Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 953
Filter
1.
Anal Chem ; 96(19): 7763-7771, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38699865

ABSTRACT

Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.


Subject(s)
Hemin , Hydrogen Peroxide , Nitric Oxide , Hemin/chemistry , Nitric Oxide/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Molecular Probes/chemistry , Luminol/chemistry , Solutions , Luminescent Measurements , Peroxynitrous Acid/analysis , Peroxynitrous Acid/chemistry , Kinetics , Oxidation-Reduction
2.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727763

ABSTRACT

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Subject(s)
Glycine , Glyphosate , Hemin , Limit of Detection , Metal-Organic Frameworks , Pesticides , Pesticides/analysis , Pesticides/chemistry , Metal-Organic Frameworks/chemistry , Hemin/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Benzidines/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Dimethoate/analysis , Dimethoate/chemistry , Aptamers, Nucleotide/chemistry , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry
3.
Langmuir ; 40(20): 10634-10647, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723623

ABSTRACT

Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.


Subject(s)
Hemin , Hydrogen Peroxide , Nanotubes, Carbon , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Hemin/chemistry , Nanotubes, Carbon/chemistry , Electrodes , Graphite/chemistry , Quantum Dots/chemistry , Nitrogen/chemistry , Surface Properties , Electrochemical Techniques/methods , Catalysis
4.
Mikrochim Acta ; 191(6): 340, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38787447

ABSTRACT

A new sandwich-type electrochemical biosensing platform was developed by gold @polyphthalenediamine nanohybrids (AuNP@PoPD) as the sensing platform and phosphorus doped reduced graphene oxide-hemin-palladium nanoparticles (PrGO-Hemin-PdNP) as the signal amplifier for phosphatidylinositol proteoglycan 3 (GPC3). AuNP@PoPD, co-electrodeposited into the screen printed electrode with high conductivity and stability, is dedicated to assembling the primary GPC3 aptamer (GPC3Apt). The second GPC3Apt immobilized on the high conductivity and large surface area of PrGO-Hemin-PdNP was utilized as an electrochemical signal reporter by hemin oxidation (PrGO-Hemin-PdNP-GPC3Apt). In the range 0.001-10.0 ng/mL, the hemin oxidation current signal of the electrochemical aptasensor increased log-linearly with the concentration of GPC3, the lowest detection limit was 0.13 pg/mL, and the sensitivity was 2.073 µA/µM/cm2. The aptasensor exhibited good sensing performance in a human serum sample with the relative error of 4.31-8.07%. The sandwich sensor showed good selectivity and stability for detection GPC3 in human serum samples, providing a new efficient and sensitive method for detecting HCC markers.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Glypicans , Gold , Graphite , Hemin , Limit of Detection , Metal Nanoparticles , Palladium , Glypicans/blood , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Aptamers, Nucleotide/chemistry , Hemin/chemistry , Graphite/chemistry , Palladium/chemistry , Gold/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Electrodes
5.
Food Chem ; 452: 139576, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735109

ABSTRACT

Hemin dissociation occurs much faster from fish methemoglobin (metHb) compared to mammalian metHb yet the mechanism remains poorly understood. This may involve enhanced solvent access to His(E7) of fish metHbs by a protonation mechanism. Plasma induced modification of biomolecules (PLIMB) produces free radicals that covalently modify solvent accessible residues of proteins, and so can provide insight regarding accessibility of hydronium ions to protonate His(E7). PLIMB-induced modifications to heme crevice sites of trout IV and bovine metHb were determined using tandem mass spectrometry after generating peptides with Trypsin/Lys-C. αHis(CE3) was more modified in trout attributable to the more dynamic nature of bovine αHis(CE3) from available crystal structures. Although His(E7) was not found to be more modified in trout, aspects of trout peptides containing His(E7) hampered modification determinations. An existing computational structure-based approach was also used to estimate protonation tendencies, suggesting His(E7) of metHbs with low hemin affinity are more protonatable.


Subject(s)
Fish Proteins , Hemin , Methemoglobin , Animals , Hemin/chemistry , Cattle , Fish Proteins/chemistry , Methemoglobin/chemistry , Trout/metabolism , Tandem Mass Spectrometry
6.
Nano Lett ; 24(20): 5993-6001, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38655913

ABSTRACT

Bimetallic hollow structures have attracted much attention due to their unique properties, but they still face the problems of nonuniform alloys and excessive etching leading to structural collapse. Here, uniform bimetallic hollow nanospheres are constructed by pore engineering and then highly loaded with hemin (Hemin@MOF). Interestingly, in the presence of polydopamine (PDA), the competitive coordination between anionic polymer (γ-PGA) and dimethylimidazole does not lead to the collapse of the external framework but self-assembly into a hollow structure. By constructing the Hemin@MOF immune platform and using E. coli O157:H7 as the detection object, we find that the visual detection limits can reach 10, 3, and 3 CFU/mL in colorimetric, photothermal, and catalytic modes, which is 4 orders of magnitude lower than the traditional gold standard. This study provides a new idea for the morphological modification of the metal-organic skeleton and multifunctional immunochromatography detection.


Subject(s)
Hemin , Indoles , Immunoassay/methods , Immunoassay/instrumentation , Hemin/chemistry , Indoles/chemistry , Polymers/chemistry , Escherichia coli O157 , Metal-Organic Frameworks/chemistry , Nanospheres/chemistry , Limit of Detection
7.
Nano Lett ; 24(7): 2250-2256, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38329289

ABSTRACT

Emergence of complex catalytic machinery via simple building blocks under non-equilibrium conditions can contribute toward the system level understanding of the extant biocatalytic reaction network that fuels metabolism. Herein, we report temporal (dis)assembly of peptide nanostructures in presence of a cofactor dictated by native multistep cascade transformations. The short peptide can form a dynamic covalent bond with the thermodynamically activated substrate and recruit cofactor hemin to access non-equilibrium catalytic nanostructures (positive feedback). The neighboring imidazole and hemin moieties in the assembled state rapidly converted the substrate to product(s) via a two-step cascade reaction (hydrolase-peroxidase like) that subsequently triggered the disassembly of the catalytic nanostructures (negative feedback). The feedback coupled reaction cycle involving intrinsic catalytic prowess of short peptides to realize the advanced trait of two-stage cascade degradation of a thermodynamically activated substrate foreshadows the complex non-equilibrium protometabolic networks that might have preceded the chemical emergence of life.


Subject(s)
Hemin , Nanostructures , Hemin/chemistry , Nanostructures/chemistry , Peptides/chemistry , Catalysis , Biocatalysis
8.
Anal Chem ; 96(8): 3345-3353, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38301154

ABSTRACT

Malaria is a severe disease caused by cytozoic parasites of the genus Plasmodium, which infiltrate and infect red blood cells. Several drugs have been developed to combat the devastating effects of malaria. Antimalarials based on quinolines inhibit the crystallization of hematin into hemozoin within the parasite, ultimately leading to its demise. Despite the frequent use of these agents, there are unanswered questions about their mechanisms of action. In the present study, the quinoline chloroquine and its interaction with the target structure hematin was investigated using an advanced, highly parallelized Raman difference spectroscopy (RDS) setup. Simultaneous recording of the spectra of hematin and chloroquine mixtures with varying compositions enabled the observation of changes in peak heights and positions based on the altered molecular structure resulting from their interaction. A shift of (-1.12 ± 0.05) cm-1 was observed in the core-size marker band ν(CαCm)asym peak position of the 1:1 chloroquine-hematin mixture compared to pure hematin. The oxidation-state marker band ν(pyrrole half-ring)sym exhibited a shift by (+0.93 ± 0.13) cm-1. These results were supported by density functional theory (DFT) calculations, indicating a hydrogen bond between the quinolinyl moiety of chloroquine and the oxygen atom of ferric protoporphyrin IX hydroxide (Fe(III)PPIX-OH). The consequence is a reduced electron density within the porphyrin moiety and an increase in its core size. This hypothesis provided further insights into the mechanism of hemozoin inhibition, suggesting chloroquine binding to the monomeric form of hematin, thereby preventing its further crystallization to hemozoin.


Subject(s)
Antimalarials , Hemeproteins , Malaria , Humans , Antimalarials/pharmacology , Chloroquine/pharmacology , Chloroquine/chemistry , Hemin/chemistry , Hemeproteins/chemistry , Spectrum Analysis , Plasmodium falciparum
9.
Bioelectrochemistry ; 157: 108635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38185025

ABSTRACT

In this work, a novel sandwich-type electrochemical aptasensor based on the dual signal amplification strategy of hemin/G-quadruplex and AuNPs-MoS2 was designed and constructed, which realized the highly sensitive and specific detection of thrombin (TB). In this aptasensor, the 15-mer TB-binding aptamer (TBA-1) modified with thiol group was immobilized on the surface of AuNPs modified glassy carbon electrode (AuNPs/GCE) as capturing elements. Another thiol-modified 29-mer TB-binding aptamer (TBA-2) sequence containing G-quadruplex structure for hemin immobilization was designed. The formed hemin/G-quadruplex/TBA-2 sequence was further combined to the AuNPs decorated flower-like molybdenum disulfide (AuNPs-MoS2) composite surface via Au-S bonds, acting the role of reporter probe. In presence of the target TB, the sandwich-type electrochemical aptamer detection system could be formed properly. With the assistance of the dual signal amplification of AuNPs-MoS2 and hemin/G-quadruplex toward H2O2 reduction, the sandwich-type electrochemical aptasensor was successfully constructed for sensitive detection of TB. The results demonstrate that the fabricated aptasensor displays a wide linear range of 1.0 × 10-6 âˆ¼ 10.0 nM with a low detection limit of 0.34 fM. This proposed aptasensor shows potential application in the detection of TB content in real biological samples with high sensitivity, selectivity, and reliability.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Hemin/chemistry , Thrombin/chemistry , Gold/chemistry , Molybdenum/chemistry , Reproducibility of Results , Hydrogen Peroxide , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Sulfhydryl Compounds , Electrochemical Techniques/methods , Limit of Detection
10.
Food Chem ; 441: 138332, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38183722

ABSTRACT

The impact of oxidized myoglobin (Mb) on myofibrillar protein (MP) oxidation and water retention was investigated. Results showed that the oxidation of Mb increased with increasing concentration of oxidized linoleic acid (OLA). In the presence of 100 mmol/L OLA, hemin iron decreased by 62.07 % compared to the control group. Further investigation showed that mild oxidation of Mb (≤10 mmol/L OLA) increased the water retention and the absolute value of the zeta potential of MP, whereas excessive oxidation (>10 mmol/L OLA) decreased these properties. With the increase of Mb oxidation, the carbonyl content in MP increased, and α-helices changed to random helix. And the tertiary structure changed. Pearson correlation analysis suggested that oxidized Mb affected the water retention of MP, which was closely related to hemin iron and non-hemin iron. In conclusion, OLA induced Mb oxidation, further promoted MP oxidation and affected its water retention.


Subject(s)
Hemin , Myoglobin , Myoglobin/chemistry , Hemin/chemistry , Oxidation-Reduction , Iron , Water
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123902, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38281463

ABSTRACT

Hematin anhydride (ß-hematin), the synthetic analogue of the malaria pigment, "hemozoin", is a heme dimer produced by reciprocal covalent bonds among carboxylic acid groups on the protoporphyrin-IX ring and the iron atom present in the two adjacent heme molecules. Hemozoin is a disposal product formed from the digestion of hemoglobin present in the red blood cells infected with hematophagous malaria parasites. Besides, as the parasites invade red blood cells, hemozoin crystals are eventually released into the bloodstream, where they accumulate over time in tissues. Severe malaria infection leads to significant dysfunction in vital organs such as the liver, spleen, and brain in part due to the autoimmune response to the excessive accumulation of hemozoin in these tissues. Also, the amount of these crystals in the vasculature correlates with disease progression. Thus, hemozoin is a unique indicator of infection used as a malaria biomarker and hence, used as a target for the development of antimalarial drugs. Hence, exploring various properties of hemozoin is extremely useful in the direction of diagnosis and cure. The present study focuses on finding one of the unknown properties of ß-hematin in physiological conditions by using the Z-scan technique, which is simple, sensitive, and economical. It is observed that hemozoin possesses one of the unique material properties, i.e., nonlinearity with a detection limit of âˆ¼ 15 µM. The self-defocusing action causes ß-hematin to exhibit negative refractive nonlinearity. The observed data is analyzed with a thermal lensing model. We strongly believe that our simple and reliable approach to probing the nonlinearity of ß-hematin will provide fresh opportunities for malaria diagnostics & cure in the near future.


Subject(s)
Hemeproteins , Malaria , Humans , Hemin/chemistry , Heme , Malaria/diagnosis , Malaria/drug therapy , Plasmodium falciparum/chemistry
12.
Protein J ; 43(1): 48-61, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38066289

ABSTRACT

Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a Kd value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H2O2 and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to ß-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H2O2 system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.


Subject(s)
Heme , Hemin , Hemin/chemistry , Hemin/metabolism , Heme/chemistry , Hydrogen Peroxide , Polymerization , Peroxidases
13.
Biotechnol Appl Biochem ; 71(1): 193-201, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37904286

ABSTRACT

In this study, an electrochemical biosensor was constructed for the detection of fibrin, specifically by a simple two-step approach, with a novel artificial enzyme (Tetrazyme) based on the DNA tetrahedral framework as signal probe. The multichannel screen-printed electrode with the activated surface cannot only remove some biological impurities, but also serve as a carrier to immobilize a large number of antigen proteins. The DNA tetrahedral nanostructure was employed to ensure the high sensitivity of the probe for biological analysis. The hemin was chimeric into the G-quadruplex to constitute the complex with peroxidase catalytic activity (hemin/G4-DNAzyme), subsequently, Tetrazyme was formed through combining of this complex and DNA tetrahedral nucleic acid framework. The artificial enzyme signal probe formed by the covalent combination of the homing peptide (Cys-Arg-Glu-Lys-Ala, CREKA), which is the aptamer of fibrin and the new artificial enzyme is fixed on the surface of the multichannel carbon electrode by CREKA-specific recognition, so as to realize the sensitive detection of fibrin. The feasibility of sensing platform was validated by cyclic voltammetry (CV) and amperometric i-t curve (IT) methods. Effects of Tetrazyme concentration, CREKA concentrations and hybridization time on the sensor were explored. Under the best optimal conditions of 0.6 µmol/L Tetrazyme, 80 µmol/L CREKA, and 2.5 h reaction time, the immunosensor had two linear detection ranges, 10-40 nmol/L, with linear regression equation Y = 0.01487X - 0.011 (R2 = 0.992), and 50-100 nmol/L, with linear regression equation Y = 0.00137X + 0.6405 (R2 = 0.998), the detection limit was 9.4 nmol/L, S/N ≥ 3. The biosensor could provide a new method with great potential for the detection of fibrin with good selectivity, stability, and reproducibility.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Hemin/chemistry , Fibrin , Reproducibility of Results , Limit of Detection , Immunoassay , DNA/chemistry , Electrochemical Techniques/methods
14.
Talanta ; 270: 125550, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38104426

ABSTRACT

Developing ultrasensitive sensing platforms for trace ochratoxin A (OTA) in food safety is still challenging. Herein, we presented a novel dual-mode sensing strategy for fluorescence and colorimetric detection of OTA by combining the target-responsive hemin-encapsulated and copper nanoclusters (CuNCs) functionalized DNA hydrogel. Through simple assembly and in situ synthesis methods, fluorescence CuNCs are synthesized and modified on the 3D hydrophilic network structure of DNA cross-linked. OTA specifically recognized by Apt-linker can control the collapse of hydrogel, resulting in the fluorescence quenching of CuNCs and release of coated hemin. Interestingly, OTA could trigger Apt-linker conformational changes to form G-quadruplex structures, allowing the released hemin to form G-quadruplex/hemin DNAzyme via self-assembly. Fluorescence signal amplification could be achieved through further fluorescence quenching of CuNCs caused by DNAzyme-catalyzed hydrogen peroxide (H2O2) because of the peroxidase activity of DNAzyme. Simultaneously, DNAzyme could catalyze the H2O2-mediated oxidation of TMB to provide colorimetric signal. Thereafter, the DNA-CuNCs hydrogel exhibited low detection limits of 3.49 pg/mL in fluorescence mode and 0.25 ng/mL in colorimetric modality. Real sample analyses of foodstuffs showed satisfactory results, providing prospective potential for monitoring mycotoxin contaminant.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , Ochratoxins , DNA, Catalytic/chemistry , Copper , Hydrogels , Hemin/chemistry , Hydrogen Peroxide/chemistry , DNA , Biosensing Techniques/methods , Limit of Detection , Aptamers, Nucleotide/chemistry
15.
Chemistry ; 30(11): e202303254, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38145337

ABSTRACT

Developing enzyme alternatives is pivotal to improving and enabling new processes in biotechnology and industry. Artificial metalloenzymes (ArMs) are combinations of protein scaffolds with metal elements, such as metal nanoclusters or metal-containing molecules with specific catalytic properties, which can be customized. Here, we engineered an ArM based on the consensus tetratricopeptide repeat (CTPR) scaffold by introducing a unique histidine residue to coordinate the hemin cofactor. Our results show that this engineered system exhibits robust peroxidase-like catalytic activity driven by the hemin. The expression of the scaffold and subsequent coordination of hemin was achieved by recombinant expression in bulk and through in vitro transcription and translation systems in water-in-oil drops. The ability to synthesize this system in emulsio paves the way to improve its properties by means of droplet microfluidic screenings, facilitating the exploration of the protein combinatorial space to discover improved or novel catalytic activities.


Subject(s)
Hemin , Metalloproteins , Hemin/chemistry , Metalloproteins/chemistry , Peroxidase , Metals
16.
Angew Chem Int Ed Engl ; 63(6): e202314450, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38150561

ABSTRACT

Previous aptamers for porphyrins and metalloporphyrins were all guanine-rich sequences that can fold in G-quadruplex structures. Due to stacking-based binding, these aptamers can hardly tell different porphyrins apart, and they can also bind other planar molecules, hindering their practical applications. In this work, we used the capture selection method to obtain aptamers for hemin and protoporphyrin IX (PPIX). The hemin aptamer (Hem1) features two highly conserved repeating binding loops, and it cannot form a G-quadruplex, which was supported by its Mg2+ -dependent but K+ -independent hemin binding and CD spectroscopy. Isothermal titration calorimetry revealed much higher enthalpy change for the new aptamer, and the best aptamer showed a Kd of 43 nM hemin. Hem1 can also enhance the peroxidase-like activity of hemin. This work demonstrates that aptamers have alternative ways to bind porphyrins allowing selective recognition of different porphyrins.


Subject(s)
Aptamers, Nucleotide , G-Quadruplexes , Porphyrins , Hemin/chemistry , Aptamers, Nucleotide/chemistry , Porphyrins/metabolism , Peroxidases/metabolism
17.
J Agric Food Chem ; 71(44): 16807-16814, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37879039

ABSTRACT

The contamination of food by pathogens is a serious problem in global food safety, and current methods of detection are costly, time-consuming, and cumbersome. Therefore, it is necessary to develop rapid, portable, and sensitive assays for foodborne pathogens. In addition, assays for foodborne pathogens must be resistant to interference resulting from the complex food matrix to prevent false positives and negatives. In this study, hemin and reduced graphene oxide-MoS2 sheets (GMS) were used to design a near-infrared (NIR)-responsive photoelectrochemical (PEC) aptasensor with target-induced photocurrent polarity switching based on a hairpin aptamer (Hp) with a G-quadruplex motif. A ready-to-use analytical device was developed by immobilizing GMS on the surface of a commercial screen-printed electrode, followed by the attachment of the aptamer. In the presence of Escherichia coli O157:H7, the binding sites of Hp with the G-quadruplex motif were opened and exposed to hemin, leading to the formation of a G-quadruplex/hemin DNAzyme. Crucially, after binding to hemin, the charge transfer pathway of GMS changes, resulting in a switch of the photocurrent polarity. Further, G-quadruplex/hemin DNAzyme enhanced the cathodic photocurrent, and the proposed sensor exhibited a wide linear range ((25.0-1.0) × 107 CFU/mL), a low limit of detection (2.0 CFU/mL), and good anti-interference performance. These findings expand the applications of NIR-responsive PEC materials and provide versatile PEC methods for detecting biological analytes, especially for food safety testing.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Escherichia coli O157 , Escherichia coli O157/genetics , Escherichia coli O157/metabolism , DNA, Catalytic/chemistry , Hemin/chemistry , Biosensing Techniques/methods , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/chemistry
18.
Molecules ; 28(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446548

ABSTRACT

The metalloporphyrin heme acts as the oxygen-complexing prosthetic group of hemoglobin in blood. Heme has been noted to survive for many millions of years in fossils. Here, we investigate its stability and degradation under various conditions expected to occur during fossilization. Oxidative, reductive, aerobic, and anaerobic conditions were studied at neutral and alkaline pH values. Elevated temperatures were applied to accelerate degradation. High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) identified four main degradation products. The vinyl residues are oxidized to formyl and further to carboxylate groups. In the presence of air or H2O2, cleavage of the tetrapyrrole ring occurs, and hematinic acid is formed. The highest stability of heme was observed under anaerobic reductive conditions (half-life 9.5 days), while the lowest stability was found in the presence of H2O2 (half-life 1 min). We confirmed that the iron cation plays a crucial role in degradation, since protoporphyrin IX, lacking iron, remained significantly more stable. Under anaerobic, reductive conditions, the above-mentioned degradation products were not observed, suggesting a different degradation pathway. To our knowledge, this is the first molecular taphonomy study on heme, which will be useful for understanding its fate during fossilization.


Subject(s)
Heme , Hemin , Heme/chemistry , Hemin/chemistry , Tandem Mass Spectrometry , Hydrogen Peroxide/chemistry , Paleontology , Iron/chemistry , Oxidation-Reduction
19.
J Am Chem Soc ; 145(23): 12726-12736, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37276197

ABSTRACT

DNAzymes have been limited in application by their low catalytic rates. Here, we evolved a new peroxidase DNAzyme mSBDZ-X-3 through a directed evolution method based on the capture of self-biotinylated DNA catalyzed by its intrinsic peroxidase activity. The mSBDX-X-3 DNAzyme has a parallel G-quadruplex structure and has more favorable catalytic properties than all previously reported peroxidase DNAzyme variants. We applied mSBDZ-X-3 in an aptamer-coupled proximity-based labeling proteomic assay to determine the proteins that bind to cell surface cancer biomarkers EpCAM and nucleolin. Confocal microscopy, western blot analysis, and LC-MS/MS showed that the hybrid DNAzyme aptamer-coupled proximity assay-labeled proteins associated with EpCAM and nucleolin within 6-12 min in fixed cancer cells. The labeled proteins were identified by mass spectrometry. This study provides a highly efficient peroxidase DNAzyme, a methodology for selection of such variants, and a method for its application in spatial proteomics using entirely nucleic acid-based tooling.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , DNA, Catalytic/chemistry , Peroxidase/metabolism , Epithelial Cell Adhesion Molecule , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Peroxidases/chemistry , Coloring Agents , Aptamers, Nucleotide/chemistry , Hemin/chemistry , Biosensing Techniques/methods
20.
Biosens Bioelectron ; 236: 115438, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37263053

ABSTRACT

Efficient detection of pathogenic bacteria is paramount for ensuring food safety and safeguarding public health. Herein, we developed a label-free and signal-on dual-target recognition electrochemical DNA sensing platform based on the conformational formation of split G-quadruplex. This platform focused on achieving sensitive and low-cost detection of Salmonella and its most human-infecting S. typhimurium serotype. In simple terms, the dual-target recognition probe (DTR-6P) was ingeniously designed for the loop sequence on the loop-mediated isothermal amplification (LAMP) amplicons. It could recognize two different genes and release their corresponding G-rich sequences. The exfoliated G-rich sequences could be captured by the capture probes on the electrode, and then the bimolecular G-quadruplex or the tetramolecular G-quadruplex would be formed to capture hemin, thereby enabling dual-signal reporting. The minimum detection amount of target genes can be as low as 2 copies/µL. Encouragingly, the real food samples contaminated by Salmonella and the S. typhimurium serotype can be readily identified. The sensing platform with ingenious design paves a new way for label-free, multi-target simultaneous detection, whose advantage of rapidity, sensitivity, cost-effectiveness, and specificity also lay a solid foundation for practical applications.


Subject(s)
Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , Humans , Hemin/chemistry , Serogroup , DNA/chemistry , Salmonella/genetics , DNA, Catalytic/chemistry , Electrochemical Techniques , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...