Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 362
Filter
1.
PLoS One ; 19(5): e0303099, 2024.
Article in English | MEDLINE | ID: mdl-38723009

ABSTRACT

Crimean-Congo haemorrhagic fever virus (CCHFV) is a globally significant tick-borne zoonotic pathogen that causes fatal haemorrhagic disease in humans. Despite constituting an ongoing public health threat, limited research exists on the presence of CCHFV among herdsmen, an occupationally exposed population that has prolonged contact with ruminants and ticks. This cross-sectional study, conducted between October 2018 and February 2020 in Kwara State, Nigeria, was aimed at assessing CCHFV seroprevalence among herdsmen and non-herdsmen febrile patients, and identifying the associated risk factors. Blood samples from herdsmen (n = 91) and febrile patients in hospitals (n = 646) were analyzed for anti-CCHFV IgG antibodies and CCHFV S-segment RNA using ELISA and RT-PCR, respectively. Results revealed a remarkably high CCHFV seroprevalence of 92.3% (84/91) among herdsmen compared to 7.1% (46/646) in febrile patients. Occupational risk factors like animal and tick contact, tick bites, and hand crushing of ticks significantly contributed to higher seroprevalence in the herdsmen (p<0.0001). Herdsmen were 156.5 times more likely (p<0.0001) to be exposed to CCHFV than febrile patients. Notably, the odds of exposure were significantly higher (OR = 191.3; p<0.0001) in herdsmen with a history of tick bites. Although CCHFV genome was not detectable in the tested sera, our findings reveal that the virus is endemic among herdsmen in Kwara State, Nigeria. CCHFV should be considered as a probable cause of febrile illness among humans in the study area. Given the nomadic lifestyle of herdsmen, further investigations into CCHF epidemiology in this neglected population are crucial. This study enhances our understanding of CCHFV dynamics and emphasizes the need for targeted interventions in at-risk communities.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Occupational Exposure , Humans , Nigeria/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Male , Risk Factors , Seroepidemiologic Studies , Adult , Female , Middle Aged , Occupational Exposure/adverse effects , Cross-Sectional Studies , Animals , Young Adult , Fever/epidemiology , Antibodies, Viral/blood , Ticks/virology , Adolescent
2.
J Med Virol ; 96(5): e29637, 2024 May.
Article in English | MEDLINE | ID: mdl-38773825

ABSTRACT

This study investigated the intricate interplay between Crimean-Congo hemorrhagic fever virus infection and alterations in amino acid metabolism. The primary aim is to elucidate the impact of Crimean-Congo hemorrhagic fever (CCHF) on specific amino acid concentrations and identify potential metabolic markers associated with viral infection. One hundred ninety individuals participated in this study, comprising 115 CCHF patients, 30 CCHF negative patients, and 45 healthy controls. Liquid chromatography-tandem mass spectrometry techniques were employed to quantify amino acid concentrations. The amino acid metabolic profiles in CCHF patients exhibit substantial distinctions from those in the control group. Patients highlight distinct metabolic reprogramming, notably characterized by arginine, histidine, taurine, glutamic acid, and glutamine metabolism shifts. These changes have been associated with the underlying molecular mechanisms of the disease. Exploring novel therapeutic and diagnostic strategies addressing specific amino acids may offer potential means to mitigate the severity of the disease.


Subject(s)
Amino Acids , Disease Progression , Hemorrhagic Fever, Crimean , Humans , Hemorrhagic Fever, Crimean/virology , Male , Female , Middle Aged , Adult , Tandem Mass Spectrometry , Chromatography, Liquid , Aged , Hemorrhagic Fever Virus, Crimean-Congo , Biomarkers
3.
Virus Res ; 345: 199398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754786

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne nairovirus with a wide geographic spread that can cause severe and lethal disease. No specific medical countermeasures are approved to combat this illness. The CCHFV L protein contains an ovarian tumor (OTU) domain with a cysteine protease thought to modulate cellular immune responses by removing ubiquitin and ISG15 post-translational modifications from host and viral proteins. Viral deubiquitinases like CCHFV OTU are attractive drug targets, as blocking their activity may enhance cellular immune responses to infection, and potentially inhibit viral replication itself. We previously demonstrated that the engineered ubiquitin variant CC4 is a potent inhibitor of CCHFV replication in vitro. A major challenge of the therapeutic use of small protein inhibitors such as CC4 is their requirement for intracellular delivery, e.g., by viral vectors. In this study, we examined the feasibility of in vivo CC4 delivery by a replication-deficient recombinant adenovirus (Ad-CC4) in a lethal CCHFV mouse model. Since the liver is a primary target of CCHFV infection, we aimed to optimize delivery to this organ by comparing intravenous (tail vein) and intraperitoneal injection of Ad-CC4. While tail vein injection is a traditional route for adenovirus delivery, in our hands intraperitoneal injection resulted in higher and more widespread levels of adenovirus genome in tissues, including, as intended, the liver. However, despite promising in vitro results, neither route of in vivo CC4 treatment resulted in protection from a lethal CCHFV infection.


Subject(s)
Adenoviridae , Disease Models, Animal , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Virus Replication , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/virology , Mice , Adenoviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Genetic Vectors/genetics , Antiviral Agents/pharmacology , Female , Liver/virology , Humans
4.
Nat Commun ; 15(1): 4542, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806525

ABSTRACT

The Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging pathogen of the Orthonairovirus genus that can cause severe and often lethal hemorrhagic diseases in humans. CCHFV has a broad tropism and can infect a variety of species and tissues. Here, by using gene silencing, blocking antibodies or soluble receptor fragments, we identify the low-density lipoprotein receptor (LDL-R) as a CCHFV entry factor. The LDL-R facilitates binding of CCHFV particles but does not allow entry of Hazara virus (HAZV), another member of the genus. In addition, we show that apolipoprotein E (apoE), an exchangeable protein that mediates LDL/LDL-R interaction, is incorporated on CCHFV particles, though not on HAZV particles, and enhances their specific infectivity by promoting an LDL-R dependent entry. Finally, we show that molecules that decrease LDL-R from the surface of target cells could inhibit CCHFV infection. Our study highlights that CCHFV takes advantage of a lipoprotein receptor and recruits its natural ligand to promote entry into cells.


Subject(s)
Apolipoproteins E , Hemorrhagic Fever Virus, Crimean-Congo , Receptors, LDL , Virus Internalization , Humans , Receptors, LDL/metabolism , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Animals , HEK293 Cells , Chlorocebus aethiops , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever, Crimean/metabolism , Virion/metabolism , Vero Cells
5.
PLoS One ; 19(4): e0302224, 2024.
Article in English | MEDLINE | ID: mdl-38662658

ABSTRACT

Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Phylogeny , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Animals , Ticks/virology , Ticks/genetics , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever, Crimean/genetics , Ixodidae/virology , Ixodidae/genetics , Adaptation, Physiological/genetics , Codon Usage
6.
Emerg Infect Dis ; 30(5): 854-863, 2024 May.
Article in English | MEDLINE | ID: mdl-38666548

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF) is a tickborne infection that can range from asymptomatic to fatal and has been described in >30 countries. Early identification and isolation of patients with suspected or confirmed CCHF and the use of appropriate prevention and control measures are essential for preventing human-to-human transmission. Here, we provide an overview of the epidemiology, clinical features, and prevention and control of CCHF. CCHF poses a continued public health threat given its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, and potential for severe and fatal illness, in addition to the limited medical countermeasures for prophylaxis and treatment. A high index of suspicion, comprehensive travel and epidemiologic history, and clinical evaluation are essential for prompt diagnosis. Infection control measures can be effective in reducing the risk for transmission but require correct and consistent application.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/prevention & control , Hemorrhagic Fever, Crimean/transmission , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/virology , Humans , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Animals , Ticks/virology
7.
Emerg Infect Dis ; 30(5): 847-853, 2024 May.
Article in English | MEDLINE | ID: mdl-38666566

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF), caused by CCHF virus, is a tickborne disease that can cause a range of illness outcomes, from asymptomatic infection to fatal viral hemorrhagic fever; the disease has been described in >30 countries. We conducted a literature review to provide an overview of the virology, pathogenesis, and pathology of CCHF for clinicians. The virus life cycle and molecular interactions are complex and not fully described. Although pathogenesis and immunobiology are not yet fully understood, it is clear that multiple processes contribute to viral entry, replication, and pathological damage. Limited autopsy reports describe multiorgan involvement with extravasation and hemorrhages. Advanced understanding of CCHF virus pathogenesis and immunology will improve patient care and accelerate the development of medical countermeasures for CCHF.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever, Crimean/pathology , Humans , Animals , Ticks/virology , Virus Replication
8.
Emerg Infect Dis ; 30(5): 984-990, 2024 May.
Article in English | MEDLINE | ID: mdl-38666621

ABSTRACT

We conducted a cross-sectional study in wild boar and extensively managed Iberian pig populations in a hotspot area of Crimean-Congo hemorrhagic fever virus (CCHFV) in Spain. We tested for antibodies against CCHFV by using 2 ELISAs in parallel. We assessed the presence of CCHFV RNA by means of reverse transcription quantitative PCR protocol, which detects all genotypes. A total of 113 (21.8%) of 518 suids sampled showed antibodies against CCHFV by ELISA. By species, 106 (39.7%) of 267 wild boars and 7 (2.8%) of 251 Iberian pigs analyzed were seropositive. Of the 231 Iberian pigs and 231 wild boars analyzed, none tested positive for CCHFV RNA. These findings indicate high CCHFV exposure in wild boar populations in endemic areas and confirm the susceptibility of extensively reared pigs to CCHFV, even though they may only play a limited role in the enzootic cycle.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Swine Diseases , Animals , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Spain/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/virology , Swine , Cross-Sectional Studies , Swine Diseases/virology , Swine Diseases/epidemiology , Antibodies, Viral/blood , Seroepidemiologic Studies , Sus scrofa/virology , RNA, Viral
9.
Emerg Infect Dis ; 30(5): 1036-1039, 2024 May.
Article in English | MEDLINE | ID: mdl-38666687

ABSTRACT

We report the detection of Crimean-Congo hemorrhagic fever virus (CCHFV) in Corsica, France. We identified CCHFV African genotype I in ticks collected from cattle at 2 different sites in southeastern and central-western Corsica, indicating an established CCHFV circulation. Healthcare professionals and at-risk groups should be alerted to CCHFV circulation in Corsica.


Subject(s)
Cattle Diseases , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Phylogeny , Ticks , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever Virus, Crimean-Congo/classification , Cattle , France/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Ticks/virology , Genotype , Humans
10.
Nat Microbiol ; 9(6): 1499-1512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548922

ABSTRACT

Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.


Subject(s)
Apolipoproteins E , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Receptors, LDL , Virus Internalization , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Animals , Receptors, LDL/metabolism , Receptors, LDL/genetics , Mice , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever, Crimean/metabolism , Humans , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Ticks/virology , Ticks/metabolism , Receptors, Virus/metabolism , Mice, Knockout
11.
J Virol ; 98(3): e0169823, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38358288

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne virus of the Orthonairovirus genus, persistently infects tick cells. It has been reported to establish persistent infection in non-human primates, but virological analysis has not yet been performed in human cells. Here, we investigated whether and how nairoviruses persistently infect human cells using Hazara orthonairovirus (HAZV), a surrogate model for CCHFV. We established a human cell line that was persistently infected with HAZV. Surprisingly, virions of persistently infected HAZV (HAZVpi) were not observed in the culture supernatants. There were five mutations (mut1, mut2, mut3, mut4, and mut5) in L protein of HAZVpi. Mutations in L protein of HAZVpi contribute to non-detection of virion in the supernatants. Lmut4 was found to cause low viral growth rate, despite its high polymerase activity. The low growth rate was restored by Lmut2, Lmut3, and Lmut5. The polymerase activity of Lmut1 was extremely low, and recombinant HAZV carrying Lmut1 (rHAZV/Lmut1) was not released into the supernatants. However, genomes of rHAZV/Lmut1 were retained in the infected cells. All mutations (Lmut1-5) found in L protein of HAZVpi were required for experimental reproduction of HAZVpi, and only Lmut1 and Lmut4 were insufficient. We demonstrated that point mutations in viral polymerase contribute to the establishment of persistent HAZV infection. Furthermore, innate immunity was found to be suppressed in HAZVpi-infected cells, which also potentially contributes to viral persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells. IMPORTANCE: We investigated whether and how nairoviruses persistently infect human cells, using Hazara orthonairovirus (HAZV), a surrogate model for Crimean-Congo hemorrhagic fever virus. We established a human cell line that was persistently infected with HAZV. Five mutations were found in L protein of persistently infected HAZV (HAZVpi): mut1, mut2, mut3, mut4, and mut5. Among them, Lmut1 and Lmut4 restricted viral growth by low polymerase activity and low growth rate, respectively, leading to inhibition of viral overgrowth. The restriction of viral growth caused by Lmut1 and Lmut4 was compensated by other mutations, including Lmut2, Lmut3, and Lmut5. Each of the mutations found in L protein of HAZVpi was concluded to cooperatively modulate viral growth, which facilitates the establishment of persistent infection. Suppression of innate immunity also potentially contributes to virus persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells.


Subject(s)
Bunyaviridae Infections , Nairovirus , Animals , Humans , Cell Line , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Hemorrhagic Fever, Crimean/virology , Mutation , Nairovirus/genetics , Persistent Infection , Bunyaviridae Infections/virology
12.
Viruses ; 15(12): 1-15, dez 4, 2023. tab, mapa
Article in English | RSDM | ID: biblio-1531383

ABSTRACT

Emerging zoonotic diseases are an increasing threat to public health. There is little data on the seroprevalence of zoonotic diseases among pastoralists in the country. We aim to carry out a cross-sectional study on the prevalence of major zoonotic diseases among pastoral communities in the Caia and Búzi districts. Methods: Between January and December 2018, a questionnaire was used to solicit socio-demographic data from consenting pastoralists with the collection of blood samples in the Caia and Búzi districts of the Sofala province. All samples were tested using ELISA commercial reagents for the detection of IgM antibodies against Brucella and Leptospira. Likewise, IgM and IgG antibodies against Rickettsia and CCHFV were determined using ELISA kits. Results: A total of 218 samples were tested, of which 43.5% (95/218) were from the district of Caia and 56.4% (123/218) from the Búzi district. Results from both districts showed that the seroprevalence of IgM antibodies against Brucella and Leptospira was 2.7% (6/218) and 30.3% (67/218), respectively. Positivity rates for IgM and IgG anti-Rickettsia and CCHFV were 8.7% (19/218), 2.7% (6/218), 4.1% (9/218), and 0.9% (2/218), respectively. Conclusions: Results from our study showed evidence of antibodies due to exposure to Brucella, Leptospira, Rickettsia, and CCHFV with antibodies against Leptospira and Rickettsia being the most prevalent. Hence, laboratory diagnosis of zoonotic diseases is essential in the early detection of outbreaks, the identification of silent transmission, and the etiology of non-febrile illness in a pastoral community. There is a need to develop public health interventions that will reduce the risk of transmission.


Subject(s)
Humans , Male , Female , Brucella/virology , Hemorrhagic Fever, Crimean/virology , Antibodies, Viral/immunology , Rickettsia/growth & development , Hantaan virus/immunology , Hemorrhagic Fever, Crimean/prevention & control , Leptospira/virology , Mozambique
13.
J Virol ; 96(13): e0059922, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35695578

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus that causes a severe, often fatal, hemorrhagic disease throughout Africa, Asia, and Southeast Europe. A wide variety of strains are circulating in the field which broadly correlate to their geographic distribution. The viral determinants of pathogenicity remain unclear, as does the contribution of strain-specific differences to pathology. Aigai virus (AIGV) is a closely related virus (formally designated CCHFV genotype VI, Europe II, or AP92-like virus), which has been proposed to be less virulent than CCHFV. However, the molecular details leading to potential differences in virulence are unknown. To explore if differences exist, life cycle modeling systems, including both a minigenome and a transcriptionally competent virus-like particle assay, were developed for AIGV to allow the comparison with the CCHFV reference IbAr10200 strain. Using this approach, we could demonstrate that AIGV exhibits lower viral gene expression than the reference strain of CCHFV. Subsequent systematic exchange of viral components revealed that the L protein is responsible for the observed differences in gene expression and that the interferon (IFN) antagonistic activity of the ovarian tumor-type protease domain is not responsible for this effect. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is the cause of severe hemorrhagic disease, which is often fatal. Present throughout Africa, Asia, and Southeast Europe, a diverse number of viral genotypes exist. However, the viral determinants of pathogenicity remain unclear. It has been proposed that the closely related Aigai virus (AIGV) may be a less virulent virus. Here, using newly developed and improved life cycle modeling systems we have examined potential differences between the CCHFV reference strain, IbAr10200, and AIGV. Using this approach, we identified lower viral gene expression driven by the AIGV viral polymerase as a major difference which may be indicative of lower virulence.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Virulence , Africa , Animals , Disease Models, Animal , Europe , Gene Expression Regulation, Viral , Genotype , Hemorrhagic Fever Virus, Crimean-Congo/classification , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity , Hemorrhagic Fever, Crimean/virology , Humans , Species Specificity , Virulence/genetics
14.
PLoS Negl Trop Dis ; 15(12): e0009973, 2021 12.
Article in English | MEDLINE | ID: mdl-34851958

ABSTRACT

In 2019, the World Health Organization declared 3 billion to be at risk of developing Crimean Congo Hemorrhagic Fever (CCHF). The causative agent of this deadly infection is CCHFV. The data related to the biology and immunology of CCHFV are rather scarce. Due to its indispensable roles in the viral life cycle, NP becomes a logical target for detailed viral immunology studies. In this study, humoral immunity to NP was investigated in CCHF survivors, as well as in immunized mice and rabbits. Abundant antibody response against NP was demonstrated both during natural infection in humans and following experimental immunizations in mice and rabbits. Also, cellular immune responses to recombinant NP (rNP) was detected in multispecies. This study represents the most comprehensive investigation on NP as an inducer of both humoral and cellular immunity in multiple hosts and proves that rNP is an excellent candidate warranting further immunological studies specifically on vaccine investigations.


Subject(s)
Antibodies, Viral/blood , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Immunity, Humoral , Immunity , Nucleocapsid Proteins/immunology , Animals , Cytokines/immunology , Hemorrhagic Fever, Crimean/virology , Humans , Immunization , Male , Mice , Mice, Inbred BALB C , Rabbits
15.
Sci Rep ; 11(1): 19807, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615921

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne RNA virus prevalent in Asia, Europe, and Africa, and can cause a hemorrhagic disease (CCHF) in humans with mortality rates as high as 60%. A general lack of both effective medical countermeasures and a comprehensive understanding of disease pathogenesis is partly driven by an historical lack of viable CCHF animal models. Recently, a cynomolgous macaque model of CCHF disease was developed. Here, we document the targeted transcriptomic response of non-human primates (NHP) to two different CCHFV strains; Afghan09-2990 and Kosova Hoti that both yielded a mild CCHF disease state. We utilized a targeted gene panel to elucidate the transcriptomic changes occurring in NHP whole blood during CCHFV infection; a first for any primate species. We show numerous upregulated genes starting at 1 day post-challenge through 14 days post-challenge. Early gene changes fell predominantly in the interferon stimulated gene family with later gene changes coinciding with an adaptive immune response to the virus. There are subtle differences between viral strains, namely duration of the differentially expressed gene response and biological pathways enriched. After recovery, NHPs showed no lasting transcriptomic changes at the end of sample collection.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity , Hemorrhagic Fever, Crimean , Transcriptome/immunology , Adaptive Immunity , Animals , Disease Models, Animal , Hemorrhagic Fever, Crimean/immunology , Hemorrhagic Fever, Crimean/virology , Macaca fascicularis
16.
PLoS Negl Trop Dis ; 15(8): e0009718, 2021 08.
Article in English | MEDLINE | ID: mdl-34460819

ABSTRACT

BACKGROUND: Thirty-four CCHF cases (17 fatal; 17 survived) were confirmed from Gujarat state, India during the year 2019. We aimed to find out the viral load, antibody kinetics, cytokine profile and phylogenetic analysis between fatal and non- fatal cases. METHODS: Thirty four cases were included in this study. Blood and urine samples were collected from all the cases on the day of admission to hospital. Non-fatal cases were followed weekly for understanding the profile of viral kinetics, anti-CCHFV IgM and IgG antibodies. We also quantified the cytokines in both fatal and non-fatal cases. For epidemiological correlation, livestock were screened for anti-CCHF IgG antibodies and the tick pool specimens were tested by real time RT-PCR. Virus isolation was attempted on tick pools and human specimens and phylogenetic analysis performed on human and ticks complete genome sequences. RESULTS: CCHF cases were detected throughout year in 2019 with the peak in August. Out of 34 cases, eight secondary CCHF cases were reported. Cases were predominantly detected in males and in 19-45 years age group (55.88%). The persistence of viremia was observed till 76th POD (post onset date) in one case whereas anti-CCHFV IgM and IgG was detected amongst these cases from the 2nd and 20th POD respectively. Positivity observed amongst livestock and tick pools were was 21.57% and 7.4% respectively. The cytokine analysis revealed a significant increase in the level of serum IL-6, IL-10 and IFN-γ during the acute phase of the infection, but interestingly IL-10 lowered to normal upon clearance of the virus in the clinically recovered case. Fatal cases had high viral RNA copy numbers. Bleeding from one or two mucosal sites was significantly associated with fatality (OR-16.47;p-0.0034 at 95% CI). We could do CCHF virus isolation from two cases. Phylogenetic analysis revealed circulation of re-assortment of Asian-West African genotypes in humans and ticks. CONCLUSIONS: The persistence of CCHF viral RNA was detected till 76th POD in one of the survivors. The circulation of a re-assortment Asian-West African genotype in a CCHF case is also reported first time from India.


Subject(s)
Antibodies, Viral/immunology , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Hemorrhagic Fever, Crimean/immunology , Hemorrhagic Fever, Crimean/virology , Phylogeny , Adolescent , Adult , Aged , Animals , Antibodies, Viral/blood , Cytokines/blood , Female , Genotype , Hemorrhagic Fever Virus, Crimean-Congo/classification , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/blood , Hemorrhagic Fever, Crimean/epidemiology , Humans , Immunity, Humoral , India/epidemiology , Livestock/blood , Livestock/virology , Male , Middle Aged , RNA, Viral/genetics , Ticks/virology , Viral Load , Young Adult
17.
Front Immunol ; 12: 669812, 2021.
Article in English | MEDLINE | ID: mdl-34220816

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF) is a highly severe and virulent viral disease of zoonotic origin, caused by a tick-born CCHF virus (CCHFV). The virus is endemic in many countries and has a mortality rate between 10% and 40%. As there is no licensed vaccine or therapeutic options available to treat CCHF, the present study was designed to focus on application of modern computational approaches to propose a multi-epitope vaccine (MEV) expressing antigenic determinants prioritized from the CCHFV genome. Integrated computational analyses revealed the presence of 9 immunodominant epitopes from Nucleoprotein (N), RNA dependent RNA polymerase (RdRp), Glycoprotein N (Gn/G2), and Glycoprotein C (Gc/G1). Together these epitopes were observed to cover 99.74% of the world populations. The epitopes demonstrated excellent binding affinity for the B- and T-cell reference set of alleles, the high antigenic potential, non-allergenic nature, excellent solubility, zero percent toxicity and interferon-gamma induction potential. The epitopes were engineered into an MEV through suitable linkers and adjuvating with an appropriate adjuvant molecule. The recombinant vaccine sequence revealed all favorable physicochemical properties allowing the ease of experimental analysis in vivo and in vitro. The vaccine 3D structure was established ab initio. Furthermore, the vaccine displayed excellent binding affinity for critical innate immune receptors: TLR2 (-14.33 kcal/mol) and TLR3 (-6.95 kcal/mol). Vaccine binding with these receptors was dynamically analyzed in terms of complex stability and interaction energetics. Finally, we speculate the vaccine sequence reported here has excellent potential to evoke protective and specific immune responses subject to evaluation of downstream experimental analysis.


Subject(s)
Antigens, Viral/pharmacology , Computational Biology , Computer-Aided Design , Drug Development , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever, Crimean/prevention & control , Immunodominant Epitopes , Ticks/virology , Vaccinology , Viral Vaccines/pharmacology , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/immunology , Hemorrhagic Fever, Crimean/virology , Immunogenicity, Vaccine , Molecular Docking Simulation , Molecular Dynamics Simulation , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 3/metabolism , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/metabolism , Vaccines, DNA/pharmacology , Viral Vaccines/genetics , Viral Vaccines/immunology , Viral Vaccines/metabolism
18.
Pediatr Infect Dis J ; 40(10): 880-884, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34260498

ABSTRACT

BACKGROUND: To evaluate the ocular symptoms and findings of children diagnosed with Crimean-Congo hemorrhagic fever (CCHF). METHODS: In this prospective study, children diagnosed with CCHF who underwent a complete ophthalmologic examination during the hospitalization period were included. RESULTS: Twenty-four children with a mean age of 12.4 ± 3.6 years were included study. The most common ocular finding was conjunctival hyperemia and was observed in 50% of patients. Nine (37.4%) children had abnormalities in fundus examination. Two (8.3%) of them had dilated retinal veins, and 7 (29.1%) had tortuous retinal vessels. No significant difference was found between mild to moderate and severe disease groups in terms of ocular symptoms and ophthalmologic examination findings (P > 0.05, for all). CONCLUSIONS: The increased retinal vessel tortuosity was detected as a fundus examination finding in children with CCHF. Both ophthalmologists and pediatricians should be aware of the various ocular manifestations of CCHF for rapid diagnosis and management.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity , Hemorrhagic Fever, Crimean/complications , Hemorrhagic Fever, Crimean/physiopathology , Retinal Vessels/pathology , Retinal Vessels/virology , Adolescent , Child , Conjunctiva/pathology , Conjunctiva/virology , Female , Hemorrhagic Fever, Crimean/virology , Hospitalization/statistics & numerical data , Humans , Male , Prospective Studies
19.
Viruses ; 13(7)2021 06 22.
Article in English | MEDLINE | ID: mdl-34206476

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a widespread, tick-borne pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) with high morbidity and mortality. CCHFV is transmitted to humans through tick bites or direct contact with patients or infected animals with viremia. Currently, climate change and globalization have increased the transmission risk of this biosafety level (BSL)-4 virus. The treatment options of CCHFV infection remain limited and there is no FDA-approved vaccine or specific antivirals, which urges the identification of potential therapeutic targets and the design of CCHF therapies with greater effort. In this article, we discuss the current progress and some future directions in the development of antiviral strategies against CCHFV.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hemorrhagic Fever Virus, Crimean-Congo/drug effects , Hemorrhagic Fever, Crimean/drug therapy , Tick-Borne Diseases/drug therapy , Tick-Borne Diseases/virology , Animals , Arachnid Vectors/virology , Hemorrhagic Fever, Crimean/transmission , Hemorrhagic Fever, Crimean/virology , Humans , Mice , Tick-Borne Diseases/transmission , Ticks/virology
20.
PLoS Negl Trop Dis ; 15(6): e0009452, 2021 06.
Article in English | MEDLINE | ID: mdl-34061841

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonosis with a high case fatality rate in humans. Although the disease is widely found in Africa, Europe, and Asia, the distribution and genetic diversity of CCHF virus (CCHFV) are poorly understood in African countries. To assess the risks of CCHF in Zambia, where CCHF has never been reported, epidemiologic studies in cattle and ticks were conducted. Through an indirect immunofluorescence assay, CCHFV nucleoprotein-specific serum IgG was detected in 8.4% (88/1,047) of cattle. Among 290 Hyalomma ticks, the principal vector of CCHFV, the viral genome was detected in 11 ticks. Phylogenetic analyses of the CCHFV S and M genome segments revealed that one of the detected viruses was a genetic reassortant between African and Asian strains. This study provides compelling evidence for the presence of CCHFV in Zambia and its transmission to vertebrate hosts.


Subject(s)
Cattle Diseases/parasitology , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever, Crimean/veterinary , Ticks/virology , Animals , Antibodies, Viral/blood , Cattle , Cattle Diseases/blood , Cattle Diseases/epidemiology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/blood , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Humans , Immunoglobulin G/blood , Phylogeny , Serologic Tests , Zambia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...