Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.332
Filter
1.
J Infect Dev Ctries ; 18(4): 556-564, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728629

ABSTRACT

INTRODUCTION: Unrecognized Ebola Virus Disease (EVD) can lead to multiple chains of transmissions if the first caretakers are not trained and prepared. This study aimed to assess healthcare workers (HCWs) preparedness in private hospitals located in Kampala, to detect, respond and prevent EVD. METHODOLOGY: A descriptive cross-sectional study was carried out among HCWs in direct clinical care provision in four private hospitals, and in one Ebola Treatment Unit (ETU) using a self-administered questionnaire from March to June 2020. RESULTS: 222 HCWs agreed to participate aged from 19 to 64 years and with 6 months to 38 years of practice where most were nurses (44%). 3/5 hospitals did not have written protocols on EVD case management, and only one (ETU) had an exclusive emergency team. 59% were not sure whether contact tracing was taking place. Private hospitals were not included in EVD trainings organized by the Ministry of Health (MoH). In addition, HCWs in private hospitals were not empowered by the MoH to take part in EVD case management. Despite these shortcomings, only 66% of HCWs showed an interest to be immunized. Knowledge about potential Ebola vaccines was generally poor. CONCLUSIONS: In Kampala, Uganda, establishment of a more comprehensive preparedness and response strategy for EVD outbreaks is imperative for HCWs in private facilities, including a wide vaccination educational program on Ebola vaccination. The findings from this study if addressed will likely improve the preparedness and management of future Ebola outbreaks in Uganda.


Subject(s)
Health Personnel , Hemorrhagic Fever, Ebola , Hospitals, Private , Humans , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Uganda/epidemiology , Cross-Sectional Studies , Health Personnel/statistics & numerical data , Adult , Hospitals, Private/statistics & numerical data , Male , Middle Aged , Female , Young Adult , Surveys and Questionnaires , Epidemics/prevention & control
2.
Nat Commun ; 15(1): 4171, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755147

ABSTRACT

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Subject(s)
Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Guinea/epidemiology , Ebolavirus/immunology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/transmission , Adult , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Female , Cross-Sectional Studies , Disease Outbreaks , Young Adult , Aged , Enzyme-Linked Immunosorbent Assay , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Antigens, Viral/immunology
3.
BMC Med Ethics ; 25(1): 63, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778293

ABSTRACT

BACKGROUND: The COVID-19 pandemic forced governments, multilateral public health organisations and research institutions to undertake research quickly to inform their responses to the pandemic. Most COVID-19-related studies required swift approval, creating ethical and practical challenges for regulatory authorities and researchers. In this paper, we examine the landscape of ethics review processes in Africa during public health emergencies (PHEs). METHODS: We searched four electronic databases (Web of Science, PUBMED, MEDLINE Complete, and CINAHL) to identify articles describing ethics review processes during public health emergencies and/or pandemics. We selected and reviewed those articles that were focused on Africa. We charted the data from the retrieved articles including the authors and year of publication, title, country and disease(s) reference, broad areas of (ethical) consideration, paper type, and approach. RESULTS: Of an initial 4536 records retrieved, we screened the titles and abstracts of 1491 articles, and identified 72 articles for full review. Nine articles were selected for inclusion. Of these nine articles, five referenced West African countries including Liberia, Guinea and Sierra Leone, and experiences linked to the Ebola virus disease. Two articles focused on South Africa and Kenya, while the other two articles discussed more general experiences and pitfalls of ethics review during PHEs in Africa more broadly. We found no articles published on ethics review processes in Africa before the 2014 Ebola outbreak, and only a few before the COVID-19 outbreak. Although guidelines on protocol review and approval processes for PHEs were more frequently discussed after the 2014 Ebola outbreak, these did not focus on Africa specifically. CONCLUSIONS: There is a gap in the literature about ethics review processes and preparedness within Africa during PHEs. This paper underscores the importance of these processes to inform practices that facilitate timely, context-relevant research that adequately recognises and reinforces human dignity within the quest to advance scientific knowledge about diseases. This is important to improve fast responses to PHEs, reduce mortality and morbidity, and enhance the quality of care before, during, and after pandemics.


Subject(s)
COVID-19 , Emergencies , Pandemics , Public Health , SARS-CoV-2 , Humans , COVID-19/epidemiology , Public Health/ethics , Africa/epidemiology , Ethical Review , Betacoronavirus , Hemorrhagic Fever, Ebola/epidemiology , Coronavirus Infections/epidemiology , Ethics, Research
4.
BMJ Glob Health ; 9(5)2024 May 23.
Article in English | MEDLINE | ID: mdl-38782464

ABSTRACT

BACKGROUND: The West African Ebola virus disease (EVD) epidemic resulted in >28 000 disease cases and >11 000 fatalities. The unprecedented number of survivors from this epidemic has raised questions about the long-term mental health impacts of EVD survivorship and the capacity to meet these needs. OBJECTIVES: Assess the frequency and factors associated with mental health consequences of EVD survivorship in Sierra Leone. METHODS: A cross-sectional study of 595 EVD survivors and 403 close contacts (n=998) from Sierra Leone assessed via in-person survey between November 2021 and March 2022. The assessment included validated mental health screening tools (Patient Health Questionnaire-9, PTSD Checklist-5, Alcohol Use Disorders Identification Test, Drug Abuse Screening Test-20) to indicate the presence/absence of disorder. The frequency of each disorder and factors associated with each disorder were assessed. FINDINGS: EVD-associated post-traumatic stress disorder (PTSD) was reported by 45.7% (n=257) of EVD survivors. Moreover, 3.9% (n=22) and 12.0% (n=67) of EVD survivors reported major depression (MD) and substance use, respectively; all mental health outcomes were higher than baseline rates in the region (PTSD: 6%-16%, MD: 1.1%, substance use: 2.2%). PTSD among EVD survivors was associated with acute EVD duration of ≥21 days (adjusted OR, AOR 2.24, 95% CI 1.16 to 4.43), 35-44 years of age (AOR 3.31, 95% CI 1.33 to 8.24; AOR 2.99, 95% CI 1.09 to 8.24) and residential mobility (AOR 4.16, 95% CI 2.35 to 7.35). CONCLUSIONS: Concerningly, the levels of mental health disorders among EVD survivors in Sierra Leone remained elevated 6-8 years after recovery. CLINICAL IMPLICATIONS: Results can be used to inform policy efforts and target resources to address mental health in EVD survivors.


Subject(s)
Hemorrhagic Fever, Ebola , Mental Health , Stress Disorders, Post-Traumatic , Survivors , Humans , Sierra Leone/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/psychology , Cross-Sectional Studies , Male , Female , Adult , Survivors/psychology , Middle Aged , Young Adult , Stress Disorders, Post-Traumatic/epidemiology , Adolescent , Mental Disorders/epidemiology
5.
BMC Infect Dis ; 24(1): 520, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783244

ABSTRACT

BACKGROUND: On 20 September 2022, Uganda declared its fifth Sudan virus disease (SVD) outbreak, culminating in 142 confirmed and 22 probable cases. The reproductive rate (R) of this outbreak was 1.25. We described persons who were exposed to the virus, became infected, and they led to the infection of an unusually high number of cases during the outbreak. METHODS: In this descriptive cross-sectional study, we defined a super-spreader person (SSP) as any person with real-time polymerase chain reaction (RT-PCR) confirmed SVD linked to the infection of ≥ 13 other persons (10-fold the outbreak R). We reviewed illness narratives for SSPs collected through interviews. Whole-genome sequencing was used to support epidemiologic linkages between cases. RESULTS: Two SSPs (Patient A, a 33-year-old male, and Patient B, a 26-year-old male) were identified, and linked to the infection of one probable and 50 confirmed secondary cases. Both SSPs lived in the same parish and were likely infected by a single ill healthcare worker in early October while receiving healthcare. Both sought treatment at multiple health facilities, but neither was ever isolated at an Ebola Treatment Unit (ETU). In total, 18 secondary cases (17 confirmed, one probable), including three deaths (17%), were linked to Patient A; 33 secondary cases (all confirmed), including 14 (42%) deaths, were linked to Patient B. Secondary cases linked to Patient A included family members, neighbours, and contacts at health facilities, including healthcare workers. Those linked to Patient B included healthcare workers, friends, and family members who interacted with him throughout his illness, prayed over him while he was nearing death, or exhumed his body. Intensive community engagement and awareness-building were initiated based on narratives collected about patients A and B; 49 (96%) of the secondary cases were isolated in an ETU, a median of three days after onset. Only nine tertiary cases were linked to the 51 secondary cases. Sequencing suggested plausible direct transmission from the SSPs to 37 of 39 secondary cases with sequence data. CONCLUSION: Extended time in the community while ill, social interactions, cross-district travel for treatment, and religious practices contributed to SVD super-spreading. Intensive community engagement and awareness may have reduced the number of tertiary infections. Intensive follow-up of contacts of case-patients may help reduce the impact of super-spreading events.


Subject(s)
Disease Outbreaks , Humans , Uganda/epidemiology , Male , Cross-Sectional Studies , Adult , Female , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Whole Genome Sequencing , Ebolavirus/genetics , Ebolavirus/isolation & purification
6.
Soc Sci Med ; 350: 116854, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713978

ABSTRACT

Research, policy, and donor interest in health systems in conflict environments has grown rapidly in recent years. The 2018-20 Ebola outbreak in Democratic Republic of the Congo is a critical case of healthcare militarization. The first-ever such outbreak in an active conflict zone, it grew notorious for violence against response teams, with attacks aggravating the spread of disease. However, while medical responders observed physical attacks, the causes of the violence remained largely unknown. Drawing on interviews and participant observation, we contribute civilian vantages of the way health intervention grew militarized, or associated with conflict. The argument builds in two core steps. A first reconstructs civilian experiences of conflict prior to Ebola to trace how the response took on a political meaning. We find that relationships linking state forces with the health response inadvertently tethered Ebola to what civilians perceived as security threats and that by repeating government statements about conflict, response teams unintentionally endorsed a version of the truth that silenced local voices. A second step addresses a central paradox: residents communicated these concerns directly, repeatedly, and via official response channels, yet healthcare teams failed to apply these insights. We locate this gap in the knowledge structures, or frames, accompanying intervention. Medical emergencies in warzones operate with dual sets of frames casting conflict players as "non-state" and public health resistance as "ignorance." Both frames intersect in ways that amplify invisibilities in each, clouding understandings of the nature of conflict and humanitarians' role in it. We suggest this places intervention teams at heightened risk of mis-stepping on political fault lines-and not understanding why. The study advances work on community engagement by showing that instead of simply providing scientific knowledge, effective engagement requires adjusting socio-political lenses within the response. It contributes to studies on health intervention, humanitarian emergencies, and the limits of medical neutrality.


Subject(s)
Epidemics , Hemorrhagic Fever, Ebola , Politics , Public Health , Violence , Humans , Hemorrhagic Fever, Ebola/epidemiology , Democratic Republic of the Congo/epidemiology , Public Health/methods
7.
BMC Infect Dis ; 24(1): 543, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816800

ABSTRACT

BACKGROUND: In 2022, an Ebola disease outbreak caused by Sudan virus (SUDV) occurred in Uganda, primarily affecting Mubende and Kassanda districts. We determined risk factors for SUDV infection among household members (HHM) of cases. METHODS: We conducted a case-control and retrospective cohort study in January 2023. Cases were RT-PCR-confirmed SUDV infection in residents of Mubende or Kassanda districts during the outbreak. Case-households housed a symptomatic, primary case-patient for ≥ 24 h and had ≥ 1 secondary case-patient with onset < 2 weeks after their last exposure to the primary case-patient. Control households housed a case-patient and other HHM but no secondary cases. A risk factor questionnaire was administered to the primary case-patient or another adult who lived at home while the primary case-patient was ill. We conducted a retrospective cohort study among case-household members and categorized their interactions with primary case-patients during their illnesses as none, minimal, indirect, and direct contact. We conducted logistic regression to explore associations between exposures and case-household status, and Poisson regression to identify risk factors for SUDV infection among HHM. RESULTS: Case- and control-households had similar median sizes. Among 19 case-households and 51 control households, primary case-patient death (adjusted odds ratio [ORadj] = 7.6, 95% CI 1.4-41) and ≥ 2 household bedrooms (ORadj=0.19, 95% CI 0.056-0.71) were associated with case-household status. In the cohort of 76 case-HHM, 44 (58%) were tested for SUDV < 2 weeks from their last contact with the primary case-patient; 29 (38%) were positive. Being aged ≥ 18 years (adjusted risk ratio [aRRadj] = 1.9, 95%CI: 1.01-3.7) and having direct or indirect contact with the primary case-patient (aRRadj=3.2, 95%CI: 1.1-9.7) compared to minimal or no contact increased risk of Sudan virus disease (SVD). Access to a handwashing facility decreased risk (aRRadj=0.52, 95%CI: 0.31-0.88). CONCLUSION: Direct contact, particularly providing nursing care for and sharing sleeping space with SVD patients, increased infection risk among HHM. Risk assessments during contact tracing may provide evidence to justify closer monitoring of some HHM. Health messaging should highlight the risk of sharing sleeping spaces and providing nursing care for persons with Ebola disease symptoms and emphasize hand hygiene to aid early case identification and reduce transmission.


Subject(s)
Disease Outbreaks , Family Characteristics , Hemorrhagic Fever, Ebola , Humans , Uganda/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/transmission , Risk Factors , Male , Adult , Female , Retrospective Studies , Case-Control Studies , Adolescent , Young Adult , Middle Aged , Child , Child, Preschool , Ebolavirus , Infant
8.
Sci Rep ; 14(1): 12147, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802461

ABSTRACT

The E/S (exposed/susceptible) ratio is analyzed in the SEIR model. The ratio plays a key role in understanding epidemic dynamics during the 2014-2016 Ebola outbreak in Sierra Leone and Guinea. The maximum value of the ratio occurs immediately before or after the time-dependent reproduction number (Rt) equals 1, depending on the initial susceptible population (S(0)). It is demonstrated that transmission rate curves corresponding to various incubation periods intersect at a single point referred to as the Cross Point (CP). At this point, the E/S ratio reaches an extremum, signifying a critical shift in transmission dynamics and aligning with the time when Rt approaches 1. By plotting transmission rate curves, ß(t), for any two arbitrary incubation periods and tracking their intersections, we can trace CP over time. CP serves as an indicator of epidemic status, especially when Rt is close to 1. It provides a practical means of monitoring epidemics without prior knowledge of the incubation period. Through a case study, we estimate the transmission rate and reproduction number, identifying CP and Rt = 1 while examining the E/S ratio across various values of S(0).


Subject(s)
Epidemics , Hemorrhagic Fever, Ebola , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/transmission , Humans , Sierra Leone/epidemiology , Guinea/epidemiology , Disease Outbreaks , Africa, Western/epidemiology , Basic Reproduction Number
9.
Glob Public Health ; 19(1): 2334887, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38625999

ABSTRACT

ABSTRACTThe COVID-19 pandemic has amplified discussions on emergency vaccine deployment strategies, with current perspectives often neglecting extensive community involvement in ethical, logistical and political aspects. Existing social science literature predominantly delves into factors influencing trust, overlooking the untapped potential for community engagement.Our study examines community preparedness in Sierra Leone's Kambia District, exploring diverse viewpoints on vaccine deployment strategies, emphasising Ebola and COVID-19 vaccinations. Utilising extensive ethnographic research from the Ebola vaccine trials (EBOVAC Salone) conducted in Kambia District from 2015 to 2021, including participant observation and tailored focus group discussions, we investigated various deployment scenarios with community leaders and citizens.Our findings underscore the multifaceted contributions of social science research with communities in shaping emergency vaccination strategies. These contributions span logistical insights, aligning campaigns with local livelihoods and social structures, and grounded ethical concerns assessing social justice outcomes across epidemic scenarios. This study emphasises the imperative of integrating discussions on vaccine confidence and deployment. It highlights communities' proficiency in epidemiological reasoning and their ability to bring this in conversation with salient socio-cultural, economic and religious dimensions. We therefore promote the cultivation of public dialogue, collaborative creation of impactful vaccination initiatives alongside relevant communities in recognition of their invaluable perspectives .


Subject(s)
Ebola Vaccines , Hemorrhagic Fever, Ebola , Humans , Sierra Leone/epidemiology , Pandemics , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Focus Groups
10.
PLoS One ; 19(4): e0298620, 2024.
Article in English | MEDLINE | ID: mdl-38625847

ABSTRACT

In this manuscript, we developed a nonlinear fractional order Ebola virus with a novel piecewise hybrid technique to observe the dynamical transmission having eight compartments. The existence and uniqueness of a solution of piecewise derivative is treated for a system with Arzel'a-Ascoli and Schauder conditions. We investigate the effects of classical and modified fractional calculus operators, specifically the classical Caputo piecewise operator, on the behavior of the model. A model shows that a completely continuous operator is uniformly continuous, and bounded according to the equilibrium points. The reproductive number R0 is derived for the biological feasibility of the model with sensitivity analysis with different parameters impact on the model. Sensitivity analysis is an essential tool for comprehending how various model parameters affect the spread of illness. Through a methodical manipulation of important parameters and an assessment of their impact on Ro, we are able to learn more about the resiliency and susceptibility of the model. Local stability is established with next Matignon method and global stability is conducted with the Lyapunov function for a feasible solution of the proposed model. In the end, a numerical solution is derived with Newton's polynomial technique for a piecewise Caputo operator through simulations of the compartments at various fractional orders by using real data. Our findings highlight the importance of fractional operators in enhancing the accuracy of the model in capturing the intricate dynamics of the disease. This research contributes to a deeper understanding of Ebola virus dynamics and provides valuable insights for improving disease modeling and public health strategies.


Subject(s)
Ebolavirus , Epidemics , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/epidemiology , Learning , Public Health
11.
BMC Public Health ; 24(1): 1150, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658902

ABSTRACT

BACKGROUND: The Democratic Republic of the Congo (DRC) experienced its largest Ebola Virus Disease Outbreak in 2018-2020. As a result of the outbreak, significant funding and international support were provided to Eastern DRC to improve disease surveillance. The Integrated Disease Surveillance and Response (IDSR) strategy has been used in the DRC as a framework to strengthen public health surveillance, and full implementation could be critical as the DRC continues to face threats of various epidemic-prone diseases. In 2021, the DRC initiated an IDSR assessment in North Kivu province to assess the capabilities of the public health system to detect and respond to new public health threats. METHODS: The study utilized a mixed-methods design consisting of quantitative and qualitative methods. Quantitative assessment of the performance in IDSR core functions was conducted at multiple levels of the tiered health system through a standardized questionnaire and analysis of health data. Qualitative data were also collected through observations, focus groups and open-ended questions. Data were collected at the North Kivu provincial public health office, five health zones, 66 healthcare facilities, and from community health workers in 15 health areas. RESULTS: Thirty-six percent of health facilities had no case definition documents and 53% had no blank case reporting forms, limiting identification and reporting. Data completeness and timeliness among health facilities were 53% and 75% overall but varied widely by health zone. While these indicators seemingly improved at the health zone level at 100% and 97% respectively, the health facility data feeding into the reporting structure were inconsistent. The use of electronic Integrated Disease Surveillance and Response is not widely implemented. Rapid response teams were generally available, but functionality was low with lack of guidance documents and long response times. CONCLUSION: Support is needed at the lower levels of the public health system and to address specific zones with low performance. Limitations in materials, resources for communication and transportation, and workforce training continue to be challenges. This assessment highlights the need to move from outbreak-focused support and funding to building systems that can improve the long-term functionality of the routine disease surveillance system.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Humans , Democratic Republic of the Congo/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Disease Outbreaks/prevention & control , Public Health Surveillance/methods , Population Surveillance/methods
12.
Glob Health Action ; 17(1): 2331291, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38666727

ABSTRACT

BACKGROUND: There is a lack of empirical data on design effects (DEFF) for mortality rate for highly clustered data such as with Ebola virus disease (EVD), along with a lack of documentation of methodological limitations and operational utility of mortality estimated from cluster-sampled studies when the DEFF is high. OBJECTIVES: The objectives of this paper are to report EVD mortality rate and DEFF estimates, and discuss the methodological limitations of cluster surveys when data are highly clustered such as during an EVD outbreak. METHODS: We analysed the outputs of two independent population-based surveys conducted at the end of the 2014-2016 EVD outbreak in Bo District, Sierra Leone, in urban and rural areas. In each area, 35 clusters of 14 households were selected with probability proportional to population size. We collected information on morbidity, mortality and changes in household composition during the recall period (May 2014 to April 2015). Rates were calculated for all-cause, all-age, under-5 and EVD-specific mortality, respectively, by areas and overall. Crude and adjusted mortality rates were estimated using Poisson regression, accounting for the surveys sample weights and the clustered design. RESULTS: Overall 980 households and 6,522 individuals participated in both surveys. A total of 64 deaths were reported, of which 20 were attributed to EVD. The crude and EVD-specific mortality rates were 0.35/10,000 person-days (95%CI: 0.23-0.52) and 0.12/10,000 person-days (95%CI: 0.05-0.32), respectively. The DEFF for EVD mortality was 5.53, and for non-EVD mortality, it was 1.53. DEFF for EVD-specific mortality was 6.18 in the rural area and 0.58 in the urban area. DEFF for non-EVD-specific mortality was 1.87 in the rural area and 0.44 in the urban area. CONCLUSION: Our findings demonstrate a high degree of clustering; this contributed to imprecise mortality estimates, which have limited utility when assessing the impact of disease. We provide DEFF estimates that can inform future cluster surveys and discuss design improvements to mitigate the limitations of surveys for highly clustered data.


Main findings: For humanitarian organizations it is imperative to document the methodological limitations of cluster surveys and discuss the utility.Added knowledge: This paper adds new knowledge on cluster surveys for highly clustered data such us in Ebola virus disease.Global health impact of policy and action: We provided empirical estimates and discuss design improvements to inform future study.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Humans , Sierra Leone/epidemiology , Hemorrhagic Fever, Ebola/mortality , Hemorrhagic Fever, Ebola/epidemiology , Retrospective Studies , Adult , Female , Adolescent , Child, Preschool , Male , Middle Aged , Young Adult , Cluster Analysis , Child , Infant , Rural Population/statistics & numerical data , Urban Population , Surveys and Questionnaires
13.
MMWR Morb Mortal Wkly Rep ; 73(16): 360-364, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662631

ABSTRACT

Ebola virus disease (Ebola) is a rare but severe illness in humans, with an average case fatality rate of approximately 50%. Two licensed vaccines are currently available against Orthoebolavirus zairense, the virus that causes Ebola: the 1-dose rVSVΔG-ZEBOV-GP (ERVEBO [Merck]) and the 2-dose regimen of Ad26.ZEBOV and MVA-BN-Filo (Zabdeno/Mvabea [Johnson & Johnson]). The Strategic Advisory Group of Experts on Immunization recommends the use of 1-dose ERVEBO during Ebola outbreaks, and in 2021, a global stockpile of ERVEBO was established to ensure equitable, timely, and targeted access to vaccine doses for future Ebola outbreaks. This report describes the use of Ebola vaccines and the role of the stockpile developed and managed by the International Coordinating Group (ICG) on Vaccine Provision during 2021-2023. A total of 145,690 doses have been shipped from the ICG stockpile since 2021. However, because outbreaks since 2021 have been limited and rapidly contained, most doses (139,120; 95%) shipped from the ICG stockpile have been repurposed for preventive vaccination of high-risk groups, compared with 6,570 (5%) used for outbreak response. Repurposing doses for preventive vaccination could be prioritized in the absence of Ebola outbreaks to prevent transmission and maximize the cost-efficiency and benefits of the stockpile.


Subject(s)
Disease Outbreaks , Ebola Vaccines , Global Health , Hemorrhagic Fever, Ebola , Humans , Ebola Vaccines/administration & dosage , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Disease Outbreaks/prevention & control , Strategic Stockpile , Adult , Child , Adolescent
14.
BMJ Open ; 14(4): e079776, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38582533

ABSTRACT

BACKGROUND: The last 3 years have witnessed global health challenges, ranging from the pandemics of COVID-19 and mpox (monkeypox) to the Ebola epidemic in Uganda. Public health surveillance is critical for preventing these outbreaks, yet surveillance systems in resource-constrained contexts struggle to provide timely disease reporting. Although community health workers (CHWs) support health systems in low-income and middle-income countries (LMICs), very little has been written about their role in supporting public health surveillance. This review identified the roles, impacts and challenges CHWs face in public health surveillance in 25 LMICs. METHODS: We conducted a scoping review guided by Arksey and O'Malley's framework. We exported 1,156 peer-reviewed records from Embase, Global Health and PubMed databases. After multiple screenings, 29 articles were included in the final review. RESULTS: CHWs significantly contribute to public health surveillance in LMICs including through contact tracing and patient visitation to control major infectious diseases such as HIV/AIDS, malaria, tuberculosis, Ebola, neglected tropical diseases and COVID-19. Their public health surveillance roles typically fall into four main categories including community engagement; data gathering; screening, testing and treating; and health education and promotion. The use of CHWs in public health surveillance in LMICs has been impactful and often involves incorporation of various technologies leading to improved epidemic control and disease reporting. Nonetheless, use of CHWs can come with four main challenges including lack of education and training, lack of financial and other resources, logistical and infrastructural challenges as well as community engagement challenges. CONCLUSION: CHWs are important stakeholders in surveillance because they are closer to communities than other healthcare workers. Further integration and training of CHWs in public health surveillance would improve public health surveillance because CHWs can provide health data on 'hard-to-reach' populations. CHWs' work in public health surveillance would also be greatly enhanced by infrastructural investments.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Humans , Developing Countries , Community Health Workers/education , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Public Health Surveillance , COVID-19/epidemiology , COVID-19/prevention & control
16.
PLoS Comput Biol ; 20(3): e1011640, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38551979

ABSTRACT

Birth-death models play a key role in phylodynamic analysis for their interpretation in terms of key epidemiological parameters. In particular, models with piecewise-constant rates varying at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS) models, are valuable for their reflection of changing transmission dynamics over time. A challenge, however, that persists with current time-varying model inference procedures is their lack of computational efficiency. This limitation hinders the full utilization of these models in large-scale phylodynamic analyses, especially when dealing with high-dimensional parameter vectors that exhibit strong correlations. We present here a linear-time algorithm to compute the gradient of the birth-death model sampling density with respect to all time-varying parameters, and we implement this algorithm within a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference under a wide variety of structures of, as well as priors for, EBDS processes. We assess this approach using three different real world data examples, including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of our implementation in both allowing for flexible prior choices and in modeling the transmission dynamics of various pathogens by accurately capturing the changing trend of viral effective reproductive number.


Subject(s)
Epidemics , Hemorrhagic Fever, Ebola , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype , Algorithms , Influenza, Human/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Monte Carlo Method
17.
Emerg Infect Dis ; 30(4): 681-690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526081

ABSTRACT

Although pigs are naturally susceptible to Reston virus and experimentally to Ebola virus (EBOV), their role in Orthoebolavirus ecology remains unknown. We tested 888 serum samples collected from pigs in Guinea during 2017-2019 (between the 2013-16 epidemic and its resurgence in 2021) by indirect ELISA against the EBOV nucleoprotein. We identified 2 hotspots of possible pig exposure by IgG titer levels: the northern coast had 48.7% of positive serum samples (37/76), and Forest Guinea, bordering Sierra Leone and Liberia, where the virus emerged and reemerged, had 50% of positive serum samples (98/196). The multitarget Luminex approach confirms ELISA results against Ebola nucleoprotein and highlights cross-reactivities to glycoprotein of EBOV, Reston virus, and Bundibugyo virus. Those results are consistent with previous observations of the circulation of Orthoebolavirus species in pig farming regions in Sierra Leone and Ghana, suggesting potential risk for Ebola virus disease in humans, especially in Forest Guinea.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Swine , Animals , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/veterinary , Guinea/epidemiology , Sus scrofa , Sierra Leone/epidemiology , Nucleoproteins/genetics
18.
BMC Public Health ; 24(1): 860, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509557

ABSTRACT

BACKGROUND: Reducing Ebola virus transmission relies on the ability to identify cases and limit contact with infected bodily fluids through biosecurity, safe sex practices, safe burial and vaccination. Armed conflicts can complicate outbreak detection and interventions due to widespread disruption to governments and populations. Guinea and the Democratic Republic of the Congo (DRC) have historically reported the largest and the most recent Ebola virus outbreaks. Understanding if conflict played a role in these outbreaks may help in identifying key risks factors to improve disease control. METHODS: We used data from a range of publicly available data sources for both Ebola virus cases and conflict events from 2018 to 2021 in Guinea and the DRC. We fitted these data to conditional logistic regression models using the Self-Controlled Case Series methodology to evaluate the magnitude in which conflict increased the risk of reported Ebola virus cases in terms of incidence rate ratio. We re-ran the analysis sub-nationally, by conflict sub-event type and tested any lagged effects. RESULTS: Conflict was significantly associated with an increased risk of reported Ebola virus cases in both the DRC and Guinea in recent outbreaks. The effect was of a similar magnitude at 1.88- and 1.98-times increased risk for the DRC and Guinea, respectively. The greatest effects (often higher than the national values) were found in many conflict prone areas and during protest/riot-related conflict events. Conflict was influential in terms of Ebola virus risk from 1 week following the event and remained important by 10 weeks. CONCLUSION: Extra vigilance is needed following protests and riot-related conflict events in terms of Ebola virus transmission. These events are highly disruptive, in terms of access to transportation and healthcare and are often in urban areas with high population densities. Additional public health messaging around these types of conflict events, relating to the risks and clinical symptoms may be helpful in reducing transmission. Future work should aim to further understand and quantify conflict severity and intensity, to evaluate dose-response relationships in terms of disease risk.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Democratic Republic of the Congo/epidemiology , Guinea/epidemiology , Disease Outbreaks/prevention & control
19.
Front Public Health ; 12: 1375776, 2024.
Article in English | MEDLINE | ID: mdl-38532966

ABSTRACT

This research investigates the complex dynamics of Uganda's recent Ebola outbreaks, emphasizing the interplay between disease spread, misinformation, and existing societal vulnerabilities. Highlighting poverty as a core element, it delves into how socioeconomic factors exacerbate health crises. The study scrutinizes the role of political economy, medical pluralism, health systems, and informal networks in spreading misinformation, further complicating response efforts. Through a comprehensive analysis, this study aims to shed light on the multifaceted challenges faced in combating epidemics in resource-limited settings. It calls for integrated strategies that address not only the biological aspects of the disease but also the socioeconomic and informational ecosystems that influence public health outcomes. This perspective research contributes to a better understanding of how poverty, medical pluralism, political economy, misinformation, and health emergencies intersect, offering insights for future preparedness and response initiatives.


Subject(s)
Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/epidemiology , Uganda/epidemiology , Ecosystem , Infodemic , Disease Outbreaks
20.
PLoS Pathog ; 20(3): e1012038, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489257

ABSTRACT

Ebola disease (EBOD) remains a significant and ongoing threat to African countries, characterized by a mortality rate of 25% to 90% in patients with high viral load and significant transmissibility. The most recent outbreak, reported in Uganda in September 2022, was declared officially over in January 2023. However, it was caused by the Sudan Ebola virus (SUDV), a culprit species not previously reported for a decade. Since its discovery in 1976, the management of EBOD has primarily relied on supportive care. Following the devastating outbreak in West Africa from 2014 to 2016 secondary to the Zaire Ebola virus (EBOV), where over 28,000 lives were lost, dedicated efforts to find effective therapeutic agents have resulted in considerable progress in treating and preventing disease secondary to EBOV. Notably, 2 monoclonal antibodies-Ebanga and a cocktail of monoclonal antibodies, called Inmazeb-received Food and Drug Administration (FDA) approval in 2020. Additionally, multiple vaccines have been approved for EBOD prevention by various regulatory bodies, with Ervebo, a recombinant vesicular stomatitis virus-vectored vaccine against EBOV being the first vaccine to receive approval by the FDA in 2019. This review covers the key signs and symptoms of EBOD, its modes of transmission, and the principles guiding supportive care. Furthermore, it explores recent advancements in treating and preventing EBOD, highlighting the unique properties of each therapeutic agent and the ongoing progress in discovering new treatments.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Viral Vaccines , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Antibodies, Viral , Ebolavirus/genetics , Antibodies, Monoclonal/therapeutic use , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...