Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 163(12): 3395-3402, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30220031

ABSTRACT

Hypoxia-inducible factor-1 (HIF-1) is a heterodimer of HIF-1α and HIF-1ß, and its key role in the regulation of cellular responses to hypoxia has been well-demonstrated. The participation of HIF-1α in apoptosis has been reported in mammals, however, a little information is available on the role of HIF-1α in the progression of apoptosis in fish. In this study, to know the role of HIF-1α in the apoptosis of fish cells, we produced HIF-1α knockout Epithelioma papulosum cyprini (EPC) cells using a CRISPR/Cas9 vector, and a single cell clone showing a heterozygous insertion/deletion (indel) mutation (one nucleotide insertion and one nucleotide deletion in HIF-1α gene) was chosen for further experiments. To confirm the knockout of HIF-1α, cells were transfected with a hypoxia reporting vector containing hypoxic response elements (HREs). EPC cells transfected with the reporting plasmids showed significantly increased luminescence by exposure to cobalt chloride, a prolyl hydroxylases inhibitor. On the other hand, HIF-1α knockout EPC cells showed a non-responsiveness to a cobalt chloride exposure, suggesting that functional HIF-1α protein was not produced in the HIF-1α knockout EPC cells. Apoptosis progression induced by camptothecin and viral hemorrhagic septicemia virus (VHSV) infection was severely inhibited by HIF-1α knockout, and the replication of VHSV was significantly retarded in HIF-1α knockout EPC cells. These results suggest that HIF-1α in EPC cells acts as a pro-apoptotic factor in the progression of apoptosis triggered by a DNA damaging agent and rhabdoviral infection.


Subject(s)
Apoptosis , Fish Diseases/genetics , Hemorrhagic Septicemia, Viral/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Novirhabdovirus/growth & development , Animals , CRISPR-Cas Systems , Cell Line , Cyprinidae/virology , Fish Diseases/metabolism , Fish Diseases/physiopathology , Fish Diseases/virology , Gene Knockout Techniques , Hemorrhagic Septicemia, Viral/metabolism , Hemorrhagic Septicemia, Viral/physiopathology , Hemorrhagic Septicemia, Viral/virology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Novirhabdovirus/genetics , Novirhabdovirus/physiology
2.
Vet Microbiol ; 187: 31-40, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27066706

ABSTRACT

The in vitro replication of viral haemorrhagic septicaemia virus (VHSV) isolates from each VHSV genotype and the associated cellular host Mx gene expression were analysed. All the isolates were able to infect RTG-2 cells and induce increased Mx gene expression (generic assay detecting isoforms 1 and 3 [Mx1/3]). A trout pathogenic, genotype Ia isolate (J167), showing high replication in RTG-2 cells (by infective titre and N gene expression) induced lower Mx1/3 gene expression than observed in VHSV isolates known to be non-pathogenic to rainbow trout: 96-43/8, 96-43/10 (Ib); 1p49, 1p53 (II); and MI03 (IVb). Paired co-inoculation assays were analysed using equal number of plaque forming units per ml (PFU) of J167 (Ia genotype) with other less pathogenic VHSV genotypes. In these co-inoculations, the Mx1/3 gene expression was significantly lower than for the non-pathogenic isolate alone. Of the three rainbow trout Mx isoforms, J167 did not induce Mx1 up-regulation in RTG-2 or RTgill-W1 cells. Co-inoculating isolates resulted in greater inhibition of Mx in both rainbow trout cell lines studied. Up-regulation of sea bream Mx in SAF-1 cells induced by 96-43/8 was also lower in co-inoculation assays with J167. The RTG-P1 cell line, expressing luciferase under the control of the interferon-induced Mx rainbow trout gene promoter, showed low luciferase activity when inoculated with pathogenic strains: J167, DK-5131 (Ic), NO-A-163/68 (Id), TR-206239-1, TR-22207111 (Ie), 99-292 (IVa), and CA-NB00-01 (IVc). Co-inoculation assays showed a J167-dose dependent inhibition of the luciferase activity. The data suggest that virulent VHSV isolates may interfere in the interferon pathways, potentially determining higher pathogenicity.


Subject(s)
Fish Diseases/physiopathology , Gene Expression Regulation , Hemorrhagic Septicemia, Viral/physiopathology , Myxovirus Resistance Proteins/genetics , Novirhabdovirus/pathogenicity , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/virology , Animals , Cell Line , Genotype , Novirhabdovirus/genetics , Nucleoproteins/genetics , Virulence , Virus Replication/genetics
3.
Fish Shellfish Immunol ; 51: 41-45, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26899629

ABSTRACT

In the development of inactivated or attenuated viral vaccines for cultured fish, viral titers harvested from the cultured cells would be the most important factor for the determination of vaccine's cost effectiveness. In this study, we hypothesized that the lengthening of cell survival time by the inhibition of apoptosis can lead to an increase of the final titer of viral hemorrhagic septicemia virus (VHSV). To test the hypothesis, we investigated the effects of a broad-spectrum caspase inhibitor, Z-VAD(OMe)-FMK, on VHSV infection-mediated apoptosis in Epithelioma papulosum cyprini (EPC) cells and on the VHSV titers. VHSV infection induced the DNA laddering in EPC cells, and the progression of DNA fragmentation was in proportion to the CPE extension. The progression of DNA fragmentation in EPC cells infected with VHSV was clearly inhibited by exposure to Z-VAD(OMe)-FMK, and the inhibition was intensified according to the increase of the inhibitor concentration. These results confirmed the previous reports that the death of host cells by VHSV infection is through apoptosis. Cells infected with a recombinant VHSV, rVHSV-ΔNV-eGFP, that was generated from our previous study by replacement of the NV gene ORF with the enhanced green fluorescent protein (eGFP) gene ORF, showed earlier and more distinct DNA fragmentations compared to the cells infected with wild-type VHSV, suggesting the inhibitory role of the NV protein in VHSV-mediated apoptosis that was previously reported. The final viral titers in the supernatant isolated from Z-VAD(OMe)-FMK treated cells after showing an extensive CPE were significantly higher than the viral titers from cells infected with virus alone, indicating that the delay of apoptosis by Z-VAD(OMe)-FMK extended the survival time of EPC cells, which lengthen the time for VHSV replication in the cells. In conclusion, Z-VAD(OMe)-FMK-mediated inhibition of apoptosis significantly increased the final titers of both wild-type VHSV and rVHSV-ΔNV-eGFP, indicating that apoptosis inhibition can be a way to get higher titers of VHSV.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Caspase Inhibitors/pharmacology , Fish Proteins/genetics , Flatfishes , Hemorrhagic Septicemia, Viral/physiopathology , Novirhabdovirus/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cyprinidae , DNA Fragmentation/drug effects , Fish Proteins/metabolism , Hemorrhagic Septicemia, Viral/virology , Novirhabdovirus/physiology , Viral Vaccines/metabolism , Virus Replication/drug effects
4.
J Fish Dis ; 38(2): 121-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25589167

ABSTRACT

A cell line, WE-cfin11f, with a fibroblast-like morphology was developed from a walleye caudal fin and used to study the intersection of thermobiology of walleye, Sander vitreus (Mitchill), with the thermal requirements for replication of viral haemorrhagic septicaemia virus (VHSV) IVb. WE-cfin11f proliferated from 10 to 32 °C and endured as a monolayer for at least a week at 1-34 °C. WE-cfin11f adopted an epithelial shape and did not proliferate at 4 °C. Adding VHSV IVb to cultures at 4 and 14 °C but not 26 °C led to cytopathic effects (CPE) and virus production. At 4 °C, virus production developed more slowly, but Western blotting showed more N protein accumulation. Infecting monolayer cultures at 4 °C for 7 days and then shifting them to 26 °C resulted in the monolayers being broken in small areas by CPE, but with time at 26 °C, the monolayers were restored. These results suggest that at 26 °C, the VHSV IVb life cycle stages responsible for CPE can be completed, but the production of virus and the initiation of infections cannot be accomplished.


Subject(s)
Hemorrhagic Septicemia, Viral/physiopathology , Novirhabdovirus/physiology , Temperature , Animals , Cell Line , Hemorrhagic Septicemia, Viral/virology , Perches , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...