Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Virol ; 98(3): e0183823, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38426726

ABSTRACT

Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE: Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.


Subject(s)
Henipavirus Infections , Henipavirus , Receptors, Virus , Humans , Amino Acids/genetics , Antibodies, Monoclonal/metabolism , Carrier Proteins/metabolism , Ephrin-B3/genetics , Ephrin-B3/chemistry , Ephrin-B3/metabolism , Epitopes/genetics , Epitopes/metabolism , Ghana , Hendra Virus/metabolism , Henipavirus/classification , Henipavirus/genetics , Henipavirus/metabolism , Mutagenesis , Nipah Virus/metabolism , Viral Envelope Proteins/genetics , Virus Internalization , Receptors, Virus/metabolism
2.
J Virol ; 96(18): e0092122, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36040175

ABSTRACT

The genus Henipavirus (family Paramyxoviridae) currently comprises seven viruses, four of which have demonstrated prior evidence of zoonotic capacity. These include the biosafety level 4 agents Hendra (HeV) and Nipah (NiV) viruses, which circulate naturally in pteropodid fruit bats. Here, we describe and characterize Angavokely virus (AngV), a divergent henipavirus identified in urine samples from wild, Madagascar fruit bats. We report the nearly complete 16,740-nucleotide genome of AngV, which encodes the six major henipavirus structural proteins (nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, and L polymerase). Within the phosphoprotein (P) gene, we identify an alternative start codon encoding the AngV C protein and a putative mRNA editing site where the insertion of one or two guanine residues encodes, respectively, additional V and W proteins. In other paramyxovirus systems, C, V, and W are accessory proteins involved in antagonism of host immune responses during infection. Phylogenetic analysis suggests that AngV is ancestral to all four previously described bat henipaviruses-HeV, NiV, Cedar virus (CedV), and Ghanaian bat virus (GhV)-but evolved more recently than rodent- and shrew-derived henipaviruses, Mojiang (MojV), Gamak (GAKV), and Daeryong (DARV) viruses. Predictive structure-based alignments suggest that AngV is unlikely to bind ephrin receptors, which mediate cell entry for all other known bat henipaviruses. Identification of the AngV receptor is needed to clarify the virus's potential host range. The presence of V and W proteins in the AngV genome suggest that the virus could be pathogenic following zoonotic spillover. IMPORTANCE Henipaviruses include highly pathogenic emerging zoonotic viruses, derived from bat, rodent, and shrew reservoirs. Bat-borne Hendra (HeV) and Nipah (NiV) are the most well-known henipaviruses, for which no effective antivirals or vaccines for humans have been described. Here, we report the discovery and characterization of a novel henipavirus, Angavokely virus (AngV), isolated from wild fruit bats in Madagascar. Genomic characterization of AngV reveals all major features associated with pathogenicity in other henipaviruses, suggesting that AngV could be pathogenic following spillover to human hosts. Our work suggests that AngV is an ancestral bat henipavirus that likely uses viral entry pathways distinct from those previously described for HeV and NiV. In Madagascar, bats are consumed as a source of human food, presenting opportunities for cross-species transmission. Characterization of novel henipaviruses and documentation of their pathogenic and zoonotic potential are essential to predicting and preventing the emergence of future zoonoses that cause pandemics.


Subject(s)
Chiroptera , Genome, Viral , Henipavirus Infections , Henipavirus , Nipah Virus , Animals , Chiroptera/genetics , Genome, Viral/genetics , Glycoproteins/genetics , Henipavirus/classification , Henipavirus/genetics , Henipavirus Infections/virology , Humans , Madagascar , Nipah Virus/genetics , Phylogeny , Urine/virology , Zoonoses/genetics
3.
Lancet Infect Dis ; 22(1): e13-e27, 2022 01.
Article in English | MEDLINE | ID: mdl-34735799

ABSTRACT

Henipaviruses, including Nipah virus, are regarded as pathogens of notable epidemic potential because of their high pathogenicity and the paucity of specific medical countermeasures to control infections in humans. We review the evidence of medical countermeasures against henipaviruses and project their cost in a post-COVID-19 era. Given the sporadic and unpredictable nature of henipavirus outbreaks, innovative strategies will be needed to circumvent the infeasibility of traditional phase 3 clinical trial regulatory pathways. Stronger partnerships with scientific institutions and regulatory authorities in low-income and middle-income countries can inform coordination of appropriate investments and development of strategies and normative guidelines for the deployment and equitable use of multiple medical countermeasures. Accessible measures should include global, regional, and endemic in-country stockpiles of reasonably priced small molecules, monoclonal antibodies, and vaccines as part of a combined collection of products that could help to control henipavirus outbreaks and prevent future pandemics.


Subject(s)
Disease Outbreaks/prevention & control , Henipavirus Infections/drug therapy , Henipavirus/pathogenicity , Medical Countermeasures , Public Health , Animals , COVID-19/prevention & control , Chiroptera/virology , Clinical Trials, Phase III as Topic , Henipavirus/classification , Henipavirus Infections/prevention & control , Henipavirus Infections/transmission , Humans , Nipah Virus/pathogenicity , SARS-CoV-2/pathogenicity
4.
Viruses ; 13(10)2021 10 07.
Article in English | MEDLINE | ID: mdl-34696450

ABSTRACT

Paramyxoviruses, negative-sense single-stranded RNA viruses, pose a critical threat to human public health. Currently, 78 species, 17 genera, and 4 subfamilies of paramyxoviruses are harbored by multiple natural reservoirs, including rodents, bats, birds, reptiles, and fish. Henipaviruses are critical zoonotic pathogens that cause severe acute respiratory distress and neurological diseases in humans. Using reverse transcription-polymerase chain reaction, 115 Crocidura species individuals were examined for the prevalence of paramyxovirus infections. Paramyxovirus RNA was observed in 26 (22.6%) shrews collected at five trapping sites, Republic of Korea. Herein, we report two genetically distinct novel paramyxoviruses (genus: Henipavirus): Gamak virus (GAKV) and Daeryong virus (DARV) isolated from C. lasiura and C. shantungensis, respectively. Two GAKVs and one DARV were nearly completely sequenced using next-generation sequencing. GAKV and DARV contain six genes (3'-N-P-M-F-G-L-5') with genome sizes of 18,460 nucleotides and 19,471 nucleotides, respectively. The phylogenetic inference demonstrated that GAKV and DARV form independent genetic lineages of Henipavirus in Crocidura species. GAKV-infected human lung epithelial cells elicited the induction of type I/III interferons, interferon-stimulated genes, and proinflammatory cytokines. In conclusion, this study contributes further understandings of the molecular prevalence, genetic characteristics and diversity, and zoonotic potential of novel paramyxoviruses in shrews.


Subject(s)
Henipavirus/classification , Henipavirus/genetics , Paramyxovirinae/classification , Paramyxovirinae/genetics , Phylogeny , Shrews/virology , Animals , Biodiversity , Birds/virology , Chiroptera/virology , Fishes/virology , Henipavirus/isolation & purification , High-Throughput Nucleotide Sequencing , Interferons , Paramyxovirinae/isolation & purification , RNA Viruses/classification , Reptiles/virology , Republic of Korea , Rodentia/virology , Viral Zoonoses/virology
5.
Viruses ; 12(4)2020 04 23.
Article in English | MEDLINE | ID: mdl-32340278

ABSTRACT

The genus Henipavirus (HNVs) includes two fatal viruses, namely Nipah virus (NiV) and Hendra virus (HeV). Since 1994, NiV and HeV have been endemic to the Asia-Pacific region and responsible for more than 600 cases of infections. Two emerging HNVs, Ghana virus (GhV) and Mojiang virus (MojV), are speculated to be associated with unrecognized human diseases in Africa and China, respectively. Despite many efforts to develop vaccines against henipaviral diseases, there is presently no licensed human vaccine. As HNVs are highly pathogenic and diverse, it is necessary to develop universal vaccines to prevent future outbreaks. The attachment enveloped glycoprotein (G protein) of HNVs mediates HNV attachment to the host cell's surface receptors. G proteins have been used as a protective antigen in many vaccine candidates for HNVs. We performed quantitative studies on the antibody responses elicited by the G proteins of NiV, HeV, GhV, and MojV. We found that the G proteins of NiV and HeV elicited only a limited cross-reactive antibody response. Further, there was no cross-protection between MojV, GhV, and highly pathogenic HNVs. We then constructed a bivalent vaccine where the G proteins of NiV and HeV were fused with the human IgG1 Fc domain. The immunogenicity of the bivalent vaccine was compared with that of monovalent vaccines. Our results revealed that the Fc-based bivalent vaccine elicited a potent antibody response against both NiV and HeV. We also constructed a tetravalent Fc heterodimer fusion protein that contains the G protein domains of four HNVs. Immunization with the tetravalent vaccine elicited broad antibody responses against NiV, HeV, GhV, and MojV in mice, indicating compatibility among the four antigens in the Fc-fusion protein. These data suggest that our novel bivalent and tetravalent Fc-fusion proteins may be efficient candidates to prevent HNV infection.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Henipavirus Infections/prevention & control , Henipavirus/genetics , Henipavirus/immunology , Immunoglobulin Fc Fragments/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Hendra Virus/immunology , Henipavirus/classification , Mice , Neutralization Tests , Nipah Virus/immunology , Phylogeny , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
6.
Viruses ; 10(11)2018 11 01.
Article in English | MEDLINE | ID: mdl-30388838

ABSTRACT

Hendra virus (HeV) and Nipah virus (NiV) are among a group of emerging bat-borne paramyxoviruses that have crossed their species-barrier several times by infecting several hosts with a high fatality rate in human beings. Despite the fatal nature of their infection, a comprehensive study to explore their evolution and adaptation in different hosts is lacking. A study of codon usage patterns in henipaviruses may provide some fruitful insight into their evolutionary processes of synonymous codon usage and host-adapted evolution. Here, we performed a systematic evolutionary and codon usage bias analysis of henipaviruses. We found a low codon usage bias in the coding sequences of henipaviruses and that natural selection, mutation pressure, and nucleotide compositions shapes the codon usage patterns of henipaviruses, with natural selection being more important than the others. Also, henipaviruses showed the highest level of adaptation to bats of the genus Pteropus in the codon adaptation index (CAI), relative to the codon de-optimization index (RCDI), and similarity index (SiD) analyses. Furthermore, a comparison to recently identified henipa-like viruses indicated a high tRNA adaptation index of henipaviruses for human beings, mainly due to F, G and L proteins. Consequently, the study concedes the substantial emergence of henipaviruses in human beings, particularly when paired with frequent exposure to direct/indirect bat excretions.


Subject(s)
Codon , Evolution, Molecular , Henipavirus Infections/virology , Henipavirus/genetics , Host Specificity , Host-Pathogen Interactions , Selection, Genetic , Adaptation, Biological , Animals , Chiroptera/virology , Genome, Viral , Genomics/methods , Henipavirus/classification , Humans , Phylogeny
8.
Emerg Infect Dis ; 21(2): 328-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25626011

ABSTRACT

During 2014, henipavirus infection caused severe illness among humans and horses in southern Philippines; fatality rates among humans were high. Horse-to-human and human-to-human transmission occurred. The most likely source of horse infection was fruit bats. Ongoing surveillance is needed for rapid diagnosis, risk factor investigation, control measure implementation, and further virus characterization.


Subject(s)
Disease Outbreaks , Henipavirus Infections/epidemiology , Henipavirus/classification , Adolescent , Adult , Animal Diseases/epidemiology , Animal Diseases/virology , Animals , Base Sequence , Child , Child, Preschool , Female , Henipavirus/genetics , Henipavirus Infections/diagnosis , Henipavirus Infections/history , History, 21st Century , Humans , Male , Middle Aged , Molecular Sequence Data , Molecular Typing , Philippines/epidemiology , Phylogeny , Population Surveillance , Sequence Alignment , Serotyping , Viral Proteins/chemistry , Viral Proteins/genetics , Young Adult
10.
J Gen Virol ; 95(Pt 3): 539-548, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24296468

ABSTRACT

In recent years, novel henipavirus-related sequences have been identified in bats in Africa. To evaluate the potential of African bat henipaviruses to spread in non-bat mammalian cells, we compared the biological functions of the surface glycoproteins G and F of the prototype African henipavirus GH-M74a with those of the glycoproteins of Nipah virus (NiV), a well-characterized pathogenic member of the henipavirus genus. Glycoproteins are central determinants for virus tropism, as efficient binding of henipavirus G proteins to cellular ephrin receptors and functional expression of fusion-competent F proteins are indispensable prerequisites for virus entry and cell-to-cell spread. In this study, we analysed the ability of the GH-M74a G and F proteins to cause cell-to-cell fusion in mammalian cell types readily permissive to NiV or Hendra virus infections. Except for limited syncytium formation in a bat cell line derived from Hypsignathus monstrosus, HypNi/1.1 cells, we did not observe any fusion. The highly restricted fusion activity was predominantly due to the F protein. Whilst GH-M74a G protein was found to interact with the main henipavirus receptor ephrin-B2 and induced syncytia upon co-expression with heterotypic NiV F protein, GH-M74a F protein did not cause evident fusion in the presence of heterotypic NiV G protein. Pulse-chase and surface biotinylation analyses revealed delayed F cleavage kinetics with a reduced expression of cleaved and fusion-active GH-M74a F protein on the cell surface. Thus, the F protein of GH-M74a showed a functional defect that is most likely caused by impaired trafficking leading to less efficient proteolytic activation and surface expression.


Subject(s)
Chiroptera/virology , Glycoproteins/metabolism , Henipavirus Infections/veterinary , Henipavirus/isolation & purification , Henipavirus/metabolism , Viral Proteins/metabolism , Africa , Animals , Chiroptera/metabolism , Glycoproteins/genetics , Henipavirus/classification , Henipavirus/genetics , Henipavirus Infections/metabolism , Henipavirus Infections/virology , Nipah Virus/genetics , Nipah Virus/metabolism , Receptors, Virus/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Proteins/genetics
11.
Vet Microbiol ; 167(1-2): 151-8, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-23993256

ABSTRACT

The Henipavirus genus represents a group of paramyxoviruses that are some of the deadliest of known human and veterinary pathogens. Hendra and Nipah viruses are zoonotic pathogens that can cause respiratory and encephalitic illness in humans with mortality rates that exceed 70%. Over the past several years, we have seen an increase in the number of cases and an altered clinical presentation of Hendra virus in naturally infected horses. Recent increase in the number of cases has also been reported with human Nipah virus infections in Bangladesh. These factors, along with the recent discovery of henipa and henipa-like viruses in Africa, Asia and South and Central America adds, a truly global perspective to this group of emerging viruses.


Subject(s)
Henipavirus Infections/virology , Henipavirus/classification , Henipavirus/physiology , Africa , Animals , Asia , Hendra Virus/classification , Hendra Virus/physiology , Henipavirus Infections/epidemiology , Henipavirus Infections/mortality , Henipavirus Infections/prevention & control , Henipavirus Infections/transmission , Horse Diseases/epidemiology , Horse Diseases/mortality , Horse Diseases/prevention & control , Horse Diseases/transmission , Horses , Humans , Nipah Virus/classification , Nipah Virus/physiology , Zoonoses/epidemiology , Zoonoses/prevention & control , Zoonoses/virology
14.
Emerg Infect Dis ; 16(12): 1997-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21122242

ABSTRACT

To determine seroprevalence of viruses in bats in Papua New Guinea, we sampled 66 bats at 3 locations. We found a seroprevalence of 55% for henipavirus (Hendra or Nipah virus) and 56% for rubulavirus (Tioman or Menangle virus). Notably, 36% of bats surveyed contained antibodies to both types of viruses, indicating concurrent or consecutive infection.


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Henipavirus Infections/veterinary , Henipavirus/classification , Rubulavirus Infections/veterinary , Rubulavirus/classification , Animals , Antibodies, Viral/blood , Chiroptera/blood , Chiroptera/immunology , Henipavirus/isolation & purification , Henipavirus Infections/epidemiology , Papua New Guinea/epidemiology , Rubulavirus/isolation & purification , Rubulavirus Infections/epidemiology , Seroepidemiologic Studies
15.
Comp Immunol Microbiol Infect Dis ; 30(5-6): 287-307, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17629946

ABSTRACT

Following the discovery of two new paramyxoviruses in the 1990s, much effort has been placed on rapidly finding the reservoir hosts, characterising the genomes, identifying the viral receptors and formulating potential vaccines and therapeutic options for these viruses, Hendra and Nipah viruses caused zoonotic disease on a scale not seen before with other paramyxoviruses. Nipah virus particularly caused high morbidity and mortality in humans and high morbidity in pig populations in the first outbreak in Malaysia. Both viruses continue to pose a threat with sporadic outbreaks continuing into the 21st century. Experimental and surveillance studies identified that pteropus bats are the reservoir hosts. Research continues in an attempt to understand events that precipitated spillover of these viruses. Discovered on the cusp of the molecular technology revolution, much progress has been made in understanding these new viruses. This review endeavours to capture the depth and breadth of these recent advances.


Subject(s)
Disease Outbreaks , Henipavirus Infections/epidemiology , Henipavirus Infections/virology , Henipavirus/physiology , Virology/trends , Animals , Asia , Henipavirus/classification , Humans
16.
Science ; 310(5748): 676-9, 2005 Oct 28.
Article in English | MEDLINE | ID: mdl-16195424

ABSTRACT

Severe acute respiratory syndrome (SARS) emerged in 2002 to 2003 in southern China. The origin of its etiological agent, the SARS coronavirus (SARS-CoV), remains elusive. Here we report that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak. These viruses, termed SARS-like coronaviruses (SL-CoVs), display greater genetic variation than SARS-CoV isolated from humans or from civets. The human and civet isolates of SARS-CoV nestle phylogenetically within the spectrum of SL-CoVs, indicating that the virus responsible for the SARS outbreak was a member of this coronavirus group.


Subject(s)
Chiroptera/virology , Coronavirus , Disease Reservoirs , Severe acute respiratory syndrome-related coronavirus , Amino Acid Sequence , Animals , China/epidemiology , Chlorocebus aethiops , Communicable Diseases, Emerging , Coronavirus/classification , Disease Outbreaks , Genetic Variation , Genome, Viral , Henipavirus/classification , Humans , Molecular Sequence Data , Mutation , Phylogeny , Polymerase Chain Reaction , Severe acute respiratory syndrome-related coronavirus/classification , Sequence Analysis, DNA , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Vero Cells , Viverridae/virology
17.
Virology ; 330(1): 178-85, 2004 Dec 05.
Article in English | MEDLINE | ID: mdl-15527844

ABSTRACT

A database search for genes encoding paramyxoviral proteins revealed sequences that were designated as human but presented strong evidence of being of viral origin. The two cDNA-derived sequences designated AngRem104 and AngRem52 were originally described as human gene products that were upregulated by angiotensin II in primary mesangial kidney cells. However, their high degree of sequence relatedness to known viral proteins suggests that they represent the P/C/V, M, and F genes of a putative new member of family Paramyxoviridae. Comparison of deduced amino acid sequences and nucleotide motifs suggests that this putative virus is a divergent relative of the Hendra and Nipah viruses; hence, we suggest henipa-like virus or HNLV as a provisional name. Compared to Nipah virus, the percentage of identical (similar) amino acids varied from 19% (42%) for the C protein to 51% (75%) for the M protein. The presence and conservation of presumptive viral transcription start and stop signals and an apparent P editing motif also indicate a relationship of this putative virus to the henipaviruses. Given the highly pathogenic nature of the henipaviruses, the origin of these sequences is enigmatic, and attempts to identify and isolate HNLV are warranted.


Subject(s)
Henipavirus/classification , Paramyxovirinae/classification , Amino Acid Sequence , Animals , Base Sequence , Conserved Sequence , DNA, Viral/genetics , Genes, Viral , Henipavirus/genetics , Humans , Molecular Sequence Data , Paramyxovirinae/genetics , Phylogeny , Sequence Alignment , Sequence Homology, Amino Acid
18.
Arch Virol Suppl ; (18): 122-31, 2004.
Article in English | MEDLINE | ID: mdl-15119767

ABSTRACT

Hendra virus (HENV) and Nipah virus (NIPV) are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genetic and biological characteristics that differentiate henipaviruses from other members of the subfamily are summarized. Although they do not display neuraminidase and hemagglutination activities and in that regard resemble viruses in the genus Morbillivirus, several recent observations highlight similarities between henipaviruses and respiroviruses (genus Respirovirus) in structure and replication strategy. First, three-dimensional modeling studies suggest that the external globular head domain of the HENV G protein resembles that of respiroviruses rather than morbilliviruses. Second, the pattern of transcriptional attenuation in HENV-infected cells resembles that observed with Sendai virus, a respirovirus, and differs from that found in cells infected with measles virus, a morbillivirus. Henipaviruses have a broad host range in vitro and in vivo, indicating wide distribution of cellular receptor molecules. The extensive host range has been confirmed in a quantitative in vitro cell-fusion assay using recombinant vaccinia viruses expressing the attachment and fusion proteins of HENV and NIPV. Cell lines of diverse origin and which are permissive in the in vitro cell fusion assay have been identified and the pattern of relative susceptibilities is the same for both HENV and NIPV, implying that both viruses use the same cell receptor. Protease treatment of permissive cells destroys their ability to fuse with cells expressing viral envelope glycoproteins. Virus overlay protein binding assay (VOPBA) and radio-immune precipitation assays confirm that both HENV and NIPV bind to membrane proteins in the 35-50 kD range. Treatment of cell membrane proteins with N-glycosidase eliminates HeV binding activity in VOPBA whereas treatment with neuraminidase has no effect on binding. Thus preliminary evidence suggests that NIPV and HENV bind to the same glycoprotein receptor via a non-sialic acid-dependant mechanism.


Subject(s)
Henipavirus Infections/virology , Henipavirus/genetics , Receptors, Virus/physiology , Diagnosis, Differential , Henipavirus/classification , Henipavirus/pathogenicity , Henipavirus/physiology , Henipavirus Infections/diagnosis , Humans , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...