drugs. The exploration of combinations such as CD123-targeted immunotherapies with azacitidine and venetoclax is suggested to enhance antineoplastic responses and improve survival rates in BPDCN patients. In conclusion, this multifaceted approach offers hope for more effective and tailored therapeutic interventions against this challenging hematologic malignancy.


Subject(s)
Hematologic Neoplasms , Interleukin-3 Receptor alpha Subunit , Myeloproliferative Disorders , Humans , Dendritic Cells , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Interleukin-3 Receptor alpha Subunit/drug effects , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/pathology , Neoplasm Recurrence, Local/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Stem Cell Transplantation
19.
Leuk Lymphoma ; 65(5): 548-559, 2024 May.
Article in English | MEDLINE | ID: mdl-38391126

ABSTRACT

BPDCN is an aggressive myeloid malignancy with a poor prognosis. It derives from the precursors of plasmacytoid dendritic cells and is characterized by CD123 overexpression, which is seen in all patients with BPDCN. The CD123-directed therapy tagraxofusp is the only approved treatment for BPDCN; it was approved in the US as monotherapy for the treatment of patients aged ≥2 years with treatment-naive or relapsed/refractory BPDCN. Herein, we review the available data supporting the utility of tagraxofusp in treating patients with BPDCN. In addition, we present best practices and real-world insights from clinicians in academic and community settings in the US on how they use tagraxofusp to treat BPDCN. Several case studies illustrate the efficacy of tagraxofusp and discuss its safety profile, as well as the prevention, mitigation, and management of anticipated adverse events.


Subject(s)
Dendritic Cells , Humans , Treatment Outcome , Interleukin-3 Receptor alpha Subunit/metabolism , Interleukin-3 Receptor alpha Subunit/analysis , Hematologic Neoplasms/therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/diagnosis , Disease Management , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/therapy , Myeloproliferative Disorders/pathology , Recombinant Fusion Proteins/therapeutic use , Prognosis
20.
Semin Hematol ; 61(1): 61-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38311514

ABSTRACT

Clonal hematopoiesis (CH) is an entity hallmarked by skewed hematopoiesis with persistent overrepresentation of cells from a common stem/progenitor lineage harboring single-nucleotide variants and/or insertions/deletions. CH is a common and age-related phenomenon that is associated with an increased risk of hematological malignancies, cardiovascular disease, and all-cause mortality. While CH is a term of the hematological aspect, there exists a complex interaction with other organ systems, especially the cardiovascular system. The strongest factor in the development of CH is aging, however, other multiple factors also affect the development of CH including lifestyle-related factors and co-morbid diseases. In recent years, germline genetic factors have been linked to CH risk. In this review, we synthesize what is currently known about how genetic variation affects the risk of CH, how this genetic architecture intersects with myeloid neoplasms, and future prospects for CH.


Subject(s)
Clonal Hematopoiesis , Hematologic Neoplasms , Humans , Clonal Hematopoiesis/genetics , Mutation , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematopoiesis/genetics , Germ Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...