Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.170
Filter
1.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822881

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , NF-E2-Related Factor 2 , Signal Transduction , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects , Autophagy/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Line, Tumor , Antioxidant Response Elements/genetics , Antineoplastic Agents/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
2.
World J Gastroenterol ; 30(20): 2709-2725, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855154

ABSTRACT

BACKGROUND: Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM: To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS: Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS: HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, ß-leucine (ß-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION: HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. ß-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.


Subject(s)
Colon , Constipation , Disease Models, Animal , Hydrogen , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Animals , Constipation/metabolism , Constipation/drug therapy , Sirtuin 1/metabolism , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Rats , Hydrogen/pharmacology , Male , Colon/drug effects , Colon/metabolism , Colon/pathology , Humans , Water/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Feces/chemistry
3.
PeerJ ; 12: e17488, 2024.
Article in English | MEDLINE | ID: mdl-38827303

ABSTRACT

Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.


Subject(s)
Apoptosis , Catechin , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Osteoblasts , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Catechin/analogs & derivatives , Catechin/pharmacology , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Mice , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Cadmium/toxicity , Cell Differentiation/drug effects , Cell Line , Membrane Proteins
4.
Front Endocrinol (Lausanne) ; 15: 1380163, 2024.
Article in English | MEDLINE | ID: mdl-38846488

ABSTRACT

Background: Although the importance and benefit of heme oxygenase-1 (HO-1) in diabetes rodent models has been known, the contribution of HO-1 in the pre-diabetic patients with hyperlipidemia risk still remains unclear. This cross-sectional study aims to evaluate whether HO-1 is associated with hyperlipidemia in pre-diabetes. Methods: Serum level of HO-1 was detected using commercially available ELISA kit among 1,425 participants aged 49.3-63.9 with pre-diabetes in a multicenter Risk Evaluation of cAncers in Chinese diabeTic Individuals: A lONgitudinal (REACTION) prospective observational study. Levels of total cholesterol (TC) and triglyceride (TG) were measured and used to defined hyperlipidemia. The association between HO-1 and hyperlipidemia was explored in different subgroups. Result: The level of HO-1 in pre-diabetic patients with hyperlipidemia (181.72 ± 309.57 pg/ml) was obviously lower than that in pre-diabetic patients without hyperlipidemia (322.95 ± 456.37 pg/ml). High level of HO-1 [(210.18,1,746.18) pg/ml] was negatively associated with hyperlipidemia (OR, 0.60; 95% CI, 0.37-0.97; p = 0.0367) after we adjusted potential confounding factors. In subgroup analysis, high level of HO-1 was negatively associated with hyperlipidemia in overweight pre-diabetic patients (OR, 0.50; 95% CI, 0.3-0.9; p = 0.034), especially in overweight women (OR, 0.42; 95% CI, 0.21-0.84; p = 0.014). Conclusions: In conclusion, elevated HO-1 level was negatively associated with risk of hyperlipidemia in overweight pre-diabetic patients, especially in female ones. Our findings provide information on the exploratory study of the mechanism of HO-1 in hyperlipidemia, while also suggesting that its mechanism may be influenced by body weight and gender.


Subject(s)
Heme Oxygenase-1 , Hyperlipidemias , Prediabetic State , Humans , Hyperlipidemias/blood , Hyperlipidemias/epidemiology , Female , Male , Cross-Sectional Studies , Middle Aged , Heme Oxygenase-1/blood , Prediabetic State/blood , Prediabetic State/epidemiology , Prospective Studies , Longitudinal Studies , Risk Factors , China/epidemiology
5.
Pharmazie ; 79(6): 101-108, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38877681

ABSTRACT

In this study, we hypothesized that lixisenatide (LIX) and ticagrelor (TIC) could have a protective effect against type 2 diabetes mellitus (T2DM)-induced vascular damage. Furthermore, we explored the possible additional protective effect of co-administering LIX and TIC in the treatment regimen. Methods: 50 male rats were divided into five groups, each comprising 10 rats: C (control), D (T2DM rats), D + LIX (T2DM rats treated with LIX for 4 weeks), D + TIC (T2DM rats treated with TIC for 4 weeks), and D + LIX + TIC (T2DM rats treated with LIX + TIC for 4 weeks). Results: The D group showed an increase in body weight, blood glucose, hemostatic model assessment for insulin resistance (HOMA-IR), aorta reactive oxygen species (ROS), and nuclear factor kappa B (NF-κ B), along with a reduction in serum insulin, aorta superoxide dismutase (SOD), glutathione reduced (GSH), nuclear factor erythroid-2 (NrF2), hemeoxygenase-1 (HO-1), and endothelial nitric oxide synthase (eNOS). Deterioration in the aorta histopathological condition, coupled with a noticeable impairment in vascular reactivity compared to the C group, was observed. A single administration of LIX showed a reduction in body weight, blood glucose, HOMA-IR, aorta ROS, and NF-κ B, accompanied by an increase in serum insulin, aorta SOD, GSH, NrF2, HO-1, and eNOS. Amelioration in the aorta histopathological condition and improved vascular reactivity compared to the D group were reported. Similarly, a single administration of TIC showed a reduction in aorta ROS and NF-κ B, along with an increase in aorta SOD, GSH, NrF2, HO-1, and eNOS. A slight amelioration was detected in the aorta histopathological condition, with improved vascular reactivity compared to the D group. The combined administration of LIX and TIC showed a reduction in aorta ROS and NF-κ B, along with an increase in aorta GSH, SOD, HO-1, and eNOS. This was combined with evident amelioration in the aorta histopathological condition and noticeable improvement in vascular reactivity compared to the single treatment with either LIX or TIC group. Conclusion: The present study introduces clear evidence that the administration of LIX and TIC can improve metabolic and vascular complications of T2DM through modulating eNOS and NrF2 /HO-1 signaling. The combined administration of LIX and TIC produced more significant effects than a single treatment.


Subject(s)
Diabetes Mellitus, Experimental , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Peptides , Reactive Oxygen Species , Signal Transduction , Ticagrelor , Animals , Male , Nitric Oxide Synthase Type III/metabolism , Rats , Signal Transduction/drug effects , Ticagrelor/pharmacology , Ticagrelor/administration & dosage , Peptides/pharmacology , Peptides/administration & dosage , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Reactive Oxygen Species/metabolism , Blood Glucose/drug effects , Insulin Resistance , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Rats, Sprague-Dawley , Heme Oxygenase (Decyclizing)/metabolism , NF-kappa B/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Heme Oxygenase-1/metabolism , Insulin , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Drug Synergism , Glucagon-Like Peptide-2 Receptor
6.
Immun Inflamm Dis ; 12(6): e1169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860757

ABSTRACT

INTRODUCTION: We aimed to explore the molecular mechanisms through which platelet-rich plasma (PRP) attenuates osteoarthritis (OA)-induced pain, apoptosis, and inflammation. METHODS: An in vivo model of OA was established by injuring rats using the anterior cruciate ligament transection method, whereas an in vitro model was generated by exposing chondrocytes to interleukin (IL)-1ß. Both models were then treated with PRP. RESULTS: In both the in vivo and in vitro models, OA led to the suppression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, whereas treatment with PRP reactivated this molecular axis. Inhibition of the Nrf2/HO-1 pathway using the Nrf2 inhibitor brusatol or through Nrf2 gene silencing counteracted the effects of PRP in reducing the tenderness and thermal pain thresholds of OA rats. Additionally, PRP reduced the mRNA expression of IL-1ß, IL-6, tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 13 (MMP-13) and the protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and caspase-3. Furthermore, inflammation and apoptosis were induced by brusatol treatment or Nrf2 silencing. Additionally, in the in vitro model, PRP treatment increased the proliferation of chondrocytes and attenuated their inflammatory response and apoptosis, effects that were abrogated by Nrf2 depletion. CONCLUSIONS: The Nrf2/HO-1 pathway participates in the PRP-mediated attenuation of OA development by suppressing inflammation and apoptosis.


Subject(s)
Apoptosis , Chondrocytes , NF-E2-Related Factor 2 , Osteoarthritis , Platelet-Rich Plasma , Signal Transduction , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Rats , Chondrocytes/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Quassins/pharmacology , Quassins/therapeutic use , Rats, Sprague-Dawley , Disease Models, Animal , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Interleukin-1beta/metabolism , Inflammation/immunology , Cells, Cultured
7.
Skelet Muscle ; 14(1): 13, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867250

ABSTRACT

BACKGROUND: Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD. METHODS: We generated double-transgenic mouse model (mdx;HMOX1Pax7Ind) that allows tamoxifen (TX)-inducible HMOX1 expression in Pax7 positive cells of dystrophic muscles. Mdx;HMOX1Pax7Ind and control mdx mice were subjected to 5-day TX injections (75 mg/kg b.w.) followed by acute exercise protocol with high-speed treadmill (12 m/min, 45 min) and downhill running to worsen skeletal muscle phenotype and reveal immediate effects of HO-1 on muscle pathology and SC function. RESULTS: HMOX1 induction caused a drop in SC pool in mdx;HMOX1Pax7Ind mice (vs. mdx counterparts), while not exaggerating the effect of physical exercise. Upon physical exercise, the proliferation of SCs and activated CD34- SC subpopulation, was impaired in mdx mice, an effect that was reversed in mdx;HMOX1Pax7Ind mice, however, both in vehicle- and TX-treated animals. This corresponded to the pattern of HO-1 expression in skeletal muscles. At the tissue level, necrotic events of selective skeletal muscles of mdx mice and associated increase in circulating levels of muscle damage markers were blunted in HO-1 transgenic animals which showed also anti-inflammatory cytokine profile (vs. mdx). CONCLUSIONS: Targeted expression of HMOX1 plays protective role in DMD and alleviates dystrophic muscle pathology.


Subject(s)
Heme Oxygenase-1 , Mice, Inbred mdx , Mice, Transgenic , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Male , Mice, Inbred C57BL , Physical Conditioning, Animal , Membrane Proteins
8.
Int Immunopharmacol ; 136: 112380, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850790

ABSTRACT

BACKGROUND AND AIMS: Impaired intestinal barrier function is key in maintaining intestinal inflammation in Crohn's disease (CD). However, no targeted treatment in clinical practice has been developed. Peiminine (Pm) strongly protects the epithelial barrier, the purpose of this study is to investigate whether Pm affects CD-like colitis and potential mechanisms for its action. METHODS: Trinitro-benzene-sulfonic acid (TNBS)-induced mice and Il-10-/- mice were used as CD animal models. Colitis symptoms, histological analysis, and intestinal barrier permeability were used to assess the Pm's therapeutic effect on CD-like colitis. The colon organoids were induced by TNF-α to evaluate the direct role of Pm in inhibiting apoptosis of the intestinal epithelial cells. Western blotting and small molecule inhibitors were used to investigate further the potential mechanism of Pm in inhibiting apoptosis of intestinal epithelial cells. RESULTS: Pm treatment reduced body weight loss, disease activity index (DAI) score, and inflammatory score, demonstrating that colonic inflammation in mice were alleviated. Pm decreased the intestinal epithelial apoptosis, improved the intestinal barrier function, and prevented the loss of tight junction proteins (ZO1 and claudin-1) in the colon of CD mice and TNF-α-induced colonic organoids. Pm activated Nrf2/HO1 signaling, which may protect intestinal barrier function. CONCLUSIONS: Pm inhibits intestinal epithelial apoptosis in CD mice by activating Nrf2/HO1 pathway. This partially explains the potential mechanism of Pm in ameliorating intestinal barrier function in mice and provides a new approach to treating CD.


Subject(s)
Apoptosis , Colitis , Crohn Disease , Disease Models, Animal , Intestinal Mucosa , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2 , Signal Transduction , Trinitrobenzenesulfonic Acid , Animals , NF-E2-Related Factor 2/metabolism , Crohn Disease/drug therapy , Crohn Disease/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology , Mice , Signal Transduction/drug effects , Apoptosis/drug effects , Humans , Male , Colon/pathology , Colon/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Interleukin-10/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Membrane Proteins
9.
Reprod Domest Anim ; 59(6): e14598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881434

ABSTRACT

Our previous research has shown that melatonin (MLT) can reduce cryopreserved ovarian damage in mice. Yet, the molecular mechanism of MLT protection is still unclear. Some studies have shown that melatonin receptor 1 (MT1) is very important for animal reproductive system. To evaluate whether MLT exerts its protective effect on cryopreserved mice ovarian tissue via MT1, we added antagonist of MT1/MT2 (Luzindor) or antagonist of MT2 (4P-PDOT) to the freezing solution, followed by cryopreservation and thawing of ovarian tissue. The levels of total superoxide dismutase (T-SOD), catalase (CAT), nitric oxide (NO) and malondialdehyde (MDA) were detected. Besides, by using RT-PCR and Western blotting, the expression of Bcl-2, Bax and Nrf2/HO-1 signalling pathway-related proteins was detected. These findings demonstrated that compared with the melatonin group, the addition of Luzindor increased apoptosis, NO and MDA activities, decreased CAT and T-SOD activities and inhibited Nrf2/HO-1 signalling pathway. In conclusion, melatonin can play a protective role in cryopreserved ovarian tissue of mice through MT1 receptor.


Subject(s)
Cryopreservation , Melatonin , NF-E2-Related Factor 2 , Ovary , Oxidative Stress , Receptor, Melatonin, MT1 , Signal Transduction , Animals , Female , Melatonin/pharmacology , Oxidative Stress/drug effects , Ovary/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT1/genetics , Signal Transduction/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Cryopreservation/veterinary , Tryptamines/pharmacology , Apoptosis/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Nitric Oxide/metabolism , Malondialdehyde/metabolism , Membrane Proteins , Heme Oxygenase-1
10.
Cell Death Dis ; 15(6): 406, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858351

ABSTRACT

Diabetic cardiomyopathy (DCM) is a prevalent myocardial microvascular complication of the myocardium with a complex pathogenesis. Investigating the pathogenesis of DCM can significantly contribute to enhancing its prevention and treatment strategies. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Functionally, inhibition of Kat2a effectively ameliorated high glucose-induced cardiomyocyte injury both in vitro and in vivo by suppressing ferroptosis. Mechanistically, Demethylase alkB homolog 5 (Alkbh5) was found to reduce m6A methylation levels on Kat2a mRNA, leading to its upregulation. YTH domain family 2 (Ythdf2) played a crucial role as an m6A reader protein mediating the degradation of Kat2a mRNA. Furthermore, Kat2a promoted ferroptosis by increasing Tfrc and Hmox1 expression via enhancing the enrichment of H3K27ac and H3K9ac on their promoter regions. In conclusion, our findings unveil a novel role for the Kat2a-ferroptosis axis in DCM pathogenesis, providing valuable insights for potential clinical interventions.


Subject(s)
Diabetic Cardiomyopathies , Ferroptosis , Heme Oxygenase-1 , Histone Acetyltransferases , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Animals , Ferroptosis/genetics , Humans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Mice , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism
11.
J Am Heart Assoc ; 13(9): e032067, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700010

ABSTRACT

BACKGROUND: Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS: HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS: These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.


Subject(s)
Antibiotics, Antineoplastic , Carbon Monoxide , Cardiotoxicity , Doxorubicin , Membrane Proteins , Animals , Doxorubicin/toxicity , Carbon Monoxide/metabolism , Antibiotics, Antineoplastic/toxicity , Female , Administration, Oral , Mice , Heme Oxygenase-1/metabolism , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Heart Diseases/metabolism , Heart Diseases/pathology , Disease Models, Animal , Mice, Inbred C57BL , Carboxyhemoglobin/metabolism , Ventricular Function, Left/drug effects , Humans
12.
Front Immunol ; 15: 1369849, 2024.
Article in English | MEDLINE | ID: mdl-38779681

ABSTRACT

Background: Stomolophus meleagris envenomation causes severe cutaneous symptoms known as jellyfish dermatitis. The potential molecule mechanisms and treatment efficiency of dermatitis remain elusive because of the complicated venom components. The biological activity and molecular regulation mechanism of Troxerutin (TRX) was firstly examined as a potential treatment for jellyfish dermatitis. Methods: We examined the inhibit effects of the TRX on tentacle extract (TE) obtained from S. meleagris in vivo and in vitro using the mice paw swelling models and corresponding assays for Enzyme-Linked Immunosorbent Assay (ELISA) Analysis, cell counting kit-8 assay, flow cytometry, respectively. The mechanism of TRX on HaCaT cells probed the altered activity of relevant signaling pathways by RNA sequencing and verified by RT-qPCR, Western blot to further confirm protective effects of TRX against the inflammation and oxidative damage caused by TE. Results: TE significantly induced the mice paw skin toxicity and accumulation of inflammatory cytokines and reactive oxygen species in vivo and vitro. Moreover, a robust increase in the phosphorylation of mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways was observed. While, the acute cutaneous inflammation and oxidative stress induced by TE were significantly ameliorated by TRX treatment. Notablly, TRX suppressed the phosphorylation of MAPK and NF-κB by initiating the nuclear factor erythroid 2-related factor 2 signaling pathway, which result in decreasing inflammatory cytokine release. Conclusion: TRX inhibits the major signaling pathway responsible for inducing inflammatory and oxidative damage of jellyfish dermatitis, offering a novel therapy in clinical applications.


Subject(s)
Dermatitis , Hydroxyethylrutoside , NF-E2-Related Factor 2 , Oxidative Stress , Scyphozoa , Signal Transduction , Animals , Oxidative Stress/drug effects , Mice , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Dermatitis/drug therapy , Dermatitis/metabolism , Dermatitis/etiology , Humans , Hydroxyethylrutoside/analogs & derivatives , Hydroxyethylrutoside/pharmacology , Hydroxyethylrutoside/therapeutic use , Cnidarian Venoms/pharmacology , Heme Oxygenase-1/metabolism , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Male , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , HaCaT Cells , Reactive Oxygen Species/metabolism , Membrane Proteins
13.
Am J Reprod Immunol ; 91(5): e13855, 2024 May.
Article in English | MEDLINE | ID: mdl-38745499

ABSTRACT

Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.


Subject(s)
Endometriosis , Heme Oxygenase-1 , Heme , Endometriosis/metabolism , Endometriosis/drug therapy , Female , Humans , Heme/metabolism , Heme Oxygenase-1/metabolism , Animals , Signal Transduction , Macrophages/metabolism , Macrophages/immunology , Autophagy , Cytokines/metabolism
14.
Sci Rep ; 14(1): 11240, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755191

ABSTRACT

Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.


Subject(s)
Ischemic Stroke , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/prevention & control , Rats , Phosphatidylinositol 3-Kinases/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects , Male , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Apoptosis/drug effects , Humans , Molecular Docking Simulation
15.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755662

ABSTRACT

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Acute Lung Injury , Flavanones , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-kappa B , Animals , Actinobacillus pleuropneumoniae/drug effects , Flavanones/therapeutic use , Flavanones/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , NF-E2-Related Factor 2/metabolism , Actinobacillus Infections/veterinary , Actinobacillus Infections/drug therapy , Mice , NF-kappa B/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects , Female , Membrane Proteins , Heme Oxygenase-1
16.
BMC Complement Med Ther ; 24(1): 189, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750475

ABSTRACT

BACKGROUND: Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. METHODS: In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. RESULTS: The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. CONCLUSIONS: The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.


Subject(s)
Apoptosis , Granulosa Cells , Hydrogen Peroxide , NF-E2-Related Factor 2 , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Cell Line , Phosphatidylinositol 3-Kinases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism
17.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760744

ABSTRACT

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Subject(s)
Cell Differentiation , Histone Deacetylases , Mesenchymal Stem Cells , Nanoparticles , Animals , Mice , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , Cell Differentiation/drug effects , Histone Deacetylases/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoblasts/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Male , Bone Regeneration/drug effects , Osteogenesis/drug effects , Cell Nucleus/metabolism , Fracture Healing/drug effects , Humans , Membrane Proteins
18.
Bull Exp Biol Med ; 176(5): 562-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724811

ABSTRACT

We studied the effect of an NO donor, nitrosyl iron complex with N-ethylthiourea, on Nrf2-dependent antioxidant system activation of tumor cells in vitro. The complex increased intracellular accumulation of Nrf2 transcription factor and induced its nuclear translocation. It was shown that both heme oxygenase-1 gene and protein expression increased significantly under the influence of the complex. Nrf2 activation was accompanied by a decrease in the intracellular accumulation of proinflammatory transcription factor NF-κB p65 subunit and expression of its target genes. The cytotoxic effect of N-ethylthiourea leads to induction of Nrf2/HO-1 antioxidant response and suppression of NF-κB-dependent processes in tumor cells.


Subject(s)
Heme Oxygenase-1 , Iron , NF-E2-Related Factor 2 , Thiourea , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Thiourea/analogs & derivatives , Thiourea/pharmacology , HeLa Cells , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Iron/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Nitrogen Oxides/metabolism , Nitrogen Oxides/pharmacology , Antioxidants/pharmacology
19.
Int Immunopharmacol ; 135: 112318, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38795598

ABSTRACT

Ferroptosis of intestinal epithelial cells (IECs) had been identified as a key factor in the development of ulcerative colitis (UC). Therefore, targeted inhibition of ferroptosis may provide a new strategy for the treatment of UC. Isorhamnetin (ISO) was an O-methylated flavonol with therapeutic effects on a variety of diseases, such as cardiovascular disease, neurological disorders and tumors. However, the role and mechanism of ISO in ferroptosis and associated colitis were rarely investigated. In this study, we demonstrated that ISO could effectively alleviate intestinal inflammation by inhibiting ferroptosis of IECs in DSS-induced mice. Moreover, our results shown that ISO acted as a potent and common ferroptosis inhibitor in multiple human and murine cell lines. Mechanistically, ISO inhibited ferroptosis independent of its previously reported targets MEK1 and PI3K, but alleviated oxidative stress by targeting and activating NRF2. Furthermore, ISO could also directly chelate iron to hinder ferroptosis. In conclusion, our study indicated that ISO as a novel potential ferroptosis inhibitor, providing a promising therapeutic strategy for ferroptosis-related colitis.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Quercetin , Signal Transduction , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Quercetin/pharmacology , Quercetin/analogs & derivatives , Quercetin/therapeutic use , Humans , Mice , Heme Oxygenase-1/metabolism , Signal Transduction/drug effects , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Cell Line , Male , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced
20.
Eur J Histochem ; 68(2)2024 May 22.
Article in English | MEDLINE | ID: mdl-38779782

ABSTRACT

Osteoarthritis (OA) is a common degenerative joint disease in the elderly, while oxidative stress-induced chondrocyte degeneration plays a key role in the pathologic progression of OA. One possible reason is that the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which acts as the intracellular defense factor against oxidative stress, is significantly inhibited in chondrocytes. Spinosin (SPI) is a potent Nrf2 agonist, but its effect on OA is still unknown. In this study, we found that SPI can alleviate tert-Butyl hydroperoxide (TBHP)-induced extracellular matrix degradation of chondrocytes. Additionally, SPI can effectively activate Nrf2, heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase 1 (NQO1) in chondrocytes under the TBHP environment. When Nrf2 was silenced by siRNA, the cartilage protective effect of SPI was also weakened. Finally, SPI showed good alleviative effects on OA in mice. Thus, SPI can ameliorate oxidative stress-induced chondrocyte dysfunction and exhibit a chondroprotective effect through activating the Nrf2/HO-1 pathway, which may provide a novel and promising option for the treatment of OA.


Subject(s)
Chondrocytes , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Osteoarthritis , Signal Transduction , NF-E2-Related Factor 2/metabolism , Animals , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Signal Transduction/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Heme Oxygenase-1/metabolism , Mice , Oxidative Stress/drug effects , tert-Butylhydroperoxide/pharmacology , Male , Mice, Inbred C57BL , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...