Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.843
Filter
1.
Insect Biochem Mol Biol ; 173: 104176, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39168254

ABSTRACT

Notch signaling is a highly conserved pathway between mammals and Drosophila and plays a key role in various biological processes. Drosophila has emerged as a powerful model for studying hematopoiesis and leukemia. In exception to crystal cells, the strength of Notch signaling in Drosophila lymph gland cortical zone (CZ)/intermediate zone (IZ) cells is weak. However, the influence of Notch activation in the lymph gland CZ/IZ cells and circulating hemocytes on hematopoietic homeostasis maintenance is unclear. Here, we showed that Notch activation in lymph gland CZ/IZ cells induced overdifferentiation of progenitors. Moreover, Notch activation promoted lamellocyte generation via NFκB/Toll signaling activation and increased reactive oxygen species (ROS). In addition, we found that Notch activation in lymph gland CZ/IZ cells and circulating hemocytes caused caspase-independent and nonautophagic cell death. However, crystal cell autophagy was activated by upregulation of the expression of the target gene of the Hippo/Yki pathway Diap1. Moreover, we showed that Notch activation could alleviate cytokine storms and improve the survival of Rasv12 leukemia model flies. Our study revealed the various mechanisms of hematopoietic dysregulation induced by Notch activation in healthy flies and the therapeutic effect of Notch activation on leukemia model flies.


Subject(s)
Autophagy , Cell Differentiation , Drosophila Proteins , Drosophila melanogaster , Receptors, Notch , Signal Transduction , Animals , Receptors, Notch/metabolism , Receptors, Notch/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Cell Death , Hemocytes/metabolism , Hematopoiesis , Hematopoietic System/metabolism , Drosophila/metabolism , Drosophila/genetics
2.
Food Funct ; 15(15): 8116-8127, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39011610

ABSTRACT

Research on plant and animal peptides has garnered significant attention, but there is a lack of studies on the functional properties of Tenebrio molitor peptides, particularly in relation to their potential mitigating effect on radiation damage and the underlying mechanisms. This study aims to explore the protective effects of Tenebrio molitor peptides against radiation-induced damage. Mice were divided into five groups: normal, radiation model, and low-, medium-, and high-dose Tenebrio molitor peptide (TMP) groups (0.15 g per kg BW, 0.30 g per kg BW, and 0.60 g per kg BW). Various parameters such as blood cell counts, bone marrow DNA content, immune organ indices, serum levels of D-lactic acid, diamine oxidase (DAO), endotoxin (LPS), and inflammatory factors were assessed at 3 and 15 days post gamma irradiation. Additionally, the intestinal tissue morphology was examined through H&E staining, RT-qPCR experiments were conducted to analyze the expression of inflammatory factors in the intestine, and immunohistochemistry was utilized to evaluate the expression of tight junction proteins ZO-1 and Occludin in the intestine. The findings revealed that high-dose TMP significantly enhanced the hematopoietic system function in mice post radiation exposure, leading to increased spleen index, thymus index, blood cell counts, and bone marrow DNA production (p < 0.05). Moreover, TMP improved the intestinal barrier integrity and reduced the intestinal permeability. Mechanistic insights suggested that these peptides may safeguard intestinal barrier function by downregulating the gene expression of inflammatory factors TNF-α, IL-1ß, and IL-6, while upregulating the expression of tight junction proteins ZO-1 and Occludin (p < 0.05). Overall, supplementation with TMP mitigates radiation-induced intestinal damage by enhancing the hematopoietic system and the intestinal barrier, offering valuable insights for further investigations into the mechanisms underlying the protective effects of these peptides against ionizing radiation.


Subject(s)
Intestinal Mucosa , Peptides , Tenebrio , Animals , Mice , Peptides/pharmacology , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Intestinal Mucosa/drug effects , Male , Hematopoietic System/drug effects , Hematopoietic System/radiation effects , Radiation-Protective Agents/pharmacology , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Gamma Rays/adverse effects , Occludin/metabolism , Occludin/genetics , Intestines/drug effects , Intestines/radiation effects
3.
Immunology ; 172(4): 614-626, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38685744

ABSTRACT

Ionising radiation exposure can lead to acute haematopoietic radiation syndrome. Despite significant advancements in the field of radioprotection, no drugs with high efficacy and low toxicity have yet been approved by the Food and Drug Administration. FG-4592, as a proline hydroxylase inhibitor, may play an important role in radioprotection of the haematopoietic system. Mice were peritoneal injected with FG-4592 or normal saline. After irradiation, the survival time, body weight, peripheral blood cell and bone marrow cell (BMC) count, cell apoptosis, pathology were analysed and RNA-sequence technique (RNA-Seq) was conducted to explore the mechanism of FG-4592 in the haematopoietic system. Our results indicated that FG-4592 improved the survival rate and weight of irradiated mice and protected the spleen, thymus and bone marrow from IR-induced injury. The number of BMCs was increased and protected against IR-induced apoptosis. FG-4592 also promoted the recovery of the blood system and erythroid differentiation. The results of RNA-Seq and Western blot showed that the NF-κB signalling pathway and hypoxia-inducible factor-1 (HIF-1) signalling pathway were upregulated by FG-4592. Meanwhile, RT-PCR results showed that FG-4592 could promote inflammatory response significantly. FG-4592 exhibited radioprotective effects in the haematopoietic system by promoting inflammatory response and targeting the NF-κB, HIF signalling pathway.


Subject(s)
Apoptosis , Radiation, Ionizing , Radiation-Protective Agents , Animals , Mice , Radiation-Protective Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Male , Mice, Inbred C57BL , Hematopoietic System/drug effects , Hematopoietic System/radiation effects , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/drug therapy , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/metabolism , Whole-Body Irradiation , Glycine/analogs & derivatives , Isoquinolines
4.
Eur J Med Chem ; 269: 116346, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38518524

ABSTRACT

Considering the increasing risk of nuclear attacks worldwide, the development of develop potent and safe radioprotective agents for nuclear emergencies is urgently needed. γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have demonstrated a potent radioprotective effect by inducing the production of granulocyte-colony stimulating factor (G-CSF) in vivo. However, their application is limited because of their low bioavailability. The utilization of ester prodrugs can be an effective strategy for modifying the pharmacokinetic properties of drug molecules. In this study, we initially confirmed that DT3 exhibited the most significant potential for inducing G-CSF effects among eight natural vitamin E homologs. Consequently, we designed and synthesized a series of DT3 ester and ether derivatives, leading to improved radioprotective effects. The metabolic study conducted in vitro and in vivo has identified DT3 succinate 5b as a prodrug of DT3 with an approximately seven-fold higher bioavailability compared to DT3 alone. And DT3 ether derivative 8a were relatively stable and approximately 4 times more bioavailable than DT3 prototype. Furthermore, 5b exhibited superior ability to mitigate radiation-induced pancytopenia, enhance the recovery of bone marrow hematopoietic stem and progenitor cells, and promote splenic extramedullary hematopoiesis in sublethal irradiated mice. Similarly, 8a shown potential radiation protection, but its radiation protection is less than DT3. Based on these findings, we identified 5b as a DT3 prodrug, and providing an attractive candidate for further drug development.


Subject(s)
Hematopoietic System , Prodrugs , Radiation Protection , Vitamin E/analogs & derivatives , Animals , Mice , Granulocyte Colony-Stimulating Factor/pharmacology , Esters/pharmacology , Ethers , Prodrugs/pharmacology , Granulocytes
5.
Chin Med J (Engl) ; 137(9): 1033-1043, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38545694

ABSTRACT

ABSTRACT: Epitranscriptomics focuses on the RNA-modification-mediated post-transcriptional regulation of gene expression. The past decade has witnessed tremendous progress in our understanding of the landscapes and biological functions of RNA modifications, as prompted by the emergence of potent analytical approaches. The hematopoietic system provides a lifelong supply of blood cells, and gene expression is tightly controlled during the differentiation of hematopoietic stem cells (HSCs). The dysregulation of gene expression during hematopoiesis may lead to severe disorders, including acute myeloid leukemia (AML). Emerging evidence supports the involvement of the mRNA modification system in normal hematopoiesis and AML pathogenesis, which has led to the development of small-molecule inhibitors that target N6-methyladenosine (m 6 A) modification machinery as treatments. Here, we summarize the latest findings and our most up-to-date information on the roles of m 6 A and N7-methylguanine in both physiological and pathological conditions in the hematopoietic system. Furthermore, we will discuss the therapeutic potential and limitations of cancer treatments targeting m 6 A.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Adenosine/metabolism , Hematopoietic System , Hematopoietic Stem Cells/metabolism , Hematopoiesis/genetics , RNA Processing, Post-Transcriptional/genetics
6.
Genes Immun ; 25(3): 232-241, 2024 06.
Article in English | MEDLINE | ID: mdl-38472338

ABSTRACT

The transcription factor BCL11B plays an essential role in the development of central nervous system and T cell differentiation by regulating the expression of numerous genes involved in several pathways. Monoallelic defects in the BCL11B gene leading to loss-of-function are associated with a wide spectrum of phenotypes, including neurological disorders with or without immunological features and susceptibility to hematological malignancies. From the genetic point of view, the landscape of BCL11B mutations reported so far does not fully explain the genotype-phenotype correlation. In this review, we sought to compile the phenotypic and genotypic variables associated with previously reported mutations in this gene in order to provide a better understanding of the consequences of deleterious variants. We also highlight the importance of a careful evaluation of the mutation type, its location and the pattern of inheritance of the variants in order to assign the most accurate pathogenicity and actionability of the genetic findings.


Subject(s)
Repressor Proteins , Tumor Suppressor Proteins , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Phenotype , Mutation , Animals , Immune System/metabolism , Hematopoietic System/metabolism
7.
Blood ; 143(14): 1399-1413, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38194688

ABSTRACT

ABSTRACT: SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.


Subject(s)
Hematopoietic System , Myelodysplastic-Myeloproliferative Diseases , Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Mice , Humans , Primary Myelofibrosis/genetics , Myeloproliferative Disorders/genetics , Mutation , Carrier Proteins/genetics , Nuclear Proteins/genetics
8.
Blood ; 143(3): 188-190, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236614
9.
Curr Radiopharm ; 17(2): 200-208, 2024.
Article in English | MEDLINE | ID: mdl-38231059

ABSTRACT

BACKGROUND: The modern world faces a growing concern about the possibility of accidental radiation events. The Hematopoietic system is particularly vulnerable to radiationinduced apoptosis, which can lead to death. Metformin, a drug used to treat diabetes, has been shown to protect normal cells and tissues from the toxic effects of radiation. This study aimed to evaluate the effectiveness of metformin in mitigating radiation injury to the gastrointestinal and hematological systems of rats. MATERIALS AND METHODS: The study involved 73 male rats. After total body irradiation with 7.5 Gy of X-rays, rats were treated with metformin. Seven days later, the rats were sacrificed and blood samples were taken for evaluation. RESULTS: The study found that metformin was not effective in mitigating radiation injury. The histopathological assessment showed no significant changes in goblet cell injury, villi shortening, inflammation, or mucous layer thickness. In terms of biochemical evaluation, metformin did not significantly affect oxidative stress markers, but irradiation increased the mean MDA level in the radiation group. The complete blood count revealed a significant decrease in WBC and platelet, counts in the radiation group compared to the control group, but no significant difference was found between the radiation and radiation + metformin groups. CONCLUSION: In conclusion, metformin may not be a good option for reducing radiation toxicity after accidental exposure. Despite treatment, there was no improvement in platelet, white blood cell, and lymphocyte counts, nor was there any decrease in oxidative stress. Further research is needed to explore other potential treatments for radiation injury.


Subject(s)
Metformin , Oxidative Stress , Radiation Injuries, Experimental , Whole-Body Irradiation , Animals , Metformin/pharmacology , Rats , Male , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/prevention & control , Hematopoietic System/drug effects , Hematopoietic System/radiation effects , Gastrointestinal Tract/radiation effects , Gastrointestinal Tract/drug effects , Radiation-Protective Agents/pharmacology , X-Rays
11.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37988162

ABSTRACT

Gestational diabetes is a common medical complication of pregnancy that is associated with adverse perinatal outcomes and an increased risk of metabolic diseases and atherosclerosis in adult offspring. The mechanisms responsible for this delayed pathological transmission remain unknown. In mouse models, we found that the development of atherosclerosis in adult offspring born to diabetic pregnancy can be in part linked to hematopoietic alterations. Although they do not show any gross metabolic disruptions, the adult offspring maintain hematopoietic features associated with diabetes, indicating the acquisition of a lasting diabetic hematopoietic memory. We show that the induction of this hematopoietic memory during gestation relies on the activity of the advanced glycation end product receptor (AGER) and the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which lead to increased placental inflammation. In adult offspring, we find that this memory is associated with DNA methyltransferase 1 (DNMT1) upregulation and epigenetic changes in hematopoietic progenitors. Together, our results demonstrate that the hematopoietic system can acquire a lasting memory of gestational diabetes and that this memory constitutes a pathway connecting gestational health to adult pathologies.


Subject(s)
Atherosclerosis , Diabetes, Gestational , Hematopoietic System , Humans , Female , Pregnancy , Animals , Mice , Diabetes, Gestational/genetics , Placenta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Hematopoietic System/metabolism
12.
Geroscience ; 46(1): 1271-1284, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37535204

ABSTRACT

Tristetraprolin (TTP), encoded by Zfp36 in mice, is one of the best-characterized tandem zinc-finger mRNA binding proteins involved in mRNA deadenylation and decay. TTPΔARE mice lack an AU-rich motif in the 3'-untranslated regions of TTP mRNA, leading to increased TTP mRNA stability and more TTP protein, resulting in elevated mRNA decay rates of TTP targets. We examined the effect of TTP overexpression on the hematopoietic system in both young and middle-aged mice using TTPΔARE mice and found alterations in blood cell frequencies, with loss of platelets and B220 cells and gains of eosinophils and T cells. TTPΔARE mice also have skewed primitive populations in the bone marrow, with increases in myeloid-biased hematopoietic stem cells (HSCs) but decreases in granulocyte/macrophage-biased multipotent progenitors (MPP3) in both young and middle-aged mice. Changes in the primitive cells' frequencies were associated with transcriptional alterations in the TTP overexpression cells specific to age as well as cell type. Regardless of age, there was a consistent elevation of transcripts regulated by TNFα and TGFß signaling pathways in both the stem and multipotent progenitor populations. HSCs with TTP overexpression had decreased reconstitution potential in murine transplants but generated hematopoietic environments that mitigated the inflammatory response to the collagen antibody-induced arthritis (CAIA) challenge, which models rheumatoid arthritis and other autoimmune disorders. This dampening of the inflammatory response was even present when there was only a small frequency of TTP overexpressing cells present in the middle-aged mice. We provide an analysis of the early hematopoietic compartments with elevated TTP expression in both young and middle-aged mice which inhibits the reconstitution potential of the HSCs but generates a hematopoietic system that provides dominant repression of induced inflammation.


Subject(s)
Hematopoietic System , Tristetraprolin , Animals , Mice , 3' Untranslated Regions , Disease Models, Animal , Hematopoietic System/metabolism , Inflammation/genetics , Mice, Knockout , Tristetraprolin/genetics , Tristetraprolin/metabolism
13.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762064

ABSTRACT

The impact of space radiation and microgravity on DNA damage responses has been discussed controversially, largely due to the variety of model systems engaged. Here, we performed side-by-side analyses of human hematopoietic stem/progenitor cells (HSPC) and peripheral blood lymphocytes (PBL) cultivated in a 2D clinostat to simulate microgravity before, during and after photon and particle irradiation. We demonstrate that simulated microgravity (SMG) accelerates the early phase of non-homologous end joining (NHEJ)-mediated repair of simple, X-ray-induced DNA double-strand breaks (DSBs) in PBL, while repair kinetics in HSPC remained unaltered. Repair acceleration was lost with increasing LET of ion exposures, which increases the complexity of DSBs, precluding NHEJ and requiring end resection for successful repair. Such cell-type specific effect of SMG on DSB repair was dependent on the NF-кB pathway pre-activated in PBL but not HSPC. Already under unperturbed growth conditions HSPC and PBL suffered from SMG-induced replication stress associated with accumulation of single-stranded DNA and DSBs, respectively. We conclude that in PBL, SMG-induced DSBs promote repair of radiation-induced damage in an adaptive-like response. HSPC feature SMG-induced single-stranded DNA and FANCD2 foci, i.e., markers of persistent replication stress and senescence that may contribute to a premature decline of the immune system in space.


Subject(s)
DNA Repair , Hematopoietic System , Humans , DNA, Single-Stranded , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Damage
16.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240328

ABSTRACT

The hematopoietic system performs the most vital functions in the human body, integrating the work of various organs while producing enormous numbers of mature cells daily [...].


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic System , Humans
17.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240410

ABSTRACT

Bone is a vital tissue as it carries out various metabolic functions: support of the body, protection of the internal organs, mineral deposit and hematopoietic functions [...].


Subject(s)
Bone Diseases, Metabolic , Hematopoietic System , Humans , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/therapy , Bone and Bones/metabolism , Hematopoietic System/metabolism , Minerals , Molecular Biology
18.
Sci Rep ; 13(1): 7490, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160922

ABSTRACT

Loss of function in the tumor suppressor gene TP53 is the most common alteration seen in human cancer. In mice, P53 deletion in all cells leads predominantly to the development of T-cell lymphomas, followed by B-cell lymphomas, sarcomas and teratomas. In order to dissect the role of P53 in the hematopoietic system, we generated and analyzed two different mouse models deficient for P53. A pan-hematopoietic P53 deletion mouse was created using Vav1-Cre based deletion; and a B-cell-specific deletion mouse was created using a CD19-Cre based deletion. The Vav1-P53CKO mice predominantly developed T-cell malignancies in younger mice, and myeloid malignancies in older mice. In T-cell malignancies, there was accelerated thymic cell maturation with overexpression of Notch1 and its downstream effectors. CD19-P53CKO mice developed marginal zone expansion in the spleen, followed by marginal zone lymphoma, some of which progressed to diffuse large B-cell lymphomas. Interestingly, marginal zone and diffuse large B-cell lymphomas had a unique gene expression signature characterized by activation of the PI3K pathway, compared with wild type marginal zone or follicular cells of the spleen. This study demonstrates lineage specific P53 deletion leading to distinct phenotypes secondary to unique gene expression programs set in motion.


Subject(s)
Hematopoietic System , Lymphoma, Large B-Cell, Diffuse , Humans , Animals , Mice , Phosphatidylinositol 3-Kinases , Tumor Suppressor Protein p53/genetics , Spleen , Adaptor Proteins, Signal Transducing , Antigens, CD19
19.
Sci Rep ; 13(1): 5411, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012292

ABSTRACT

Almost all cancer types share the hallmarks of cancer and a similar tumor formation: fueled by stochastic mutations in somatic cells. In case of chronic myeloid leukemia (CML), this evolutionary process can be tracked from an asymptomatic long-lasting chronic phase to a final rapidly evolving blast phase. Somatic evolution in CML occurs in the context of healthy blood production, a hierarchical process of cell division; initiated by stem cells that self-renew and differentiate to produce mature blood cells. Here we introduce a general model of hierarchical cell division explaining the particular progression of CML as resulting from the structure of the hematopoietic system. Driver mutations confer a growth advantage to the cells carrying them, for instance, the BCR::ABL1 gene, which also acts as a marker for CML. We investigated the relation of the BCR::ABL1 mutation strength to the hematopoietic stem cell division rate by employing computer simulations and fitting the model parameters to the reported median duration for the chronic and accelerated phases. Our results demonstrate that driver mutations (additional to the BCR::ABL1 mutation) are necessary to explain CML progression if stem cells divide sufficiently slowly. We observed that the number of mutations accumulated by cells at the more differentiated levels of the hierarchy is not affected by driver mutations present in the stem cells. Our results shed light on somatic evolution in a hierarchical tissue and show that the clinical hallmarks of CML progression result from the structural characteristics of blood production.


Subject(s)
Hematopoietic System , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Blast Crisis/pathology , Mutation , Hematopoietic System/pathology , Protein Kinase Inhibitors
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 411-419, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37096513

ABSTRACT

OBJECTIVE: To explore the role of ferroptosis-related genes in multiple myeloma(MM) through TCGA database and FerrDb, and build a prognostic model of ferroptosis-related genes for MM patients. METHODS: Using the TCGA database containing clinical information and gene expression profile data of 764 patients with MM and the FerrDb database including ferroptosis-related genes, the differentially expressed ferroptosis-related genes were screened by wilcox.test function. The prognostic model of ferroptosis-related genes was established by Lasso regression, and the Kaplan-Meier survival curve was drawn. Then COX regression analysis was used to screen independent prognostic factors. Finally, the differential genes between high-risk and low-risk patients were screened, and enrichment analysis was used to explore the mechanism of the relationship between ferroptosis and prognosis in MM. RESULTS: 36 differential genes related to ferroptosis were screened out from bone marrow samples of 764 MM patients and 4 normal people, including 12 up-regulated genes and 24 down-regulated genes. Six prognosis-related genes (GCLM, GLS2, SLC7A11, AIFM2, ACO1, G6PD) were screened out by Lasso regression and the prognostic model with ferroptosis-related genes of MM was established. Kaplan-Meier survival curve analysis showed that the survival rate between high risk group and low risk group was significantly different(P<0.01). Univariate COX regression analysis showed that age, sex, ISS stage and risk score were significantly correlated with overall survival of MM patients(P<0.05), while multivariate COX regression analysis showed that age, ISS stage and risk score were independent prognostic indicators for MM patients (P<0.05). GO and KEGG enrichment analysis showed that the ferroptosis-related genes was mainly related to neutrophil degranulation and migration, cytokine activity and regulation, cell component, antigen processing and presentation, complement and coagulation cascades, haematopoietic cell lineage and so on, which may affect the prognosis of patients. CONCLUSION: Ferroptosis-related genes change significantly during the pathogenesis of MM. The prognostic model of ferroptosis-related genes can be used to predict the survival of MM patients, but the mechanism of the potential function of ferroptosis-related genes needs to be confirmed by further clinical studies.


Subject(s)
Ferroptosis , Hematopoietic System , Multiple Myeloma , Humans , Prognosis , Blood Coagulation
SELECTION OF CITATIONS
SEARCH DETAIL