Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Virol ; 98(2): e0137223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38214525

ABSTRACT

Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.


Subject(s)
Hendra Virus , Henipavirus Infections , Henipavirus , Nipah Virus , Viral Proteins , Humans , Glycoproteins/metabolism , Hendra Virus/physiology , Henipavirus/physiology , Nipah Virus/genetics , Nipah Virus/metabolism , Peptides/metabolism , Viral Fusion Proteins , Viral Proteins/metabolism
2.
Antiviral Res ; 193: 105084, 2021 09.
Article in English | MEDLINE | ID: mdl-34077807

ABSTRACT

Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic, bat-borne paramyxoviruses in the genus Henipavirus that cause severe and often fatal acute respiratory and/or neurologic diseases in humans and livestock. There are currently no approved antiviral therapeutics or vaccines for use in humans to treat or prevent NiV or HeV infection. To facilitate development of henipavirus antivirals, a high-throughput screening (HTS) platform was developed based on a well-characterized recombinant version of the nonpathogenic Henipavirus, Cedar virus (rCedV). Using reverse genetics, a rCedV encoding firefly luciferase (rCedV-Luc) was rescued and its utility evaluated for high-throughput antiviral compound screening. The luciferase reporter gene signal kinetics of rCedV-Luc in different human cell lines was characterized and validated as an authentic real-time measure of viral growth. The rCedV-Luc platform was optimized as an HTS assay that demonstrated high sensitivity with robust Z' scores, excellent signal-to-background ratios and coefficients of variation. Eight candidate compounds that inhibited rCedV replication were identified for additional validation and demonstrated that 4 compounds inhibited authentic NiV-Bangladesh replication. Further evaluation of 2 of the 4 validated compounds in a 9-point dose response titration demonstrated potent antiviral activity against NiV-Bangladesh and HeV, with minimal cytotoxicity. This rCedV reporter can serve as a surrogate yet authentic BSL-2 henipavirus platform that will dramatically accelerate drug candidate identification in the development of anti-henipavirus therapies.


Subject(s)
Antiviral Agents/pharmacology , Henipavirus Infections/drug therapy , Henipavirus/drug effects , High-Throughput Screening Assays , Viral Envelope Proteins/metabolism , Cell Line , Genes, Reporter , Henipavirus/physiology , Henipavirus Infections/virology , Humans , Luciferases/genetics , Luciferases/metabolism , Recombination, Genetic , Viral Envelope Proteins/genetics , Virus Internalization/drug effects , Virus Replication/drug effects
3.
Viruses ; 13(3)2021 03 22.
Article in English | MEDLINE | ID: mdl-33809833

ABSTRACT

Mojiang virus (MojV) is the first henipavirus identified in a rodent and known only by sequence data, whereas all other henipaviruses have been isolated from bats (Hendra virus, Nipah virus, Cedar virus) or discovered by sequence data from material of bat origin (Ghana virus). Ephrin-B2 and -B3 are entry receptors for Hendra and Nipah viruses, but Cedar virus can utilize human ephrin-B1, -B2, -A2 and -A5 and mouse ephrin-A1. However, the entry receptor for MojV remains unknown, and its species tropism is not well characterized. Here, we utilized recombinant full-length and soluble forms of the MojV fusion (F) and attachment (G) glycoproteins in membrane fusion and receptor tropism studies. MojV F and G were functionally competent and mediated cell-cell fusion in primate and rattine cells, albeit with low levels and slow fusion kinetics. Although a relative instability of the pre-fusion conformation of a soluble form of MojV F was observed, MojV F displayed significantly greater fusion activity when heterotypically paired with Ghana virus G. An exhaustive investigation of A- and B-class ephrins indicated that none serve as a primary receptor for MojV. The MojV cell fusion phenotype is therefore likely the result of receptor restriction rather than functional defects in recombinant MojV F and G glycoproteins.


Subject(s)
Glycoproteins/metabolism , Henipavirus Infections/virology , Henipavirus/physiology , Viral Envelope Proteins/metabolism , A549 Cells , Animals , CHO Cells , Chlorocebus aethiops , Cricetulus , HEK293 Cells , HeLa Cells , Humans , Membrane Fusion , Vero Cells , Virus Internalization
4.
Life Sci Alliance ; 3(1)2020 01.
Article in English | MEDLINE | ID: mdl-31862858

ABSTRACT

The emergent zoonotic henipaviruses, Hendra, and Nipah are responsible for frequent and fatal disease outbreaks in domestic animals and humans. Specificity of henipavirus attachment glycoproteins (G) for highly species-conserved ephrin ligands underpins their broad host range and is associated with systemic and neurological disease pathologies. Here, we demonstrate that Cedar virus (CedV)-a related henipavirus that is ostensibly nonpathogenic-possesses an idiosyncratic entry receptor repertoire that includes the common henipaviral receptor, ephrin-B2, but, distinct from pathogenic henipaviruses, does not include ephrin-B3. Uniquely among known henipaviruses, CedV can use ephrin-B1 for cellular entry. Structural analyses of CedV-G reveal a key region of molecular specificity that directs ephrin-B1 utilization, while preserving a universal mode of ephrin-B2 recognition. The structural and functional insights presented uncover diversity within the known henipavirus receptor repertoire and suggest that only modest structural changes may be required to modulate receptor specificities within this group of lethal human pathogens.


Subject(s)
Ephrin-B1/metabolism , Henipavirus Infections/metabolism , Henipavirus/physiology , Viral Fusion Proteins/metabolism , Virus Internalization , Animals , Chiroptera/virology , Chlorocebus aethiops , Ephrin-B1/genetics , Ephrin-B2/genetics , Ephrin-B2/metabolism , HEK293 Cells , Henipavirus/isolation & purification , Henipavirus Infections/virology , Humans , Ligands , Protein Binding , Protein Structure, Secondary , Receptors, Virus/metabolism , Transfection , Vero Cells
5.
Proc Natl Acad Sci U S A ; 116(41): 20707-20715, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548390

ABSTRACT

Cedar virus (CedV) is a bat-borne henipavirus related to Nipah virus (NiV) and Hendra virus (HeV), zoonotic agents of fatal human disease. CedV receptor-binding protein (G) shares only ∼30% sequence identity with those of NiV and HeV, although they can all use ephrin-B2 as an entry receptor. We demonstrate that CedV also enters cells through additional B- and A-class ephrins (ephrin-B1, ephrin-A2, and ephrin-A5) and report the crystal structure of the CedV G ectodomain alone and in complex with ephrin-B1 or ephrin-B2. The CedV G receptor-binding site is structurally distinct from other henipaviruses, underlying its capability to accommodate additional ephrin receptors. We also show that CedV can enter cells through mouse ephrin-A1 but not human ephrin-A1, which differ by 1 residue in the key contact region. This is evidence of species specific ephrin receptor usage by a henipavirus, and implicates additional ephrin receptors in potential zoonotic transmission.


Subject(s)
Ephrin-B1/metabolism , Ephrin-B2/metabolism , Ephrin-B3/metabolism , Henipavirus Infections/virology , Henipavirus/physiology , Receptors, Virus/metabolism , Viral Envelope Proteins/chemistry , Animals , Cell Fusion , Ephrin-B1/genetics , Ephrin-B2/genetics , Ephrin-B3/genetics , Henipavirus Infections/genetics , Henipavirus Infections/metabolism , Humans , Mice , Mutation , Protein Binding , Protein Conformation , Receptors, Virus/genetics , Species Specificity , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Internalization
6.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20190021, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31401962

ABSTRACT

Pathogen circulation among reservoir hosts is a precondition for zoonotic spillover. Unlike the acute, high morbidity infections typical in spillover hosts, infected reservoir hosts often exhibit low morbidity and mortality. Although it has been proposed that reservoir host infections may be persistent with recurrent episodes of shedding, direct evidence is often lacking. We construct a generalized SEIR (susceptible, exposed, infectious, recovered) framework encompassing 46 sub-models representing the full range of possible transitions among those four states of infection and immunity. We then use likelihood-based methods to fit these models to nine years of longitudinal data on henipavirus serology from a captive colony of Eidolon helvum bats in Ghana. We find that reinfection is necessary to explain observed dynamics; that acute infectious periods may be very short (hours to days); that immunity, if present, lasts about 1-2 years; and that recurring latent infection is likely. Although quantitative inference is sensitive to assumptions about serology, qualitative predictions are robust. Our novel approach helps clarify mechanisms of viral persistence and circulation in wild bats, including estimated ranges for key parameters such as the basic reproduction number and the duration of the infectious period. Our results inform how future field-based and experimental work could differentiate the processes of viral recurrence and reinfection in reservoir hosts. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.


Subject(s)
Chiroptera , Disease Reservoirs/veterinary , Henipavirus Infections/veterinary , Henipavirus/physiology , Animals , Animals, Zoo , Disease Reservoirs/virology , Ghana/epidemiology , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Henipavirus Infections/virology , Prevalence , Seroepidemiologic Studies
7.
Pathog Dis ; 77(2)2019 03 01.
Article in English | MEDLINE | ID: mdl-30985897

ABSTRACT

Nipah virus (NiV) and Hendra virus are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae. These viruses were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 75%. While outbreaks of Nipah and Hendra virus infections remain rare and sporadic, there is concern that NiV has pandemic potential. Despite increased attention, little is understood about the neuropathogenesis of henipavirus infection. Neuropathogenesis appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection, but the relative contributions remain unknown while respiratory disease arises from vasculitis and respiratory epithelial cell infection. This review will address NiV basic clinical disease, pathology and pathogenesis with a particular focus on central nervous system (CNS) infection and address the necessity of a model of relapsed CNS infection. Additionally, the innate immune responses to NiV infection in vitro and in the CNS are reviewed as it is likely linked to any persistent CNS infection.


Subject(s)
Central Nervous System Viral Diseases/virology , Henipavirus Infections/virology , Henipavirus/physiology , Acute Disease , Age of Onset , Animals , Central Nervous System Viral Diseases/diagnosis , Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/transmission , Disease Models, Animal , Disease Susceptibility , Henipavirus Infections/diagnosis , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate
8.
Viruses ; 11(3)2019 03 22.
Article in English | MEDLINE | ID: mdl-30909389

ABSTRACT

Syrian hamsters (Mesocricetus auratus) are a pathogenesis model for the Nipah virus (NiV), and we sought to determine if they are also susceptible to the Cedar virus (CedPV). Following intranasal inoculation with CedPV, virus replication occurred in the lungs and spleens of infected hamsters, a neutralizing antibody was produced in some hamsters within 8 days post-challenge, and no conspicuous signs of disease occurred. CedPV replicated to a similar magnitude as NiV-Bangladesh in type I IFN-deficient BHK-21 Syrian hamster fibroblasts but replicated 4 logs lower in type I IFN-competent primary Syrian hamster and human pulmonary endothelial cells, a principal target of henipaviruses. The coinfection of these cells with CedPV and NiV failed to rescue CedPV titers and did not diminish NiV titers, suggesting the replication machinery is virus-specific. Type I IFN response transcripts Ifna7, Ddx58, Stat1, Stat2, Ccl5, Cxcl10, Isg20, Irf7, and Iigp1 were all significantly elevated in CedPV-infected hamster endothelial cells, whereas Ifna7 and Iigp1 expression were significantly repressed during NiV infection. These results are consistent with the hypothesis that CedPV's inability to counter the host type I IFN response may, in part, contribute to its lack of pathogenicity. Because NiV causes a fatal disease in Syrian hamsters with similarities to human disease, this model will provide valuable information about the pathogenic mechanisms of henipaviruses.


Subject(s)
Henipavirus Infections/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate , Virus Replication , Animals , Coinfection/immunology , Coinfection/virology , Cricetinae , Endothelial Cells/immunology , Endothelial Cells/virology , Female , Henipavirus/pathogenicity , Henipavirus/physiology , Humans , Lung/virology , Nipah Virus/pathogenicity , Nipah Virus/physiology , Spleen/virology
9.
PLoS Negl Trop Dis ; 12(3): e0006343, 2018 03.
Article in English | MEDLINE | ID: mdl-29538374

ABSTRACT

Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.


Subject(s)
Henipavirus Infections/genetics , Henipavirus Infections/immunology , Henipavirus/physiology , Host-Pathogen Interactions , Transcriptome , Animals , Brain/metabolism , Brain/virology , Cell Cycle , Disease Models, Animal , Extracellular Matrix/genetics , Ferrets/virology , Hendra Virus/immunology , Hendra Virus/pathogenicity , Henipavirus/genetics , Henipavirus Infections/virology , Humans , Inflammation , Interferons/genetics , Lung/metabolism , Lung/virology , Nipah Virus/immunology , Nipah Virus/pathogenicity , Virus Shedding
10.
Virol J ; 15(1): 56, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587789

ABSTRACT

BACKGROUND: Hendra virus and Nipah virus are zoonotic viruses that have caused severe to fatal disease in livestock and human populations. The isolation of Cedar virus, a non-pathogenic virus species in the genus Henipavirus, closely-related to the highly pathogenic Hendra virus and Nipah virus offers an opportunity to investigate differences in pathogenesis and receptor tropism among these viruses. METHODS: We constructed full-length cDNA clones of Cedar virus from synthetic oligonucleotides and rescued two replication-competent, recombinant Cedar virus variants: a recombinant wild-type Cedar virus and a recombinant Cedar virus that expresses a green fluorescent protein from an open reading frame inserted between the phosphoprotein and matrix genes. Replication kinetics of both viruses and stimulation of the interferon pathway were characterized in vitro. Cellular tropism for ephrin-B type ligands was qualitatively investigated by microscopy and quantitatively by a split-luciferase fusion assay. RESULTS: Successful rescue of recombinant Cedar virus expressing a green fluorescent protein did not significantly affect virus replication compared to the recombinant wild-type Cedar virus. We demonstrated that recombinant Cedar virus stimulated the interferon pathway and utilized the established Hendra virus and Nipah virus receptor, ephrin-B2, but not ephrin-B3 to mediate virus entry. We further characterized virus-mediated membrane fusion kinetics of Cedar virus with the known henipavirus receptors ephrin-B2 and ephrin-B3. CONCLUSIONS: The recombinant Cedar virus platform may be utilized to characterize the determinants of pathogenesis across the henipaviruses, investigate their receptor tropisms, and identify novel pan-henipavirus antivirals. Moreover, these experiments can be conducted safely under BSL-2 conditions.


Subject(s)
Ephrin-B2/metabolism , Henipavirus Infections/virology , Henipavirus/physiology , Receptors, Virus/metabolism , Cell Fusion , Cell Line , Cytopathogenic Effect, Viral , Genes, Reporter , Green Fluorescent Proteins/genetics , Henipavirus/genetics , Henipavirus/metabolism , Henipavirus/pathogenicity , Henipavirus Infections/metabolism , Interferon Type I/genetics , Neutralization Tests , Protein Binding , Recombination, Genetic , Reverse Genetics , Viral Envelope Proteins/metabolism , Viral Tropism , Virus Internalization , Virus Replication
11.
J Gen Virol ; 98(4): 563-576, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28056216

ABSTRACT

Viruses of the genus Henipavirus of the family Paramyxoviridae are zoonotic pathogens, which have emerged in Southeast Asia, Australia and Africa. Nipah virus (NiV) and Hendra virus are highly virulent pathogens transmitted from bats to animals and humans, while the henipavirus Cedar virus seems to be non-pathogenic in infection studies. The full replication cycle of the Paramyxoviridae occurs in the host cell's cytoplasm, where viral assembly is orchestrated by the matrix (M) protein. Unexpectedly, the NiV-M protein traffics through the nucleus as an essential step to engage the plasma membrane in preparation for viral budding/release. Comparative studies were performed to assess whether M protein nuclear localization is a common feature of the henipaviruses, including the recently sequenced (although not yet isolated) Ghanaian bat henipavirus (Kumasi virus, GH-M74a virus) and Mojiang virus. Live-cell confocal microscopy revealed that nuclear translocation of GFP-fused M protein is conserved between henipaviruses in both human- and bat-derived cell lines. However, the efficiency of M protein nuclear localization and virus-like particle budding competency varied. Additionally, Cedar virus-, Kumasi virus- and Mojiang virus-M proteins were mutated in a bipartite nuclear localization signal, indicating that a key lysine residue is essential for nuclear import, export and induction of budding events, as previously reported for NiV-M. The results of this study suggest that the M proteins of henipaviruses may utilize a similar nucleocytoplasmic trafficking pathway as an essential step during viral replication in both humans and bats.


Subject(s)
Active Transport, Cell Nucleus , Henipavirus/genetics , Henipavirus/physiology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Animals , Henipavirus/isolation & purification , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Nuclear Localization Signals , Protein Transport , Virosomes/genetics , Virosomes/metabolism
12.
Int Rev Immunol ; 36(2): 108-121, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28060559

ABSTRACT

Hendra virus and Nipah virus (NiV) are highly pathogenic zoonotic paramyxoviruses, from henipavirus genus, that have emerged in late 1990s in Australia and South-East Asia, respectively. Since their initial identification, numerous outbreaks have been reported, affecting both domestic animals and humans, and multiple rounds of person-to-person NiV transmission were observed. Widely distributed fruit bats from Pteropodidae family were found to be henipavirus natural reservoir. Numerous studies have reported henipavirus seropositivity in pteropid bats, including bats in Africa, thus expanding notably the geographic distribution of these viruses. Interestingly, henipavirus infection in bats seems to be asymptomatic, in contrast to severe disease induced in numerous other mammals. Unique among the mammals by their ability to fly, these intriguing animals are natural reservoir for many other emerging and remerging viruses highly pathogenic for humans. This feature, combined with absence of clinical symptoms, has attracted the interest of scientific community to virus-bat interactions. Therefore, several bat genomes were sequenced and particularities of the bat immune system have been intensively analyzed during the last decade to understand their coexistence with viruses in the absence of disease. The peculiarities in inflammasome activation, a constitutive expression of interferon alpha, and some differences in adaptive immunity have been recently reported in fruit bats. Studies on virus-bat interactions have thus emerged as an exciting novel area of research that should shed new light on the mechanisms that regulate viral infection and may allow development of novel therapeutic approaches to control this highly lethal emerging infectious disease in humans.


Subject(s)
Chiroptera/immunology , Henipavirus Infections/immunology , Henipavirus/physiology , Animals , Carrier State , Chiroptera/virology , Disease Reservoirs/virology , Host-Pathogen Interactions , Humans , Immunity , Infection Control , Inflammasomes/metabolism , Interferon-alpha/metabolism
14.
J Infect Dis ; 213(3): 448-55, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26357909

ABSTRACT

Henipaviruses are zoonotic viruses that can cause severe and acute respiratory diseases and encephalitis in humans. To date, no vaccine or treatments are approved for human use. The presence of neutralizing antibodies is a strong correlate of protection against lethal disease in animals. However, since RNA viruses are prone to high mutation rates, the possibility that these viruses will escape neutralization remains a potential concern. In the present study, we generated neutralization-escape mutants, using 6 different monoclonal antibodies, and studied the effect of these neutralization-escape mutations on in vitro and in vivo fitness. These data provide a mechanism for overcoming neutralization escape by use of cocktails of cross-neutralizing monoclonal antibodies that recognize residues within the glycoprotein that are important for virus replication and virulence.


Subject(s)
Antibodies, Monoclonal/immunology , Henipavirus Infections/virology , Henipavirus/genetics , Henipavirus/physiology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Cricetinae , Female , Genetic Fitness , Henipavirus/immunology , Henipavirus Infections/immunology , Humans , Mesocricetus , Mice , Mutation , Neutralization Tests
15.
Proc Natl Acad Sci U S A ; 112(17): E2156-65, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25825759

ABSTRACT

The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus-receptor interaction crystallographically. Compared with extant HNV-G-ephrinB2 structures, there was significant structural variation in the six-bladed ß-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus-host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure-function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations.


Subject(s)
Ephrin-B2 , Henipavirus Infections/metabolism , Henipavirus , Viral Proteins , Virus Internalization , Ephrin-B2/chemistry , Ephrin-B2/genetics , Ephrin-B2/metabolism , Ephrin-B3/chemistry , Ephrin-B3/genetics , Ephrin-B3/metabolism , HEK293 Cells , Henipavirus/chemistry , Henipavirus/physiology , Henipavirus Infections/genetics , Humans , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
16.
Virus Res ; 201: 85-93, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25725148

ABSTRACT

Compared to the fusion proteins of pathogenic Nipah and Hendra viruses, the F protein of prototype African henipavirus GH-M74a displays a drastically reduced surface expression and fusion activity. A probable reason for limited F expression is the unusually long sequence located between the gene start and the signal peptide (SP) not present in other henipaviruses. Such a long pre-SP extension can prevent efficient ER translocation or protein maturation and processing. As its truncation can therefore enhance surface expression, the recent identification of a second in-frame start codon directly upstream of the SP in another African henipavirus F gene (GH-UP28) raised the question if such a naturally occurring minor sequence variation can lead to the synthesis of a pre-SP truncated translation product, thereby increasing the production of mature F proteins. To test this, we analyzed surface expression and biological activity of F genes carrying the second SP-proximal start codon of GH-UP28. Though we observed minor differences in the expression levels, introduction of the additional start codon did not result in an increased fusion activity, even if combined with further mutations in the pre-SP region. Thus, limited bioactivity of African henipavirus F protein is maintained even after sequence changes that alter the gene start allowing the production of F proteins without an unusually long pre-SP.


Subject(s)
Codon, Initiator , Henipavirus/physiology , Viral Fusion Proteins/metabolism , Virus Internalization , Animals , Cell Line , Gene Expression , Henipavirus/genetics , Protein Sorting Signals , Viral Fusion Proteins/genetics
17.
Sci Rep ; 4: 5824, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25059478

ABSTRACT

Containment level 4 (CL4) laboratories studying biosafety level 4 viruses are under strict regulations to conduct nonhuman primate (NHP) studies in compliance of both animal welfare and biosafety requirements. NHPs housed in open-barred cages raise concerns about cross-contamination between animals, and accidental exposure of personnel to infectious materials. To address these concerns, two NHP experiments were performed. One examined the simultaneous infection of 6 groups of NHPs with 6 different viruses (Machupo, Junin, Rift Valley Fever, Crimean-Congo Hemorrhagic Fever, Nipah and Hendra viruses). Washing personnel between handling each NHP group, floor to ceiling biobubble with HEPA filter, and plexiglass between cages were employed for partial primary containment. The second experiment employed no primary containment around open barred cages with Ebola virus infected NHPs 0.3 meters from naïve NHPs. Viral antigen-specific ELISAs, qRT-PCR and TCID50 infectious assays were utilized to determine antibody levels and viral loads. No transmission of virus to neighbouring NHPs was observed suggesting limited containment protocols are sufficient for multi-viral CL4 experiments within one room. The results support the concept that Ebola virus infection is self-contained in NHPs infected intramuscularly, at least in the present experimental conditions, and is not transmitted to naïve NHPs via an airborne route.


Subject(s)
Containment of Biohazards/standards , Hemorrhagic Fevers, Viral/transmission , Laboratories/standards , Air Filters/virology , Animals , Antigens, Viral/analysis , Arenavirus/physiology , Bunyaviridae/physiology , Ebolavirus/physiology , Enzyme-Linked Immunosorbent Assay , Equipment Contamination , Hemorrhagic Fevers, Viral/virology , Henipavirus/physiology , Microbubbles/virology , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , Risk , Viral Load , Virus Replication
18.
J Virol ; 88(9): 5171-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24522929

ABSTRACT

Recent evidence identified multiple Henipavirus species in Africa distinct from those in Southeast Asia and Australia. The reported fusion glycoprotein (F) sequence of the African Gh-M74a strain (GhV-F) is likely incorrect: a single base pair deletion near the N terminus results in multiple aberrancies. Rectifying this by adding single nucleotide insertions results in a GhV-F that now possesses a signal peptide, is efficiently cell surface expressed, exhibits syncytium formation when coexpressed with GhV-G protein, and mediates pseudotyped viral particle entry.


Subject(s)
Henipavirus/genetics , Henipavirus/physiology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virus Internalization , Africa , Amino Acid Sequence , Base Sequence , Humans , Molecular Sequence Data , Sequence Alignment
19.
Virus Res ; 181: 77-80, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24452140

ABSTRACT

The recent discovery of a wide range of henipavirus-like viruses circulating in Megabats in Africa raises the question as to the zoonotic potential of these pathogens given the high human mortality rates seen with their pathogenic relatives Nipah virus and Hendra virus. In the absence of cultured infectious African Henipavirus we have performed experiments with recombinant F and G glycoproteins from the representative African Henipavirus strain M74a aimed at estimating its cellular tropism and capacity to use similar receptors to its highly pathogenic counterparts. The ability of the M74a virus G surface protein to use the ubiquitous Ephrin B2 host cell receptor and its heterologous cross-compatibility with Nipah virus could be expected to impart upon this virus a reasonable potential for species spillover, although differences in fusion efficiency seen with the M74a virus F protein in certain cell lines could present a barrier for zoonotic transmission.


Subject(s)
Henipavirus/physiology , Membrane Fusion , Viral Envelope Proteins/metabolism , Virus Internalization , Animals , Cell Line , Chiroptera , Chlorocebus aethiops , Cricetinae , Host-Pathogen Interactions , Humans , Viral Tropism
20.
Vet Microbiol ; 167(1-2): 151-8, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-23993256

ABSTRACT

The Henipavirus genus represents a group of paramyxoviruses that are some of the deadliest of known human and veterinary pathogens. Hendra and Nipah viruses are zoonotic pathogens that can cause respiratory and encephalitic illness in humans with mortality rates that exceed 70%. Over the past several years, we have seen an increase in the number of cases and an altered clinical presentation of Hendra virus in naturally infected horses. Recent increase in the number of cases has also been reported with human Nipah virus infections in Bangladesh. These factors, along with the recent discovery of henipa and henipa-like viruses in Africa, Asia and South and Central America adds, a truly global perspective to this group of emerging viruses.


Subject(s)
Henipavirus Infections/virology , Henipavirus/classification , Henipavirus/physiology , Africa , Animals , Asia , Hendra Virus/classification , Hendra Virus/physiology , Henipavirus Infections/epidemiology , Henipavirus Infections/mortality , Henipavirus Infections/prevention & control , Henipavirus Infections/transmission , Horse Diseases/epidemiology , Horse Diseases/mortality , Horse Diseases/prevention & control , Horse Diseases/transmission , Horses , Humans , Nipah Virus/classification , Nipah Virus/physiology , Zoonoses/epidemiology , Zoonoses/prevention & control , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...