Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Diabetes ; 72(12): 1841-1852, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37722135

ABSTRACT

Hemopexin (HPX) is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. The aim of this study was to evaluate whether HPX blockade by specific antibodies (aHPX) could avoid vascular leakage in vivo and microvascular angiogenesis in vitro and ex vivo. For this purpose, the effect of intravitreal (IVT) injections of aHPX on vascular leakage was evaluated in db/db mice and rats with streptozotocin-induced diabetes using the Evans Blue method. Retinal neurodegeneration and inflammation were also evaluated. The antiangiogenic effect of aHPX on human retinal endothelial cells (HRECs) was tested by scratch wound healing and tube formation using standardized methods, as well as by choroidal sprouting assays from retinal explants obtained in rats. We found that IVT injection of aHPX significantly reduced vascular leakage, retinal neurodegeneration, and inflammation. In addition, treatment with aHPX significantly reduced HREC migration and tube formation induced by high glucose concentration and suppressed choroidal sprouting even after vascular endothelial growth factor stimulation, with this effect being higher than obtained with bevacizumab. The antipermeability and antiangiogenic effects of IVT injection of aHPX suggest the blockade or inhibition of HPX as a new strategy for the treatment of advanced stages of diabetic retinopathy. ARTICLE HIGHLIGHTS: Hemopexin (HPX) is the best-characterized permeability factor in steroid-sensitive nephrotic syndrome. We have previously reported that HPX is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. Here, we report that intravitreal injection of anti-HPX antibodies significantly reduces vascular leakage, retinal neurodegeneration, and inflammation in diabetic murine models and that the immunoneutralization of HPX exerts a significant antiangiogenic effect in vitro and in retinal explants. The blockade of HPX can be considered as a new therapy for advanced stages of diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Rats , Humans , Mice , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Hemopexin/metabolism , Hemopexin/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Retina/metabolism , Blood-Retinal Barrier/metabolism , Antibodies/pharmacology , Diabetes Mellitus, Experimental/metabolism , Inflammation/metabolism
2.
Exp Biol Med (Maywood) ; 248(13): 1103-1111, 2023 07.
Article in English | MEDLINE | ID: mdl-37452705

ABSTRACT

Heme is a fundamental molecule for several biological processes, but when released in the extracellular space such as in hemolytic diseases, it can be toxic to cells and tissues. Hemopexin (HPX) is a circulating protein responsible for removing free heme from the circulation, whose levels can be severely depleted in conditions such as sickle cell diseases. Accordingly, increasing HPX levels represents an attractive strategy to mitigate the deleterious effects of heme in these conditions. Gene transfer of liver-produced proteins with adeno-associated virus (AAV) has been shown to be an effective and safety strategy in animal and human studies mainly in hemophilia. Here, we report the feasibility of increasing HPX levels using an AAV8 vector expressing human HPX (hHPX). C57Bl mice were injected with escalating doses of our vector, and expression was assessed by enzyme immunoassay (ELISA), Western blot, and quantitative polymerase chain reaction (qPCR). In addition, the biological activity of transgenic hHPX was confirmed using two different models of heme challenge consisting of serial heme injections or phenylhydrazine-induced hemolysis. Sustained expression of hHPX was confirmed for up to 26 weeks in plasma. Expression was dose-dependent and not associated with clinical signs of toxicity. hHPX levels were significantly reduced by heme infusions and phenylhydrazine-induced hemolysis. No clinical toxicity or laboratory signs of liver damage were observed in preliminary short-term heme challenge studies. Our results confirm that long-term expression of hHPX is feasible and safe in mice, even in the presence of heme overload. Additional studies are needed to explore the effect of transgenic HPX protein in animal models of chronic hemolysis.


Subject(s)
Heme , Hemopexin , Mice , Humans , Animals , Hemopexin/genetics , Hemopexin/metabolism , Hemopexin/pharmacology , Hemolysis , Feasibility Studies , Transcription Factors , Phenylhydrazines
3.
Exp Biol Med (Maywood) ; 248(10): 897-907, 2023 05.
Article in English | MEDLINE | ID: mdl-36941786

ABSTRACT

Intravascular hemolysis results in the release of cell-free hemoglobin and heme in plasma. In sickle cell disease, the fragility of the sickle red blood cell leads to chronic hemolysis, which can contribute to oxidative damage and activation of inflammatory pathways. The scavenger proteins haptoglobin and hemopexin provide pathways to remove hemoglobin and heme, respectively, from the circulation. Heme also intercalates in membranes of blood cells and endothelial cells in the vasculature and associates with other plasma components such as albumin and lipoproteins. Hemopexin has a much higher affinity and can strip heme from the other pools and detoxify plasma from cell-free circulatory heme. However, due to chronic hemolysis, hemopexin is depleted in individuals with sickle cell disease. Thus, cell-free unbound heme is expected to accumulate in plasma. We developed a methodology for the accurate quantification of the fraction of heme, which is pathologically relevant in sickle cell disease, that does not appear to be sequestered to a plasma compartment. Our data show significant variation in the concentration of unbound heme, and rather unexpectedly, the size of the unbound fraction does not correlate to the degree of hemolysis, as measured by the concentration of bound heme. Very high heme concentrations (>150 µM) were obtained in some plasma with unbound concentrations that were several fold lower than in plasma with much lower hemolysis (<50 µM). These findings underscore the long-term effects of chronic hemolysis on the blood components and of the disruption of the essential equilibrium between release of hemoproteins/heme in the circulation and adaptative response of the scavenging/removal mechanisms. Understanding the clinical implications of this loss of response may provide insights into diagnostic and therapeutic targets in patients with sickle cell disease.


Subject(s)
Anemia, Sickle Cell , Heme , Humans , Hemolysis , Hemopexin/metabolism , Hemopexin/pharmacology , Hemopexin/therapeutic use , Endothelial Cells/metabolism , Anemia, Sickle Cell/drug therapy , Hemoglobins
4.
Sci Adv ; 8(51): eadc9245, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36563141

ABSTRACT

Anthracyclines such as doxorubicin (Dox) are effective chemotherapies, but their use is limited by cardiac toxicity. We hypothesized that plasma proteomics in women with breast cancer could identify new mechanisms of anthracycline cardiac toxicity. We measured changes in 1317 proteins in anthracycline-treated patients (n = 30) and replicated key findings in a second cohort (n = 31). An increase in the heme-binding protein hemopexin (Hpx) 3 months after anthracycline initiation was associated with cardiac toxicity by echocardiography. To assess the functional role of Hpx, we administered Hpx to wild-type (WT) mice treated with Dox and observed improved cardiac function. Conversely, Hpx-/- mice demonstrated increased Dox cardiac toxicity compared to WT mice. Initial mechanistic studies indicate that Hpx is likely transported to the heart by circulating monocytes/macrophages and that Hpx may mitigate Dox-induced ferroptosis to confer cardioprotection. Together, these observations suggest that Hpx induction represents a compensatory response during Dox treatment.


Subject(s)
Anthracyclines , Cardiotoxicity , Animals , Female , Mice , Anthracyclines/toxicity , Antibiotics, Antineoplastic , Cardiotoxicity/etiology , Doxorubicin , Hemopexin/metabolism , Hemopexin/pharmacology
5.
Biosensors (Basel) ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36291022

ABSTRACT

Matrix metalloproteinases (MMPs) are essential proteins acting directly in the breakdown of the extra cellular matrix and so in cancer invasion and metastasis. Given its impact on tumor angiogenesis, monitoring MMP-14 provides strategic insights on cancer severity and treatment. In this work, we report a new approach to improve the electrochemical interaction of the MMP-14 with the electrode surface while preserving high specificity. This is based on the detection of the hemopexin (PEX) domain of MMP-14, which has a greater availability with a stable and low-cost commercial molecule, as a recognition element. This molecule, called NSC-405020, is specific of the PEX domain of MMP-14 within the binding pocket. Through the covalent grafting of the NSC-405020 molecule on carbon nanotubes (CNTs), we were able to detect and quantify MMP-14 using electrochemical impedance spectroscopy with a linear range of detection of 10 ng⋅mL-1 to 100 ng⋅mL-1, and LOD of 7.5 ng⋅mL-1. The specificity of the inhibitory small molecule was validated against the PEX domain of MMP-1. The inhibitor loaded CNTs system showed as a desirable candidate to become an alternative to the conventional recognition bioelements for the detection of MMP-14.


Subject(s)
Matrix Metalloproteinase 14 , Nanotubes, Carbon , Matrix Metalloproteinase 14/chemistry , Matrix Metalloproteinase 14/metabolism , Hemopexin/chemistry , Hemopexin/metabolism , Hemopexin/pharmacology , Matrix Metalloproteinase 1/metabolism , Protein Structure, Tertiary
6.
Front Immunol ; 13: 901876, 2022.
Article in English | MEDLINE | ID: mdl-35935964

ABSTRACT

Hemolysis, as a result of disease or exposure to biomaterials, is characterized by excess amounts of cell-free heme intravascularly and consumption of the protective heme-scavenger proteins in plasma. The liberation of heme has been linked to the activation of inflammatory systems, including the complement system, through alternative pathway activation. Here, we investigated the impact of heme on the regulatory function of the complement system. Heme dose-dependently inhibited factor I-mediated degradation of soluble and surface-bound C3b, when incubated in plasma or buffer with complement regulatory proteins. Inhibition occurred with factor H and soluble complement receptor 1 as co-factors, and the mechanism was linked to the direct heme-interaction with factor I. The heme-scavenger protein hemopexin was the main contaminant in purified factor I preparations. This led us to identify that hemopexin formed a complex with factor I in normal human plasma. These complexes were significantly reduced during acute vasoocclusive pain crisis in patients with sickle cell disease, but the complexes were normalized at their baseline outpatient clinic visit. Hemopexin exposed a protective function of factor I activity in vitro, but only when it was present before the addition of heme. In conclusion, we present a mechanistic explanation of how heme promotes uncontrolled complement alternative pathway amplification by interfering with the regulatory capacity of factor I. Reduced levels of hemopexin and hemopexin-factor I complexes during an acute hemolytic crisis is a risk factor for heme-mediated factor I inhibition.


Subject(s)
Anemia, Sickle Cell , Hemopexin , Anemia, Sickle Cell/metabolism , Complement Factor I , Fibrinogen , Heme/metabolism , Hemopexin/pharmacology , Humans
7.
Brain Res ; 1765: 147507, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33930375

ABSTRACT

Heme release from hemoglobin may contribute to secondary injury after intracerebral hemorrhage (ICH). The primary endogenous defense against heme toxicity is hemopexin, a 57 kDa glycoprotein that is depleted in the CNS after hemorrhagic stroke. We hypothesized that systemic administration of exogenous hemopexin would reduce perihematomal injury and improve outcome after experimental ICH. Intraperitoneal treatment with purified human plasma hemopexin beginning 2 h after striatal ICH induction and repeated daily for the following two days reduced blood-brain barrier disruption and cell death at 3 days. However, it had no effect on neurological deficits at 4 or 7 days or striatal cell viability at 8 days. Continuous daily hemopexin administration had no effect on striatal heme content at 3 or 7 days, and did not attenuate neurological deficits, inflammatory cell infiltration, or perihematomal cell viability at 8 days. These results suggest that systemic hemopexin treatment reduces early injury after ICH, but this effect is not sustained, perhaps due to an imbalance between striatal tissue heme and hemopexin content at later time points. Future studies should investigate its effect when administered by methods that more efficiently target CNS delivery.


Subject(s)
Cerebral Hemorrhage/drug therapy , Hemopexin/pharmacology , Animals , Blood-Brain Barrier/drug effects , Brain/metabolism , Cell Death/drug effects , Cerebral Hemorrhage/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Female , Heme/metabolism , Heme Oxygenase-1/metabolism , Hemoglobins/metabolism , Hemopexin/metabolism , Injections, Intraperitoneal , Male , Mice , Treatment Outcome
8.
Front Immunol ; 12: 627944, 2021.
Article in English | MEDLINE | ID: mdl-33763072

ABSTRACT

Sickle cell disease (SCD) is an inherited hemolytic disorder, defined by a point mutation in the ß-globin gene. Stress conditions such as infection, inflammation, dehydration, and hypoxia trigger erythrocyte sickling. Sickled red blood cells (RBCs) hemolyze more rapidly, show impaired deformability, and increased adhesive properties to the endothelium. In a proinflammatory, pro-coagulative environment with preexisting endothelial dysfunction, sickled RBCs promote vascular occlusion. Hepatobiliary involvement related to the sickling process, such as an acute sickle hepatic crisis, is observed in about 10% of acute sickle cell crisis incidents. In mice, ligation of CD40 with an agonistic antibody leads to a macrophage activation in the liver, triggering a sequence of systemic inflammation, endothelial cell activation, thrombosis, and focal ischemia. We found that anti-CD40 antibody injection in sickle cell mice induces a systemic inflammatory and hemodynamic response with accelerated hemolysis, extensive vaso-occlusion, and large ischemic infarctions in the liver mimicking an acute hepatic crisis. Administration of the tumor necrosis factor-α (TNF-α) blocker, etanercept, and the heme scavenger protein, hemopexin attenuated end-organ damage. These data collectively suggest that anti-CD40 administration offers a novel acute liver crisis model in humanized sickle mice, allowing for evaluation of therapeutic proof-of-concept.


Subject(s)
Anemia, Sickle Cell/complications , Antibodies/toxicity , CD40 Antigens/agonists , Inflammation/etiology , Liver Diseases/etiology , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/immunology , Animals , CD40 Antigens/immunology , CD40 Antigens/metabolism , Cytokines/blood , Disease Models, Animal , Etanercept/pharmacology , Heart Failure/blood , Heart Failure/etiology , Heart Failure/immunology , Hemolysis , Hemopexin/pharmacology , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/prevention & control , Inflammation Mediators/blood , Liver Diseases/blood , Liver Diseases/immunology , Liver Diseases/prevention & control , Mice, Transgenic , Tumor Necrosis Factor Inhibitors/pharmacology , Ventricular Dysfunction, Right/blood , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/immunology
9.
Front Immunol ; 11: 1684, 2020.
Article in English | MEDLINE | ID: mdl-32849588

ABSTRACT

Hemopexin is the main plasmatic scavenger of cell-free heme, released in the context of intravascular hemolysis or major cell injury. Heme is indispensable for the oxygen transport by hemoglobin but when released outside of the erythrocytes it becomes a danger-associated molecular pattern, contributing to tissue injury. One of the mechanisms of pro-inflammatory action of heme is to activate the innate immune complement cascade. Therefore, we hypothesized that injection of hemopexin will prevent hemolysis-induced complement activation. Human plasma-derived hemopexin is compatible with the heme clearance machinery of the mice. 100 or 500 mg/kg of hemopexin was injected in C57Bl/6 mice before treatment with phenylhydrazine (inducer of erythrocytes lysis) or with PBS as a control. Blood was taken at different timepoints to determine the pharmacokinetic of injected hemopexin in presence and absence of hemolysis. Complement activation was determined in plasma, by the C3 cleavage (western blot) and in the kidneys (immunofluorescence). Kidney injury was evaluated by urea and creatinine in plasma and renal NGAL and HO-1 gene expression were measured. The pharmacokinetic properties of hemopexin (mass spectrometry) in the hemolytic mice were affected by the target-mediated drug disposition phenomenon due to the high affinity of binding of hemopexin to heme. Hemolysis induced complement overactivation and signs of mild renal dysfunction at 6 h, which were prevented by hemopexin, except for the NGAL upregulation. The heme-degrading capacity of the kidney, measured by the HO-1 expression, was not affected by the treatment. These results encourage further studies of hemopexin as a therapeutic agent in models of diseases with heme overload.


Subject(s)
Complement Activation/drug effects , Hemolysis/drug effects , Hemopexin/pharmacology , Hemopexin/pharmacokinetics , Animals , Humans , Kidney/drug effects , Mice , Mice, Inbred C57BL
10.
BMC Anesthesiol ; 19(1): 13, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30646866

ABSTRACT

BACKGROUND: Ischemia-reperfusion (I/R) is a critical pathophysiological basis of cognitive dysfunction caused by ischemia stroke. Heme-oxygenase-1 (HO-1) is the rate-limiting enzyme for the elimination of excessive free heme by combining with hemopexin (HPX), a plasma protein that contributes to eliminating excessive free heme during ischemia stroke. This study aimed to elucidate whether HPX could alleviate cognitive dysfunction in rats subjected to cerebral I/R. METHODS: Rats were randomly divided into five groups: sham, MCAO, Vehicle, HPX and HPX + protoporphyrin IX (ZnPPIX). Cerebral I/R was induced by MCAO. Saline, vehicle, HPX and HPX + ZnPPIX were injected intracerebroventricularly at the moment after reperfusion. Morris water maze (MWM) test was used to detect the learning and cognitive function. Western blot was used to detect the expression of HO-1 in ischemic penumbra. CD31/vWF double labeling immunofluorescence was used to detect the neovascularization in the penumbra hippocampus. The structure and function of blood-brain barrier (BBB) was detected by the permeability of Evans Blue (EB), water content of the brain tissue, the Ang1/Ang2 and VE-cadherin expression. RESULTS: Our study verified that HPX improved the learning and memory capacity. Hemopexin up-regulated HO-1 protein expression, the average vessel density in the penumbra hippocampus and the VE- cadherin expression but decreased the permeability of EB, the water content of brain tissue and the ratio of Ang1/Ang2. The effects were reversed by ZnPPIX, an inhibitor of HO-1. CONCLUSION: HPX can maintain the integrity of the blood-brain barrier and alleviate cognitive dysfunction after cerebral I/R through the HO-1 pathway.


Subject(s)
Brain Ischemia/drug therapy , Cognitive Dysfunction/prevention & control , Hemopexin/administration & dosage , Reperfusion Injury/drug therapy , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain Ischemia/pathology , Disease Models, Animal , Heme Oxygenase-1/metabolism , Hemopexin/pharmacology , Male , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Stroke/drug therapy , Stroke/pathology
11.
Brain Res ; 1699: 177-185, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30092232

ABSTRACT

Ischemic stroke causes endothelial dysfunction and blood-brain barrier dysfunction, thus damages synaptic plasticity such as learning and memory. In this study we aim to investigate the effect of hemopexin (HPX) in protecting synaptic plasticity and blood brain barrier integrity from toxic heme, and determine whether this effect is via the activation of endothelial progenitor cells (EPCs) through the heme oxygenase-1 (HO-1) pathway. Our data indicates HPX showed a significant effect in inducing the expression of HO-1, promoting the migration and differentiation of EPCs, facilitating new blood vessel formation thus protecting blood-brain barrier integrity. Also the magnitude of synaptic plasticity of rats recovered with HPX treatment. And in the presence of HO-1 blocker Zinc protoporphyrin-9 (ZnppIX), HPX lost its protective effect. This suggests that HPX protects endothelial and blood brain barrier integrity from toxic heme, thus protects neurologic function in cerebral ischemic rats in HO-1 pathway.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Ischemia/drug therapy , Endothelial Progenitor Cells/drug effects , Hemopexin/pharmacology , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Capillary Permeability/drug effects , Capillary Permeability/physiology , Cells, Cultured , Disease Models, Animal , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Heme Oxygenase (Decyclizing)/metabolism , Male , Neuronal Plasticity/physiology , Random Allocation , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction , Stroke/drug therapy , Stroke/metabolism , Stroke/pathology , Zonula Occludens-1 Protein/metabolism
12.
Nat Rev Neurol ; 14(7): 416-432, 2018 07.
Article in English | MEDLINE | ID: mdl-29925923

ABSTRACT

Haemoglobin is released into the CNS during the breakdown of red blood cells after intracranial bleeding. Extracellular free haemoglobin is directly neurotoxic. Haemoglobin scavenging mechanisms clear haemoglobin and reduce toxicity; these mechanisms include erythrophagocytosis, haptoglobin binding of haemoglobin, haemopexin binding of haem and haem oxygenase breakdown of haem. However, the capacity of these mechanisms is limited in the CNS, and they easily become overwhelmed. Targeting of haemoglobin toxicity and scavenging is, therefore, a rational therapeutic strategy. In this Review, we summarize the neurotoxic mechanisms of extracellular haemoglobin and the peculiarities of haemoglobin scavenging pathways in the brain. Evidence for a role of haemoglobin toxicity in neurological disorders is discussed, with a focus on subarachnoid haemorrhage and intracerebral haemorrhage, and emerging treatment strategies based on the molecular pathways involved are considered. By focusing on a fundamental biological commonality between diverse neurological conditions, we aim to encourage the application of knowledge of haemoglobin toxicity and scavenging across various conditions. We also hope that the principles highlighted will stimulate research to explore the potential of the pathways discussed. Finally, we present a consensus opinion on the research priorities that will help to bring about clinical benefits.


Subject(s)
Brain Injuries , Cerebral Hemorrhage , Fibrinolytic Agents , Haptoglobins , Hemoglobins/metabolism , Hemopexin , Iron Chelating Agents , Mechanical Thrombolysis/methods , Subarachnoid Hemorrhage , Animals , Brain Injuries/etiology , Brain Injuries/metabolism , Brain Injuries/therapy , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/therapy , Fibrinolytic Agents/pharmacology , Haptoglobins/administration & dosage , Haptoglobins/metabolism , Hemopexin/agonists , Hemopexin/pharmacology , Humans , Iron Chelating Agents/pharmacology , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/therapy
13.
JCI Insight ; 3(12)2018 06 21.
Article in English | MEDLINE | ID: mdl-29925688

ABSTRACT

In hemolytic diseases, such as sickle cell disease (SCD), intravascular hemolysis results in the release of hemoglobin, heme, and heme-loaded membrane microvesicles in the bloodstream. Intravascular hemolysis is thus associated with inflammation and organ injury. Complement system can be activated by heme in vitro. We investigated the mechanisms by which hemolysis and red blood cell (RBC) degradation products trigger complement activation in vivo. In kidney biopsies of SCD nephropathy patients and a mouse model with SCD, we detected tissue deposits of complement C3 and C5b-9. Moreover, drug-induced intravascular hemolysis or injection of heme or hemoglobin in mice triggered C3 deposition, primarily in kidneys. Renal injury markers (Kim-1, NGAL) were attenuated in C3-/- hemolytic mice. RBC degradation products, such as heme-loaded microvesicles and heme, induced alternative and terminal complement pathway activation in sera and on endothelial surfaces, in contrast to hemoglobin. Heme triggered rapid P selectin, C3aR, and C5aR expression and downregulated CD46 on endothelial cells. Importantly, complement deposition was attenuated in vivo and in vitro by heme scavenger hemopexin. In conclusion, we demonstrate that intravascular hemolysis triggers complement activation in vivo, encouraging further studies on its role in SCD nephropathy. Conversely, heme inhibition using hemopexin may provide a novel therapeutic opportunity to limit complement activation in hemolytic diseases.


Subject(s)
Cell-Free System , Heme/metabolism , Hemolysis/physiology , Acute Kidney Injury , Anemia, Sickle Cell , Animals , Complement C3/metabolism , Complement Membrane Attack Complex/metabolism , Disease Models, Animal , Endothelial Cells , Erythrocytes , Female , Hemopexin/pharmacology , Hepatitis A Virus Cellular Receptor 1 , Kidney , Mice , Mice, Inbred C57BL , P-Selectin , Receptor, Anaphylatoxin C5a/metabolism , Receptors, G-Protein-Coupled/metabolism
14.
PLoS One ; 13(4): e0196455, 2018.
Article in English | MEDLINE | ID: mdl-29694434

ABSTRACT

During hemolysis, hemoglobin and heme released from red blood cells promote oxidative stress, inflammation and thrombosis. Plasma haptoglobin and hemopexin scavenge free hemoglobin and heme, respectively, but can be depleted in hemolytic states. Haptoglobin and hemopexin supplementation protect tissues, including the vasculature, liver and kidneys. It is widely assumed that these protective effects are due primarily to hemoglobin and heme clearance from the vasculature. However, this simple assumption does not account for the consequent cytoprotective adaptation seen in cells and organs. To further address the mechanism, we used a hyperhemolytic murine model (Townes-SS) of sickle cell disease to examine cellular responses to haptoglobin and hemopexin supplementation. A single infusion of haptoglobin or hemopexin (± equimolar hemoglobin) in SS-mice increased heme oxygenase-1 (HO-1) in the liver, kidney and skin several fold within 1 hour and decreased nuclear NF-ĸB phospho-p65, and vaso-occlusion for 48 hours after infusion. Plasma hemoglobin and heme levels were not significantly changed 1 hour after infusion of haptoglobin or hemopexin. Haptoglobin and hemopexin also inhibited hypoxia/reoxygenation and lipopolysaccharide-induced vaso-occlusion in SS-mice. Inhibition of HO-1 activity with tin protoporphyrin blocked the protections afforded by haptoglobin and hemopexin in SS-mice. The HO-1 reaction product carbon monoxide, fully restored the protection, in part by inhibiting Weibel-Palade body mobilization of P-selectin and von Willebrand factor to endothelial cell surfaces. Thus, the mechanism by which haptoglobin and hemopexin supplementation in hyperhemolytic SS-mice induces cytoprotective cellular responses is linked to increased HO-1 activity.


Subject(s)
Anemia, Sickle Cell/prevention & control , Haptoglobins/therapeutic use , Heme Oxygenase-1/metabolism , Hemopexin/therapeutic use , Inflammation/prevention & control , Aldehydes/analysis , Anemia, Sickle Cell/pathology , Animals , Carbon Monoxide/pharmacology , Cytokines/analysis , Disease Models, Animal , Female , Gene Expression/drug effects , Haptoglobins/pharmacology , Hemopexin/pharmacology , Intercellular Adhesion Molecule-1 , Male , Metalloporphyrins/pharmacology , Mice , Microsomes, Liver/metabolism , Protoporphyrins/pharmacology , Skin/metabolism , Skin/pathology , Transcription Factor RelA/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
15.
Cell Death Dis ; 9(2): 181, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29415995

ABSTRACT

Spinal cord injury (SCI) is a devastating type of central nervous system (CNS) trauma with limited therapeutic treatments. The polarization of microglia into the M1 or M2 state has been documented to play important roles in the pathogenesis of SCI, although the complete repertoire of underlying factors has not been identified. Interestingly, the time point at which hematomyelia (intramedullary spinal cord hemorrhage) is alleviated coincides with a decrease in the number of M2 microglia. Here the function of Hemopexin (Hpx), a hematogenous glycoprotein, was examined in the crush model of SCI. Hpx levels were elevated at the lesion site during hematomyelia and were synchronously correlated with the level of the M2 marker Arginase-1 (Arg-1). Ablation of Hpx in vivo affected the polarization state of lipopolysaccharide (LPS)-stimulated microglia, as mirrored by a lower percentage of M2 microglia and a higher percentage of M1 microglia in the lesion site, which delayed the recovery and exacerbated the behavioral dysfunction after SCI. However, Hpx induced a rapid switch from the M1 to M2 phenotype in LPS-stimulated primary cultured microglia in a heme scavenging-independent manner. The supernant of Hpx-treated microglia ameliorated neuronal degeneration, alleviated demyelination, and promoted oligodendrocyte precursor cell (OPC) maturation. This modulatory effect of Hpx on microglia polarization was at least partially mediated by the LRP-1 receptor. Based on these results, Hpx is considered a novel modulator of the polarization of microglia during the pathogenesis of SCI and may play a crucial role in the recovery from SCI.


Subject(s)
Arginase/metabolism , Hemopexin/metabolism , Microglia/metabolism , Spinal Cord Injuries/blood , Animals , Cell Polarity/drug effects , Cell Polarity/physiology , Cells, Cultured , Hemopexin/pharmacology , Lipopolysaccharides/pharmacology , Mice , Microglia/drug effects , Microglia/pathology , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/pathology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology
16.
BMC Anesthesiol ; 18(1): 2, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29298658

ABSTRACT

BACKGROUND: Ischemia-reperfusion (I/R) is a critical pathophysiological change of ischemic stroke. Heme-oxygenase-1 (HO-1) is a rate-limiting enzyme of eliminating excessive free heme by combining with hemopexin (HPX), a plasma protein contributing to alleviating infarct size due to ischemia stroke. This study was to investigate whether HPX could improve angiogenesis after cerebral ischemia-reperfusion via up-regulating HO-1. METHODS: Rats were randomly divided into five groups: sham, MCAO, MCAO + Vehicle, MCAO + HPX and MCAO + HPX + protoporphyrin IX (ZnPPIX, an HO-1 inhibitor). Cerebral I/R was induced by MCAO. Saline, vehicle, HPX and HPX + ZnPPIX were respectively given to MCAO group, MCAO + Vehicle group, MCAO + HPX group and MCAO + HPX + ZnPPIX group at the moment after reperfusion by intracerebroventricular injection. Neurological behavioral scores(NBS) was assessed at 24 h and 7d after I/R. Real-time polymerase chain reaction (RT-PCR) was used to analyze the mRNA level of HO-1. Angiogenesis in penumbra area was assessed by immunofluorescence detection at 7d after I/R. Serum endothelial nitric oxide synthase (eNOS) was assessed by enzyme linked immunosorbent assay (ELISA) at 24 h and 7d after I/R. RESULTS: Compared with sham group, the NBS and the mRNA levels of HO-1 at 24 h and 7d after I/R in MCAO group decreased notably (P < 0.05), the new vessel density in ischemia penumbra increased notably at 7d after I/R (P < 0.05), the serum eNOS level increased at 24 h and 7d after I/R (P < 0.05). MCAO group and MCAO + Vehicle group showed no significant differences (P > 0.05). In the MCAO + HPX group, compared with MCAO + Vehicle group, the NBS and the mRNA levels of HO-1 increased drastically at 24 h and 7d after I/R (P < 0.05), the new vessel density in ischemia penumbra increased significantly at 7d after I/R (P < 0.05), the serum eNOS level at 24 h and 7d after I/R ascended notably (P < 0.05). Compared with MCAO + HPX group, the NBS assessment, new vessel density and serum eNOS level decreased at corresponding time points after I/R in MCAO + HPX+ ZnPPIX group (P < 0.05). CONCLUSION: HPX can promote angiogenesis after cerebral ischemia-reperfusion injury in rats via up-regulating HO-1.


Subject(s)
Heme Oxygenase-1/metabolism , Hemopexin/pharmacology , Neovascularization, Physiologic/drug effects , Reperfusion Injury/metabolism , Angiogenesis Inducing Agents/pharmacology , Animals , Drug Synergism , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/biosynthesis , Hemopexin/administration & dosage , Infarction, Middle Cerebral Artery , Infusions, Intraventricular , Male , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase Type III/blood , Protoporphyrins/administration & dosage , Protoporphyrins/pharmacology , Rats , Reperfusion Injury/blood , Up-Regulation/drug effects
17.
Am J Physiol Heart Circ Physiol ; 312(6): H1120-H1127, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28314763

ABSTRACT

Intravascular hemolysis produces injury in a variety of human diseases including hemoglobinopathies, malaria, and sepsis. The adverse effects of increased plasma hemoglobin are partly mediated by depletion of nitric oxide (NO) and result in vasoconstriction. Circulating plasma proteins haptoglobin and hemopexin scavenge extracellular hemoglobin and cell-free heme, respectively. The ability of human haptoglobin or hemopexin to inhibit the adverse effects of NO scavenging by circulating murine hemoglobin was tested in C57Bl/6 mice. In healthy awake mice, the systemic hemodynamic effects of intravenous coinfusion of cell-free hemoglobin and exogenous haptoglobin or of cell-free hemoglobin and hemopexin were compared with the hemodynamic effects of infusion of cell-free hemoglobin or control protein (albumin) alone. We also studied the hemodynamic effects of infusing hemoglobin and haptoglobin as well as injecting either hemoglobin or albumin alone in mice fed a high-fat diet (HFD) and in diabetic (db/db) mice. Coinfusion of a 1:1 weight ratio of haptoglobin but not hemopexin with cell-free hemoglobin prevented hemoglobin-induced systemic hypertension in healthy awake mice. In mice fed a HFD and in diabetic mice, coinfusion of haptoglobin mixed with an equal mass of cell-free hemoglobin did not reverse hemoglobin-induced hypertension. Haptoglobin retained cell-free hemoglobin in plasma, but neither haptoglobin nor hemopexin affected the ability of hemoglobin to scavenge NO ex vivo. In conclusion, in healthy C57Bl/6 mice with normal endothelium, coadministration of haptoglobin but not hemopexin with cell-free hemoglobin prevents acute hemoglobin-induced systemic hypertension by compartmentalizing cell-free hemoglobin in plasma. In murine diseases associated with endothelial dysfunction, haptoglobin therapy appears to be insufficient to prevent hemoglobin-induced vasoconstriction.NEW & NOTEWORTHY Coadministraton of haptoglobin but not hemopexin with cell-free hemoglobin prevents hemoglobin-induced systemic hypertension in mice with a normal endothelium. In contrast, treatment with the same amount of haptoglobin is unable to prevent hemoglobin-induced vasoconstriction in mice with hyperlipidemia or diabetes mellitus, disorders that are associated with endothelial dysfunction.


Subject(s)
Antihypertensive Agents/pharmacology , Endothelium, Vascular/drug effects , Haptoglobins/pharmacology , Hemoglobins , Hemopexin/pharmacology , Hypertension/prevention & control , Vasoconstriction/drug effects , Animals , Antihypertensive Agents/administration & dosage , Diabetes Mellitus/physiopathology , Diet, High-Fat , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Haptoglobins/administration & dosage , Hemopexin/administration & dosage , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/physiopathology , Infusions, Intravenous , Kidney/metabolism , Kidney/physiopathology , Male , Mice, Inbred C57BL , Nitric Oxide/metabolism , Time Factors
18.
Stem Cell Reports ; 8(3): 500-508, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28238792

ABSTRACT

Hematopoietic stem cells (HSCs) are considered one of the most promising therapeutic targets for the treatment of various blood disorders. However, due to difficulties in establishing stable maintenance and expansion of HSCs in vitro, their insufficient supply is a major constraint to transplantation studies. To solve these problems we have developed a fully defined, all-recombinant protein-based culture system. Through this system, we have identified hemopexin (HPX) and interleukin-1α as responsible for HSC maintenance in vitro. Subsequent molecular analysis revealed that HPX reduces intracellular reactive oxygen species levels within cultured HSCs. Furthermore, bone marrow immunostaining and 3D immunohistochemistry revealed that HPX is expressed in non-myelinating Schwann cells, known HSC niche constituents. These results highlight the utility of this fully defined all-recombinant protein-based culture system for reproducible in vitro HSC culture and its potential to contribute to the identification of factors responsible for in vitro maintenance, expansion, and differentiation of stem cell populations.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Recombinant Proteins/pharmacology , Animals , Blood Proteins/pharmacology , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Self Renewal/drug effects , Colony-Forming Units Assay , Hematopoietic Stem Cells/metabolism , Hemopexin/pharmacology , Interleukin-1alpha/pharmacology , Mice
19.
Circulation ; 134(13): 945-60, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27515135

ABSTRACT

BACKGROUND: Extracellular hemoglobin and cell-free heme are toxic breakdown products of hemolyzed erythrocytes. Mammals synthesize the scavenger proteins haptoglobin and hemopexin, which bind extracellular hemoglobin and heme, respectively. Transfusion of packed red blood cells is a lifesaving therapy for patients with hemorrhagic shock. Because erythrocytes undergo progressive deleterious morphological and biochemical changes during storage, transfusion of packed red blood cells that have been stored for prolonged intervals (SRBCs; stored for 35-40 days in humans or 14 days in mice) increases plasma levels of cell-free hemoglobin and heme. Therefore, in patients with hemorrhagic shock, perfusion-sensitive organs such as the kidneys are challenged not only by hypoperfusion but also by the high concentrations of plasma hemoglobin and heme that are associated with the transfusion of SRBCs. METHODS: To test whether treatment with exogenous human haptoglobin or hemopexin can ameliorate adverse effects of resuscitation with SRBCs after 2 hours of hemorrhagic shock, mice that received SRBCs were given a coinfusion of haptoglobin, hemopexin, or albumin. RESULTS: Treatment with haptoglobin or hemopexin but not albumin improved the survival rate and attenuated SRBC-induced inflammation. Treatment with haptoglobin retained free hemoglobin in the plasma and prevented SRBC-induced hemoglobinuria and kidney injury. In mice resuscitated with fresh packed red blood cells, treatment with haptoglobin, hemopexin, or albumin did not cause harmful effects. CONCLUSIONS: In mice, the adverse effects of transfusion with SRBCs after hemorrhagic shock are ameliorated by treatment with either haptoglobin or hemopexin. Haptoglobin infusion prevents kidney injury associated with high plasma hemoglobin concentrations after resuscitation with SRBCs. Treatment with the naturally occurring human plasma proteins haptoglobin or hemopexin may have beneficial effects in conditions of severe hemolysis after prolonged hypotension.


Subject(s)
Erythrocytes/drug effects , Haptoglobins/pharmacology , Hemopexin/pharmacology , Animals , Blood Proteins/pharmacology , Erythrocytes/metabolism , Haptoglobins/administration & dosage , Hemopexin/administration & dosage , Humans , Inflammation/drug therapy , Mice , Resuscitation/methods , Shock, Hemorrhagic/metabolism , Transfusion Reaction
20.
Antioxid Redox Signal ; 24(2): 99-112, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26376667

ABSTRACT

AIMS: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. RESULTS: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 µg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. INNOVATION: This is the first study delineating the role of heme in ALI caused by Br2. CONCLUSION: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.


Subject(s)
Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Bromine , Heme/metabolism , Hemopexin , Lung/drug effects , Lung/metabolism , Acute Lung Injury/metabolism , Animals , Female , Hemopexin/pharmacology , Hemopexin/therapeutic use , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...