Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.630
Filter
1.
Med Sci Monit ; 30: e943353, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825814

ABSTRACT

BACKGROUND Dentin contamination with hemostatic agents before bonding indirect restorations negatively affects the bond strength. However, the consensus on which materials could be used to clean contamination of hemostatic agents has not been explored. The aim of this study was to assess the effect of Katana Cleaner applied on the surface of dentin contaminated with hemostatic agents on the shear bond strength (SBS) of self-adhesive resin cement by comparing it with three other surface cleaners. MATERIAL AND METHODS Ninety dentin specimens were divided into a no contamination group (control) (n=10), 4 groups contaminated with 25% aluminum chloride (Viscostat Clear) (n=40), and 4 groups contaminated with 20% ferric sulfate (Viscostat) (n=40). Subsequently, 4 different cleaners were used for each contamination group (water rinse, phosphoric acid, chlorhexidine, and Katana Cleaner). Then, self-adhesive resin cement was directly bonded to the treated surfaces. All specimens were subjected to 5000 thermal cycles of artificial aging. The shear bond strength was measured using a universal testing machine. RESULTS Two-way analysis of variance showed that the contaminant type as the main factor was statistically non-significant (p=0.655), cleaner type as the main factor was highly significant (p<0.001), and interaction between the contaminant and cleaner was non-significant (p=0.51). The cleaner type was the main factor influencing the bond strength. Phosphoric acid and chlorhexidine showed better performance than Katana Cleaner. CONCLUSIONS Cleaning dentin surface contamination with phosphoric acid and chlorhexidine had better performance than with Katana Cleaner.


Subject(s)
Dental Bonding , Dentin , Hemostatics , Resin Cements , Shear Strength , Humans , Dentin/drug effects , Hemostatics/pharmacology , Dental Bonding/methods , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Materials Testing/methods , Surface Properties/drug effects , Dentin-Bonding Agents , Ferric Compounds/chemistry
3.
Carbohydr Polym ; 337: 122135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710549

ABSTRACT

The biggest obstacle to treating wound healing continues to be the production of simple, inexpensive wound dressings that satisfy the demands associated with full process of repair at the same time. Herein, a series of injectable composite hydrogels were successfully prepared by a one-pot method by utilizing the Schiff base reaction as well as hydrogen bonding forces between hydroxypropyl chitosan (HCS), ε-poly-l-lysine (EPL), and 2,3,4-trihydroxybenzaldehyde (TBA), and multiple cross-links formed by the reversible coordination between iron (III) and pyrogallol moieties. Notably, hydrogel exhibits excellent physicochemical properties, including injectability, self-healing, water retention, and adhesion, which enable to fill irregular wounds for a long period, providing a suitable moist environment for wound healing. Interestingly, the excellent hemostatic properties of the hydrogel can quickly stop bleeding and avoid the serious sequelae of massive blood loss in acute trauma. Moreover, the powerful antimicrobial and antioxidant properties also protect against bacterial infections and reduce inflammation at the wound site, thus promoting healing at all stages of the wound. The study of biohydrogel with multifunctional integration of wound treatment and smart medical treatment is clarified by this line of research.


Subject(s)
Chitosan , Hemostatics , Hydrogels , Polylysine , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Polylysine/chemistry , Polylysine/pharmacology , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Rats
4.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731410

ABSTRACT

Cirsium japonicum Fisch. ex DC. (CF) and Cirsium setosum (Willd.) MB (CS) are commonly used clinically to stop bleeding and eliminate carbuncles. Still, CF is mainly used for treating inflammation, while CS favors hemostasis. Therefore, the present study used UHPLC-MS to analyze the main chemical constituents in CF-CS extract. We optimized the extraction process using single-factor experiments and response surface methodology. Afterward, the hemostatic and anti-inflammatory effects of CF-CS extract were investigated by determining the clotting time in vitro, the bleeding time of rabbit trauma, and the induction of rabbit inflammation using xylene and lipopolysaccharide. The study of hemostatic and anti-inflammatory effects showed that the CF-CS, CF, and CS extract groups could significantly shorten the coagulation time and bleeding time of rabbits compared with the blank group (p < 0.01); compared with the model group, it could dramatically inhibit xylene-induced ear swelling in rabbits and the content of TNF-α, IL-6, and IL-1ß in the serum of rabbits (p < 0.01). The results showed that combined CF and CS synergistically increased efficacy. CF-CS solved the problem of the single hemostatic and anti-inflammatory efficacy of a single drug, which provided a new idea for the research and development of natural hemostatic and anti-inflammatory medicines.


Subject(s)
Anti-Inflammatory Agents , Cirsium , Hemostatics , Plant Extracts , Animals , Rabbits , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cirsium/chemistry , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Inflammation/drug therapy , Inflammation/pathology , Male
5.
Best Pract Res Clin Gastroenterol ; 69: 101912, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38749579

ABSTRACT

Endoscopic resection techniques have evolved over time, allowing effective and safe resection of the majority of pre-malignant and early cancerous lesions in the gastrointestinal tract. Bleeding is one of the most commonly encountered complications during endoscopic resection, which can interfere with the procedure and result in serious adverse events. Intraprocedural bleeding is relatively common during endoscopic resection and, in most cases, is a mild and self-limiting event. However, it can interfere with the completion of the resection and may result in negative patient-related outcomes in severe cases, including the need for hospitalization and blood transfusion as well as the requirement for radiological or surgical interventions. Appropriate management of intraprocedural bleeding can improve the safety and efficacy of endoscopic resection, and it can be readily achieved with the use of several endoscopic hemostatic tools. In this review, we discuss the recent advances in the approach to intraprocedural bleeding complicating endoscopic resection, with a focus on the various endoscopic hemostatic tools available to manage such events safely and effectively.


Subject(s)
Gastrointestinal Hemorrhage , Hemostasis, Endoscopic , Humans , Hemostasis, Endoscopic/methods , Hemostasis, Endoscopic/adverse effects , Hemostasis, Endoscopic/instrumentation , Gastrointestinal Hemorrhage/surgery , Gastrointestinal Hemorrhage/etiology , Treatment Outcome , Endoscopy, Gastrointestinal/adverse effects , Endoscopy, Gastrointestinal/methods , Blood Loss, Surgical/prevention & control , Hemostatics/administration & dosage , Hemostatics/therapeutic use
6.
Best Pract Res Clin Gastroenterol ; 69: 101907, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38749583

ABSTRACT

A significant problem encountered in the resection of large, complex colonic polyps is delayed bleeding. This can occur up to two weeks after the procedure and is a significant source of comorbidity. Untreated it can prove life threatening. It is therefore a priority of modern endoscopy to develop and employ techniques to minimaize this. In this article we will review and discuss the evidence base and controversies in this field, with cold EMR technique, Post-EMR clip closure, and topical haemostatic agents.


Subject(s)
Colonic Polyps , Colonoscopy , Postoperative Hemorrhage , Humans , Colonic Polyps/surgery , Postoperative Hemorrhage/prevention & control , Postoperative Hemorrhage/etiology , Colonoscopy/adverse effects , Endoscopic Mucosal Resection/adverse effects , Time Factors , Hemostatics/therapeutic use , Hemostatics/administration & dosage , Treatment Outcome , Gastrointestinal Hemorrhage/prevention & control , Gastrointestinal Hemorrhage/etiology
7.
J Tradit Chin Med ; 44(3): 537-544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767638

ABSTRACT

OBJECTIVE: To explore the early hemostatic mechanism of Jianpi Yiqi Shexue decoction (, JYSD) in treating immune thrombocytopathy (ITP), based on the functional homeostasis of brain-intestine axis and blood neurotransmitter METHODS: Non-drug treatment cases: Healthy volunteers were selected as normal control group and compared with patients with dysfunctional uterine bleeding, gastrointestinal tumors with bleeding and ITP, to detect the changes of blood 5-hydroxytryptamine (5-HT), ß-endorphin (ß-EP), vasoactive intestinal peptide (VIP) and compare the changes of blood neuro-transmitters in patients with different disease symptoms. Drug treatment cases: According to the randomized controlled multicenter clinical trial, 272 ITP patients were randomly divided into three groups: treatment group (JYSD) combined group (JYSD + Prednisone) control group (Prednisone). The changes of blood neuro-transmitter (5-HT, ß-EP, VIP) before and after treatment were detected on the basis of peripheral blood platelet (PLT) and grade score. RESULTS: Non-drug treatment cases: compared with the normal control group, the 5-HT level was higher, and the VIP and ß-EP levels were both lower in the ITP group (P < 0.001), and the 5-HT, VIP and ß-EP levels in the Gastrointestinal tumors with bleeding group were also lower compared with the normal control group (P < 0.05, 0.001). Drug treatment cases: The PLT grading scores of the combination group and the control group after treatment were lower than that before treatment (P < 0.05, 0.001). The PLT grading score of the 3 groups were compared in pairs after treatment: the combination group was the lowest among the 3 groups, which was better than the treatment group, but no better than the control group (vs the treatment group, P = 0.005, vs the control group, P = 0.709). The statistical results of full analysis set (FAS) and per protocol set (PPS) were consistent. The bleeding symptom scores of the treatment and combination groups began to drop 7 d after treatment, and kept dropping 14 d after treatment until the end of the study (P < 0.05). On the other hand, the control group started to show favorable results 14 d after treatment (P < 0.05). The FAS and PPS analysis results were consistent. In the control group, the 5-HT level was higher and VIP level was lower after treatment, compared with those before treatment (P < 0.05, 0.001). The ß-EP levels were both increased in the treatment and combination group after treatment, compared with those before treatment (P < 0.05). After treatment, the ß-EP levels in the treatment and control groups were significantly lower compared with the combination groups (P < 0.05). After treatment, compared with the control group, the VIP levels in the treatment and combination groups were up-regulated, and the differences were statistically significant by rank sum test (P < 0.01), and by t-test (P = 0.0002, 0.0001). CONCLUSIONS: The prednisone tablet is better than the JYSD in increasing the level of PLT, while prednisone tablet combined with JYSD has more advantages in improving patients' peripheral blood PLT levels. However, in improving the bleeding time of ITP patients, the combination of the two drugs was significantly delayed compared with the single usage, showing the characteristics and advantages of traditional Chinese medicine. JYSD can regulate the neurotransmitter level of ITP patients through the function of the brain-gut axis, mobilize 5-HT in the blood of ITP patients to promote the contraction of blood vessels and smooth muscles, and activate the coagulation mechanism are the early hemostatic mechanisms of JYSD. Up-regulate the levels of ß-EP and balancing VIP levels may be an important part of the immune mechanism of JYSD for regulating ITP patients.


Subject(s)
Drugs, Chinese Herbal , Serotonin , Humans , Drugs, Chinese Herbal/administration & dosage , Female , Middle Aged , Adult , Male , Serotonin/blood , Aged , Young Adult , Vasoactive Intestinal Peptide/blood , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/blood , beta-Endorphin/blood , Adolescent , Hemostatics/administration & dosage , Hemostasis/drug effects
8.
Brain Behav ; 14(5): e3540, 2024 May.
Article in English | MEDLINE | ID: mdl-38778788

ABSTRACT

INTRODUCTION: One of the most serious complications associated with antiplatelet agents is antiplatelet-associated intracranial hemorrhage (AA-ICH). Desmopressin is a synthetic antidiuretic hormone (ADH) analog. It has been linked to improving patient outcomes in antiplatelet-induced intracranial hemorrhage. The secondary outcomes included the incidence of thrombotic complications and neurological outcomes. METHODS: A systematic search was conducted on three databases (PubMed, Cochrane, and ClinicalTrials.gov) to find eligible literature that compares desmopressin (DDAVP) versus controls in patients with AA-ICH. The Mantel-Haenszel statistic was used to determine an overall effect estimate for each outcome by calculating the risk ratios and 95% confidence intervals (CI). Heterogeneity was measured using the I2 test. The risk of bias in studies was calculated using the New Castle Ottowa Scale. RESULTS: Five studies were included in the analysis with a total of 598 patients. DDAVP was associated with a nonsignificant decrease in the risk of hematoma expansion (RR = .8, 95% CI,.51-1.24; p = .31, I2 = 44%). It was also associated with a non-significant decrease in the risk of thrombotic events (RR,.83; 95% CI,.25-2.76; p = .76, I2 = 30%). However, patients in the DDAVP group demonstrated a significant increase in the risk of poor neurological outcomes (RR, 1.31; 95% CI, 1.07-1.61; p = .01, I2 = 0%). The risk of bias assessment showed a moderate to low level of risk. CONCLUSION: DDAVP was associated with a nonsignificant decrease in hematoma expansion and thrombotic events. However, it was also associated with a significantly poor neurological outcome in the patients. Thus, until more robust clinical trials are conducted, the use of DDAVP should be considered on a case-to-case basis.


Subject(s)
Deamino Arginine Vasopressin , Hematoma , Intracranial Hemorrhages , Platelet Aggregation Inhibitors , Deamino Arginine Vasopressin/adverse effects , Deamino Arginine Vasopressin/administration & dosage , Humans , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/administration & dosage , Intracranial Hemorrhages/chemically induced , Hematoma/chemically induced , Hemostatics/adverse effects , Hemostatics/administration & dosage
9.
Carbohydr Polym ; 338: 122148, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763731

ABSTRACT

Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.


Subject(s)
Alginates , Gels , Hemostasis , Hemostatics , Alginates/chemistry , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Hemostasis/drug effects , Gels/chemistry , Porosity , Hemorrhage/drug therapy , Blood Coagulation/drug effects , Mice , Male , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
10.
Cochrane Database Syst Rev ; 5: CD013421, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38695613

ABSTRACT

BACKGROUND: During vascular interventions, connections that link arteries, veins, or synthetic grafts, which are known as an 'anastomosis', may be necessary. Vascular anastomoses can bleed from the needle holes that result from the creation of the anastomoses. Various surgical options are available for achieving hemostasis, or the stopping of bleeding, including the application of sealants directly onto the bleeding vessels or tissues. Sealants are designed for use in vascular surgery as adjuncts when conventional interventions are ineffective and are applied directly by the surgeon to seal bleeding anastomoses. Despite the availability of several different types of sealants, the evidence for the clinical efficacy of these hemostatic adjuncts has not been definitively established in vascular surgery patients. OBJECTIVES: To evaluate the benefits and harms of sealants as adjuncts for achieving anastomotic site hemostasis in patients undergoing vascular surgery. SEARCH METHODS: The Cochrane Vascular Information Specialist conducted systematic searches of the following databases: the Cochrane Vascular Specialised Register via the Cochrane Register of Studies; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE via Ovid; Embase via Ovid ; and CINAHL via EBSCO. We also searched ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform for clinical trials. Reference lists of included trials and relevant reviews were also searched. The latest search date was 6 March 2023. SELECTION CRITERIA: We included randomized controlled trials that compared fibrin or synthetic sealant use with alternative interventions (e.g. manual compression, reversal of anticoagulation) for achieving anastomotic-site hemostasis in vascular surgery procedures. We included participants who underwent the creation of an anastomosis during vascular surgery. We excluded non-vascular surgery patients. DATA COLLECTION AND ANALYSIS: We have used standard Cochrane methods. Our primary outcomes were time to hemostasis, failure of hemostatic intervention, and intraoperative blood loss. Our secondary outcomes were operating time, death from bleeding complications up to 30 days, postoperative bleeding up to 30 days, unplanned return to the operating room for bleeding complications management up to 30 days, quality of life, and adverse events. We used GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS: We found 24 randomized controlled trials that included a total of 2376 participants who met the inclusion criteria. All trials compared sealant use with standard care controls, including oxidized cellulose, gelatin sponge, and manual compression. All trials were at high risk of performance bias, detection bias, and other sources of bias. We downgraded the certainty of evidence for risk of bias concerns, inconsistency, imprecision and possible publication bias. Combining data on time to hemostasis showed that sealant use may reduce the mean time to hemostasis compared to control (mean difference (MD) -230.09 seconds, 95% confidence interval (CI) -329.24 to -130.94; P < 0.00001; 7 studies, 498 participants; low-certainty evidence). Combining data on failure of hemostatic intervention showed that sealant use may reduce the rate of failure compared to control, but the evidence is very uncertain (risk ratio (RR) 0.46, 95% CI 0.35 to 0.61; P < 0.00001; 17 studies, 2120 participants; very low-certainty evidence). We did not detect any clear differences between the sealant and control groups for intraoperative blood loss (MD -32.69 mL, 95% CI -96.21 to 30.83; P = 0.31; 3 studies, 266 participants; low-certainty evidence); operating time (MD -18.72 minutes, 95% CI -40.18 to 2.73; P = 0.09; 4 studies, 436 participants; low-certainty evidence); postoperative bleeding (RR 0.78, 95% CI 0.59 to 1.04; P = 0.09; 9 studies, 1216 participants; low-certainty evidence), or unplanned return to the operating room (RR 0.27, 95% CI 0.04 to 1.69; P = 0.16; 8 studies, 721 participants; low-certainty evidence). No studies reported death from bleeding or quality of life outcomes. AUTHORS' CONCLUSIONS: Based on meta-analysis of 24 trials with 2376 participants, our review demonstrated that sealant use for achieving anastomotic hemostasis in vascular surgery patients may result in reduced time to hemostasis, and may reduce rates of hemostatic intervention failure, although the evidence is very uncertain, when compared to standard controls. Our analysis showed there may be no differences in intraoperative blood loss, operating time, postoperative bleeding up to 30 days, and unplanned return to the operating room for bleeding complications up to 30 days. Deaths and quality of life could not be analyzed. Limitations include the risk of bias in all studies. Our review has demonstrated that using sealants may reduce the time required to achieve hemostasis and the rate of hemostatic failure. However, a significant risk of bias was identified in the included studies, and future trials are needed to provide unbiased data and address other considerations such as cost-effectiveness and adverse events with sealant use.


Subject(s)
Anastomosis, Surgical , Hemostasis, Surgical , Randomized Controlled Trials as Topic , Vascular Surgical Procedures , Humans , Hemostasis, Surgical/methods , Hemostatics/therapeutic use , Fibrin Tissue Adhesive/therapeutic use , Blood Loss, Surgical/prevention & control , Tissue Adhesives/therapeutic use
11.
Acta Biomater ; 181: 249-262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704113

ABSTRACT

Endoscopic surgery is an effective and common clinical practice for chronic sinusitis. Nasal packing materials are applied in nasal surgery to prevent hemorrhage and promote wound healing. In this study, a degradable polyurethane foam dressing is successfully developed as a promising nasal packing material with good biocompatibility and antibacterial capability. Specifically, quaternized chitosan (QCS) serves as the crosslinker instead of polyols to offer polyurethane foam (PUF-QCS) antibacterial capability. The PUF-QCS2.0 % (with 2.0 wt% QCS) exhibits satisfactory liquid absorption capacity (19.4 g/g), high compressive strengths at both wet (14.5 kPa) and dry states (7.7 kPa), and a good degradation rate (8.3 %) within 7 days. Meanwhile, PUF-QCS2.0 % retains long-term antibacterial activity for 7 days and kills 97.3 % of S. aureus and 91.8 % of E. coli within 6 hours in antibacterial testing. Furthermore, PUF-QCS2.0 % demonstrates a positive hemostatic response in the rabbit nasal septum mucosa trauma model by reducing hemostatic time over 50.0 % and decreasing blood loss up to 76.1 % compared to the commercial PVA nasal packing sponge. Importantly, PUF-QCS also exhibits a significant antibacterial activity in nasal cavity. This nasal packing material has advantages in post-surgery bleeding control and infection prevention. STATEMENT OF SIGNIFICANCE: The performance of a nasal packing sponge requires good mechanical properties, fast and high liquid absorption rate, effective degradability and strong antibacterial activity. These features are helpful for improving the postoperative recovery and patient healing. However, integrating these into a single polyurethane foam is a challenge. In this study, quaternized chitosan (QCS) is synthesized and used as a chain extender and antibacterial agent in preparing a degradable polyurethane foam (PUF-QCS) dressing. PUF-QCS undergoes partial degradation and exhibits effective broad-spectrum antibacterial activity in 7 days. The reduction of postoperative bleeding and infection observed in the animal experiment further demonstrates that the PUF-QCS developed here outperforms the existing commercial nasal packing materials.


Subject(s)
Anti-Bacterial Agents , Chitosan , Polyurethanes , Polyurethanes/chemistry , Polyurethanes/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Rabbits , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemostasis/drug effects , Staphylococcus aureus/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Bandages , Escherichia coli/drug effects , Male
13.
Int J Biol Macromol ; 270(Pt 2): 132174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750842

ABSTRACT

Hydrogels containing catechol group have received attention in the biomedical field due to their robust adhesive/cohesive capabilities, biocompatibility, and hemostatic abilities. Catechol-functionalized chitosan holds promise for preparing self-assembly hydrogels. However, issues of inefficient gelation and instability still persist in these hydrogels. In the current study, we synthesized chitosan catechol (CC) of high catechol substitution (∼28 %) and combined CC with tannic acid (TA, which also contains catechol) to form self-healing CC-TA hydrogels. The catechol-enriched CC-TA composite hydrogels showed rapid gelation and mechanical reinforcement (shear modulus ∼110 Pa). In situ coherent small-angle X-ray scattering (SAXS) coupled with rheometry revealed a morphological feature of mesoscale clusters (∼20 nm) within CC-TA hydrogel. The clusters underwent dynamic destruction under large-amplitude oscillatory shear, corresponding with the strain-dependent and self-healing behavior of the CC-TA hydrogel. The composite hydrogel had osmotic-responsive and notable adhesive properties. Meanwhile, CC-TA composite cryogel prepared simply through freeze-thawing procedures exhibited distinctive macroporous structure (∼200 µm), high water swelling ratio (∼7000 %), and favorable compressive modulus (∼8 kPa). The sponge-like cryogel was fabricated into swabs, demonstrating hemostatic capacity. The CC-TA composites, in both hydrogel and cryogel forms, possessed ROS scavenging ability, antimicrobial activity, and cell compatibility with potentials in biological applications.


Subject(s)
Catechols , Chitosan , Cryogels , Hemostatics , Hydrogels , Tannins , Chitosan/chemistry , Chitosan/pharmacology , Catechols/chemistry , Catechols/pharmacology , Tannins/chemistry , Tannins/pharmacology , Cryogels/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Animals , Rheology
14.
Int J Biol Macromol ; 270(Pt 2): 132440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761899

ABSTRACT

Hemostatic powder is widely utilized in emergency situations to control bleeding due to its ability to work well on wounds with irregular shapes, ease of application, and long-term stability. However, traditional powder often suffers from limited tissue adhesion and insufficient support for blood clot formation, leaving it susceptible to displacement by the flow of blood. This study introduces a hemostatic powder composed of tannic modified mesoporous bioactive glass (TMBG), cationic quaternized chitosan (QCS), and anionic hyaluronic acid modified with catechol group (HADA). The resulting TMBG/QCS/HADA based hemostatic powder (TMQH) rapidly absorbs plasma, concentrating blood coagulation factors. Simultaneously, the water-soluble QCS and HADA interact to form a 3D network structure, which can be strengthened by crosslinking with TMBG. This network effectively captures clustered blood coagulation factors, leading to a strong and adhesive thrombus that resists disruption from blood flow. TMQH exhibits superior efficacy in promoting hemostasis compared to Celox™ both in rat arterial injuries and non-compressible liver puncture wounds. TMQH demonstrates excellent antibacterial activity, cytocompatibility, and blood compatibility. These outstanding superiorities in blood clotting capability, wet tissue adhesion, antibacterial activity, safety for living organisms, ease of application, and long-term stability, make TMQH highly suitable for emergency hemostasis.


Subject(s)
Blood Coagulation , Hemostatics , Powders , Tannins , Animals , Rats , Blood Coagulation/drug effects , Tannins/chemistry , Tannins/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Porosity , Glass/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Gels/chemistry , Humans , Adhesives/chemistry , Adhesives/pharmacology , Male , Rats, Sprague-Dawley , Hemostasis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
15.
J Ethnopharmacol ; 331: 118330, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38740109

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chromolaenaodorata (L.) R.M. King & H. Rob, a perennial herb, has been traditionally utilized as a herbal remedy for treating leech bites, soft tissue wounds, burn wounds, skin infections, and dento-alveolitis in tropical and subtropical regions. AIM OF THE STUDY: The present study was to analyze the active fraction of C. odorata ethanol extract and investigate its hemostatic, anti-inflammatory, wound healing, and antimicrobial properties. Additionally, the safety of the active fraction as an external preparation was assessed through skin irritation and allergy tests. MATERIALS AND METHODS: The leaves and stems of C. odorata were initially extracted with ethanol, followed by purification through AB-8 macroporous adsorption resin column chromatography to yield different fractions. These fractions were then screened for hemostatic activity in mice and rabbits to identify the active fraction. Subsequently, the hemostatic effect of the active fraction was assessed through the bleeding time of the rabbit ear artery in vivo and the coagulant time of rabbit blood in vitro. The anti-inflammatory activity of the active fraction was tested on mice ear edema induced by xylene and rat paw edema induced by carrageenin. Furthermore, the active fraction's promotion effect on wound healing was evaluated using a rat skin injury model, and skin safety tests were conducted on rabbits and guinea pigs. Lastly, antimicrobial activities against two Gram-positive bacteria (G+, Staphylococcus aureus and S. epidermidis) and three Gram-negative bacteria (G-, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were determined using the plate dilution method. RESULTS: The ethanol extract of C. odorata leaves and stems was fractionated into 30%, 60%, and 90% ethanol eluate fractions. These fractions demonstrated hemostatic activity, with the 30% ethanol eluate fraction (30% EEF) showing the strongest effect, significantly reducing bleeding time (P < 0.05). A concentration of 1.0 g/mL of the 30% EEF accelerated cutaneous wound healing in rats on the 3rd, 6th, and 9th day post-operation, with the healing effect increasing over time. No irritation or allergy reactions were observed in rabbits and guinea pigs exposed to the 30% EEF. Additionally, the 30% EEF exhibited mild inhibitory effect on mice ear and rat paw edema, as well as antimicrobial activity against tested bacteria, with varying minimal inhibitory concentration (MIC) values. CONCLUSIONS: The 30% EEF demonstrated a clear hemostatic effect on rabbit bleeding time, a slight inhibitory effect on mice ear edema and rat paw edema, significant wound healing activity in rats, and no observed irritation or allergic reactions. Antibacterial activity was observed against certain clinically isolated bacteria, particularly the G- bacteria. This study lays the groundwork for the potential development and application of C. odorata in wound treatment.


Subject(s)
Anti-Inflammatory Agents , Chromolaena , Edema , Ethanol , Hemostatics , Plant Extracts , Wound Healing , Animals , Rabbits , Wound Healing/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Mice , Male , Hemostatics/pharmacology , Ethanol/chemistry , Chromolaena/chemistry , Edema/drug therapy , Edema/chemically induced , Rats , Skin/drug effects , Female , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Plant Leaves/chemistry , Hypersensitivity/drug therapy , Xylenes , Plant Stems/chemistry
16.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2710-2721, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812171

ABSTRACT

Studies have reported that the hemostatic effect of Sanguisorbae Radix(SR) is significantly enhanced after processing with charcoal. However, the standard components(tannins and gallic acid) specified in the Chinese Pharmacopeia decrease in charcoal-fried Sanguisorbae Radix(CSR), which is contrast to the enhancement of the hemostatic effect. Therefore, this study aimed to optimize the charcoal-frying process of SR based on its hemostatic efficacy and comprehensively analyze the components of SR and its processed products, thus exploring the material basis for the hemostatic effect. The results indicated that SR processed at 250 ℃ for 14 min(14-min CSR) not only complied with the description in the Chinese Pharmacopeia but also demonstrated improved blood-coagulating and blood-adsorbing effects compared with raw SR(P<0.05). Moroever, 14-min CSR reduced the bleeding time in the rat models of tail snipping, liver bleeding, and muscle injury, surpassing both raw and excessively fried SR(16 min processed) as well as tranexamic acid(P<0.05). Ellagitannin, ellagic acid, methyl gallate, pyrogallic acid, protocatechuic acid, Mg, Ca, Mn, Cu, and Zn contributed to the hemostatic effect of CSR over SR. Among these substances, ellagitannin, ellagic acid, Mg, and Ca had high content in the 14 min CSR, reaching(106.73±14.87),(34.86±4.43),(2.81±0.23), and(1.21±0.23) mg·g~(-1), respectively. Additionally, the color difference value(ΔE~*ab) of SR processed to different extents was correlated with the content of the aforementioned hemostatic substances. In summary, this study optimized the charcoal-frying process as 250 ℃ for 14 min for SR based on its hemostatic effect. Furthermore, ellagic acid and/or the powder chromaticity are proposed as indicators for the processing and quality control of CSR.


Subject(s)
Charcoal , Drugs, Chinese Herbal , Hemostatics , Rats, Sprague-Dawley , Sanguisorba , Animals , Rats , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Hemostatics/pharmacology , Hemostatics/chemistry , Sanguisorba/chemistry , Charcoal/chemistry , Male , Cooking , Blood Coagulation/drug effects , Humans
19.
Platelets ; 35(1): 2337907, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38602463

ABSTRACT

Protein S (PS) is a vital endogenous anticoagulant. It plays a crucial role in regulating coagulation by acting as a cofactor for the activated protein C (APC) and tissue factor pathway inhibitor (TFPI) pathways. Additionally, it possesses direct anticoagulant properties by impeding the intrinsic tenase and prothrombinase complexes. Protein S oversees the coagulation process in both the initiation and propagation stages through these roles. The significance of protein S in regulating blood clotting can be inferred from the significant correlation between deficits in protein S and an elevated susceptibility to venous thrombosis. This is likely because activated protein C and tissue factor pathway inhibitor exhibit low efficacy as anticoagulants when no cofactors exist. The precise biochemical mechanisms underlying the roles of protein S cofactors have yet to be fully elucidated. Nevertheless, recent scientific breakthroughs have significantly enhanced comprehension findings for these functions. The diagnosis of protein S deficiency, both from a technical and genetic standpoint, is still a subject of debate due to the complex structural characteristics of the condition. This paper will provide an in-depth review of the molecular structure of protein S and its hemostatic effects. Furthermore, we shall address the insufficiency of protein S and its methods of diagnosis and treatment.


What is the purpose of this summary? To provide an in-depth review of the molecular structure of protein S and its hemostatic effects.To address the deficiency of protein S and its methods of diagnosis and treatment.What is known? Protein S operates as an anticoagulant through its roles as a cofactor for APC, TFPI, and an inhibitor of FIXa.Protein S deficiency can be either inherited or acquired.What is new? Plasma protein S and platelet-derived protein S contribute to regulating coagulation and maintaining hemostasis. Protein S can be used as a potential promising treatment target for persons diagnosed with hemophilia.


Subject(s)
Anticoagulants , Hemostatics , Humans , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Protein C , Blood Coagulation
20.
Int J Mol Sci ; 25(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38612447

ABSTRACT

Hemophilia A (HA) is a common X-linked recessive hereditary bleeding disorder. Coagulation factor VIII (FVIII) is insufficient in patients with HA due to the mutations in the F8 gene. The restoration of plasma levels of FVIII via both recombinant B-domain-deleted FVIII (BDD-FVIII) and B-domain-deleted F8 (BDDF8) transgenes was proven to be helpful. FVIII-Padua is a 23.4 kb tandem repeat mutation in the F8 associated with a high F8 gene expression and thrombogenesis. Here we screened a core enhancer element in FVIII-Padua for improving the F8 expression. In detail, we identified a 400 bp efficient enhancer element, C400, in FVIII-Padua for the first time. The core enhancer C400 extensively improved the transcription of BDDF8 driven by human elongation factor-1 alpha in HepG2, HeLa, HEK-293T and induced pluripotent stem cells (iPSCs) with different genetic backgrounds, as well as iPSCs-derived endothelial progenitor cells (iEPCs) and iPSCs-derived mesenchymal stem cells (iMSCs). The expression of FVIII protein was increased by C400, especially in iEPCs. Our research provides a novel molecular target to enhance expression of FVIII protein, which has scientific value and application prospects in both viral and nonviral HA gene therapy strategies.


Subject(s)
Hemophilia A , Hemostatics , Humans , Factor VIII/genetics , Hemophilia A/genetics , Hemophilia A/therapy , Genetic Therapy , Enhancer Elements, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...