Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.242
Filter
1.
Adv Immunol ; 161: 109-126, 2024.
Article in English | MEDLINE | ID: mdl-38763699

ABSTRACT

Besides the canonical B-form, DNA also adopts alternative non-B form conformations which are highly conserved in all domains of life. While extensive research over decades has centered on the genomic functions of B-form DNA, understanding how non-B-form conformations influence functional genomic states remains a fundamental and open question. Recent studies have ascribed alternative DNA conformations such as G-quadruplexes and R-loops as important functional features in eukaryotic genomes. This review delves into the biological importance of alternative DNA structures, with a specific focus on hematopoiesis and adaptive immunity. We discuss the emerging roles of G-quadruplex and R-loop structures, the two most well-studied alternative DNA conformations, in the hematopoietic compartment and present evidence for their functional roles in normal cellular physiology and associated pathologies.


Subject(s)
Adaptive Immunity , G-Quadruplexes , Hematopoiesis , Humans , Hematopoiesis/genetics , Animals , DNA/immunology , Nucleic Acid Conformation
2.
Commun Biol ; 7(1): 615, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777862

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Subject(s)
Adenosine Deaminase , Hematopoiesis , Hematopoietic Stem Cells , Inflammation , Zebrafish , Animals , Zebrafish/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/deficiency , Hematopoietic Stem Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Signal Transduction , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
3.
Cell Rep Med ; 5(5): 101558, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38733986

ABSTRACT

The investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53. The second model mimics clonal hematopoiesis by inducing mutant p53 in adult hematopoietic stem cells, demonstrating that the timing of p53 mutation determines AML vs. lymphoma development. In this context, age-related changes in hematopoietic stem cells (HSCs) collaborate with mutant p53 to predispose toward myeloid transformation rather than lymphoma development. Our study unveils new insights into the cooperative impact of HSC age, Trp53 mutations, and Mdm2 haploinsufficiency on clonal hematopoiesis and the development of myeloid malignancies.


Subject(s)
Clonal Hematopoiesis , Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Mutation , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Clonal Hematopoiesis/genetics , Mice , Mutation/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Mice, Inbred C57BL , Haploinsufficiency/genetics , Disease Models, Animal , Hematopoiesis/genetics
4.
Genes (Basel) ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38790192

ABSTRACT

TR2 and TR4 (NR2C1 and NR2C2, respectively) are evolutionarily conserved nuclear orphan receptors capable of binding direct repeat sequences in a stage-specific manner. Like other nuclear receptors, TR2 and TR4 possess important roles in transcriptional activation or repression with developmental stage and tissue specificity. TR2 and TR4 bind DNA and possess the ability to complex with available cofactors mediating developmental stage-specific actions in primitive and definitive erythrocytes. In erythropoiesis, TR2 and TR4 are required for erythroid development, maturation, and key erythroid transcription factor regulation. TR2 and TR4 recruit and interact with transcriptional corepressors or coactivators to elicit developmental stage-specific gene regulation during hematopoiesis.


Subject(s)
Hematopoiesis , Humans , Animals , Hematopoiesis/genetics , Nuclear Receptor Subfamily 2, Group C, Member 2/metabolism , Nuclear Receptor Subfamily 2, Group C, Member 2/genetics , Erythropoiesis/genetics , Gene Expression Regulation, Developmental
5.
Nat Commun ; 15(1): 4325, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773071

ABSTRACT

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Epigenesis, Genetic , Hematopoietic Stem Cells , Mutation , Proto-Oncogene Proteins , Dioxygenases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Humans , Hematopoiesis/genetics , Mice , Cell Differentiation/genetics
6.
Hereditas ; 161(1): 14, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685093

ABSTRACT

BACKGROUND: Nicotinamide phosphoribosyltransferase (Nampt) is required for recycling NAD+ in numerous cellular contexts. Morpholino-based knockdown of zebrafish nampt-a has been shown to cause abnormal development and defective hematopoiesis concomitant with decreased NAD+ levels. However, surprisingly, nampt-a mutant zebrafish were recently found to be viable, suggesting a discrepancy between the phenotypes in knockdown and knockout conditions. Here, we address this discrepancy by directly comparing loss-of-function approaches that result in identical defective transcripts in morphants and mutants. RESULTS: Using CRISPR/Cas9-mediated mutagenesis, we generated nampt-a mutant lines that carry the same mis-spliced mRNA as nampt-a morphants. Despite reduced NAD+ levels and perturbed expression of specific blood markers, nampt-a mutants did not display obvious developmental defects and were found to be viable. In contrast, injection of nampt-a morpholinos into wild-type or mutant nampt-a embryos caused aberrant phenotypes. Moreover, nampt-a morpholinos caused additional reduction of blood-related markers in nampt-a mutants, suggesting that the defects observed in nampt-a morphants can be partially attributed to off-target effects of the morpholinos. CONCLUSIONS: Our findings show that zebrafish nampt-a mutants are viable despite reduced NAD+ levels and a perturbed hematopoietic gene expression program, indicating strong robustness of primitive hematopoiesis during early embryogenesis.


Subject(s)
Hematopoiesis , Nicotinamide Phosphoribosyltransferase , Zebrafish , Animals , Zebrafish/genetics , Nicotinamide Phosphoribosyltransferase/genetics , Hematopoiesis/genetics , Mutation , Zebrafish Proteins/genetics , Phenotype , CRISPR-Cas Systems , NAD/metabolism , Gene Knockdown Techniques , Morpholinos/genetics
7.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38688280

ABSTRACT

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Subject(s)
Hematologic Neoplasms , Mutation , Phosphoproteins , RNA Splicing Factors , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Humans , Animals , Phosphoproteins/genetics , Phosphoproteins/metabolism , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Mice , RNA Splicing , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Hematopoiesis/genetics , HEK293 Cells , Introns , RNA Helicases/genetics , RNA Helicases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
Blood Cancer Discov ; 5(3): 139-141, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651690

ABSTRACT

SUMMARY: The spatial distribution of cells carrying clonal hematopoiesis mutations in the bone marrow and the potential role of interactions with the microenvironment are largely unknown. This study takes clonal evolution to the spatial level by describing a novel technique examining the spatial location of mutated clones in the bone marrow and the first evidence that mutated hematopoietic clones are spatially constrained and have heterogenous locations within millimeters of distance. See related article by Young et al., p. 153 (10).


Subject(s)
Clonal Evolution , Clonal Hematopoiesis , Mutation , Clonal Evolution/genetics , Humans , Clonal Hematopoiesis/genetics , Bone Marrow , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology
9.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636716

ABSTRACT

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Subject(s)
Fluorouracil , Hematopoiesis , Hematopoietic Stem Cells , Mitochondria , Nitric Oxide Synthase Type II , Nitric Oxide , Signal Transduction , Animals , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Hematopoietic Stem Cells/metabolism , Mice , Mitochondria/metabolism , Fluorouracil/pharmacology , Hematopoiesis/genetics , Nitric Oxide/metabolism , Regeneration , Mice, Knockout , Bone Marrow/metabolism , Mice, Inbred C57BL
10.
J Innate Immun ; 16(1): 262-282, 2024.
Article in English | MEDLINE | ID: mdl-38643762

ABSTRACT

INTRODUCTION: Signal transducer and activator of transcription (STAT) 3 is extensively involved in the development, homeostasis, and function of immune cells, with STAT3 disruption associated with human immune-related disorders. The roles ascribed to STAT3 have been assumed to be due to its canonical mode of action as an inducible transcription factor downstream of multiple cytokines, although alternative noncanonical functional modalities have also been identified. The relative involvement of each mode was further explored in relevant zebrafish models. METHODS: Genome editing with CRISPR/Cas9 was used to generate mutants of the conserved zebrafish Stat3 protein: a loss of function knockout (KO) mutant and a mutant lacking C-terminal sequences including the transactivation domain (ΔTAD). Lines harboring these mutations were analyzed with respect to blood and immune cell development and function in comparison to wild-type zebrafish. RESULTS: The Stat3 KO mutant showed perturbation of hematopoietic lineages throughout primitive and early definitive hematopoiesis. Neutrophil numbers did not increase in response to lipopolysaccharide (LPS) or granulocyte colony-stimulating factor (G-CSF) and their migration was significantly diminished, the latter correlating with abrogation of the Cxcl8b/Cxcr2 pathway, with macrophage responses perturbed. Intriguingly, many of these phenotypes were not shared by the Stat3 ΔTAD mutant. Indeed, only neutrophil and macrophage development were disrupted in these mutants with responsiveness to LPS and G-CSF maintained, and neutrophil migration actually increased. CONCLUSION: This study has identified roles for zebrafish Stat3 within hematopoietic stem cells impacting multiple lineages throughout primitive and early definitive hematopoiesis, myeloid cell responses to G-CSF and LPS and neutrophil migration. Many of these roles showed conservation, but notably several involved noncanonical modalities, providing additional insights for relevant diseases.


Subject(s)
Hematopoiesis , STAT3 Transcription Factor , Zebrafish Proteins , Zebrafish , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neutrophils/immunology , Signal Transduction , CRISPR-Cas Systems , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/genetics , Gene Editing , Lipopolysaccharides , Hematopoietic Stem Cells
11.
PLoS One ; 19(4): e0300623, 2024.
Article in English | MEDLINE | ID: mdl-38564577

ABSTRACT

Regulation of protein synthesis is a key factor in hematopoietic stem cell maintenance and differentiation. Rio-kinase 2 (RIOK2) is a ribosome biogenesis factor that has recently been described an important regulator of human blood cell development. Additionally, we have previously identified RIOK2 as a regulator of protein synthesis and a potential target for the treatment of acute myeloid leukemia (AML). However, its functional relevance in several organ systems, including normal hematopoiesis, is not well understood. Here, we investigate the consequences of RIOK2 loss on normal hematopoiesis using two different conditional knockout mouse models. Using competitive and non-competitive bone marrow transplantations, we demonstrate that RIOK2 is essential for the differentiation of hematopoietic stem and progenitor cells (HSPCs) as well as for the maintenance of fully differentiated blood cells in vivo as well as in vitro. Loss of RIOK2 leads to rapid death in full-body knockout mice as well as mice with RIOK2 loss specific to the hematopoietic system. Taken together, our results indicate that regulation of protein synthesis and ribosome biogenesis by RIOK2 is essential for the function of the hematopoietic system.


Subject(s)
Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Bone Marrow Transplantation , Cell Differentiation/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Mice, Knockout
12.
Elife ; 122024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652107

ABSTRACT

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , Cell Differentiation/genetics , Animals , Hematopoiesis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Embryonic Development/genetics , Cell Transdifferentiation/genetics , Humans
13.
Cancer Med ; 13(5): e7093, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38497538

ABSTRACT

BACKGROUND: The occurrence of somatic mutations in patients with no evidence of hematological disorders is called clonal hematopoiesis (CH). CH, whose subtypes include CH of indeterminate potential and clonal cytopenia of undetermined significance, has been associated with both hematologic cancers and systemic comorbidities. However, CH's effect on patients, especially those with concomitant malignancies, is not fully understood. METHODS: We performed a retrospective evaluation of all patients with CH at a tertiary cancer center. Patient characteristics, mutational data, and outcomes were collected and analyzed. RESULTS: Of 78 individuals included, 59 (76%) had a history of cancer and 60 (77%) had moderate to severe comorbidity burdens. DNMT3A, TET2, TP53, and ASXL1 were the most common mutations. For the entire cohort, the 2-year overall survival rate was 79% (95% CI: 70, 90), while the median survival was not reached. Of 20 observed deaths, most were related to primary malignancies (n = 7, 35%), comorbidities (n = 4, 20%), or myeloid neoplasms (n = 4, 20%). Twelve patients (15%) experienced transformation to a myeloid neoplasm. According to the clonal hematopoiesis risk score, the 3-year transformation rate was 0% in low-risk, 15% in intermediate-risk (p = 0.098), and 28% in high-risk (p = 0.05) patients. By multivariate analysis, transformation was associated with variant allele frequency ≥0.2 and hemoglobin <10 g/dL. CONCLUSIONS: In a population including mostly cancer patients, CH was associated with comorbidities and myeloid transformation in patients with higher mutational burdens and anemia. Nevertheless, such patients were less likely to die of their myeloid neoplasm than of primary malignancy or comorbidities.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Clonal Hematopoiesis , Retrospective Studies , Hematopoiesis/genetics , Neoplasms/epidemiology , Neoplasms/genetics , Myeloproliferative Disorders/epidemiology , Myeloproliferative Disorders/genetics , Comorbidity
14.
Elife ; 132024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497789

ABSTRACT

The vertebrate kidneys play two evolutionary conserved roles in waste excretion and osmoregulation. Besides, the kidney of fish is considered as a functional ortholog of mammalian bone marrow that serves as a hematopoietic hub for generating blood cell lineages and immunological responses. However, knowledge about the properties of kidney hematopoietic cells, and the functionality of the kidney in fish immune systems remains to be elucidated. To this end, our present study generated a comprehensive atlas with 59 hematopoietic stem/progenitor cell (HSPC) and immune-cells types from zebrafish kidneys via single-cell transcriptome profiling analysis. These populations included almost all known cells associated with innate and adaptive immunity, and displayed differential responses to viral infection, indicating their diverse functional roles in antiviral immunity. Remarkably, HSPCs were found to have extensive reactivities to viral infection, and the trained immunity can be effectively induced in certain HSPCs. In addition, the antigen-stimulated adaptive immunity can be fully generated in the kidney, suggesting the kidney acts as a secondary lymphoid organ. These results indicated that the fish kidney is a dual-functional entity with functionalities of both primary and secondary lymphoid organs. Our findings illustrated the unique features of fish immune systems, and highlighted the multifaced biology of kidneys in ancient vertebrates.


Subject(s)
Perciformes , Virus Diseases , Animals , Zebrafish , Hematopoiesis/genetics , Kidney , Adaptive Immunity , Sequence Analysis, RNA , Mammals
15.
Nat Commun ; 15(1): 2255, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490977

ABSTRACT

An understanding of the mechanisms regulating embryonic hematopoietic stem cell (HSC) development would facilitate their regeneration. The aorta-gonad-mesonephros region is the site for HSC production from hemogenic endothelial cells (HEC). While several distinct regulators are involved in this process, it is not yet known whether macroautophagy (autophagy) plays a role in hematopoiesis in the pre-liver stage. Here, we show that different states of autophagy exist in hematopoietic precursors and correlate with hematopoietic potential based on the LC3-RFP-EGFP mouse model. Deficiency of autophagy-related gene 5 (Atg5) specifically in endothelial cells disrupts endothelial to hematopoietic transition (EHT), by blocking the autophagic process. Using combined approaches, including single-cell RNA-sequencing (scRNA-seq), we have confirmed that Atg5 deletion interrupts developmental temporal order of EHT to further affect the pre-HSC I maturation, and that autophagy influences hemogenic potential of HEC and the formation of pre-HSC I likely via the nucleolin pathway. These findings demonstrate a role for autophagy in the formation/maturation of hematopoietic precursors.


Subject(s)
Hemangioblasts , Hematopoietic Stem Cells , Animals , Mice , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Embryo, Mammalian , Hematopoiesis/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mesonephros
17.
Medicine (Baltimore) ; 103(12): e37487, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518015

ABSTRACT

GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.


Subject(s)
GATA Transcription Factors , Hematologic Neoplasms , Humans , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Gene Expression Regulation , Cell Differentiation , Hematopoiesis/genetics , Hematologic Neoplasms/genetics
18.
Semin Hematol ; 61(1): 1-2, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38443280
19.
Commun Biol ; 7(1): 374, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548886

ABSTRACT

The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.


Subject(s)
Hematopoiesis , Megakaryocytes , Humans , Megakaryocytes/metabolism , Cell Differentiation/genetics , Hematopoiesis/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Gene Expression Regulation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism
20.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38485690

ABSTRACT

MOTIVATION: The acquisition of somatic mutations in hematopoietic stem and progenitor stem cells with resultant clonal expansion, termed clonal hematopoiesis (CH), is associated with increased risk of hematologic malignancies and other adverse outcomes. CH is generally present at low allelic fractions, but clonal expansion and acquisition of additional mutations leads to hematologic cancers in a small proportion of individuals. With high depth and high sensitivity sequencing, CH can be detected in most adults and its clonal trajectory mapped over time. However, accurate CH variant calling is challenging due to the difficulty in distinguishing low frequency CH mutations from sequencing artifacts. The lack of well-validated bioinformatic pipelines for CH calling may contribute to lack of reproducibility in studies of CH. RESULTS: Here, we developed ArCH, an Artifact filtering Clonal Hematopoiesis variant calling pipeline for detecting single nucleotide variants and short insertions/deletions by combining the output of four variant calling tools and filtering based on variant characteristics and sequencing error rate estimation. ArCH is an end-to-end cloud-based pipeline optimized to accept a variety of inputs with customizable parameters adaptable to multiple sequencing technologies, research questions, and datasets. Using deep targeted sequencing data generated from six acute myeloid leukemia patient tumor: normal dilutions, 31 blood samples with orthogonal validation, and 26 blood samples with technical replicates, we show that ArCH improves the sensitivity and positive predictive value of CH variant detection at low allele frequencies compared to standard application of commonly used variant calling approaches. AVAILABILITY AND IMPLEMENTATION: The code for this workflow is available at: https://github.com/kbolton-lab/ArCH.


Subject(s)
Clonal Hematopoiesis , Hematologic Neoplasms , Adult , Humans , High-Throughput Nucleotide Sequencing , Software , Reproducibility of Results , Mutation , Hematopoiesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...