ABSTRACT
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae that cause severe disease outbreaks in humans and also can infect and cause lethal disease across a broad range of mammalian species. Another related Henipavirus has been very recently identified in China in febrile patients with pneumonia, the Langya virus (LayV) of probable animal origin in shrews. NiV and HeV were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 90%. They are responsible for rare and sporadic outbreaks with no approved treatment modalities. NiV and HeV have wide cellular tropism that contributes to their high pathogenicity. From their natural hosts bats, different scenarios propitiate their spillover to pigs, horses, and humans. Henipavirus-associated respiratory disease arises from vasculitis and respiratory epithelial cell infection while the neuropathogenesis of Henipavirus infection is still not completely understood but appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection. This brief review offers an overview of direct and indirect mechanisms of HeV and NiV pathogenicity and their interaction with the human immune system, as well as the main viral strategies to subvert such responses.
Subject(s)
Hendra Virus , Henipavirus Infections , Nipah Virus , Humans , Animals , Swine , Horses , Public Health , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , MammalsABSTRACT
Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.
Subject(s)
Chiroptera/virology , Filoviridae Infections/veterinary , Filoviridae , Henipavirus Infections/veterinary , Henipavirus , Animals , Chiroptera/blood , Chiroptera/classification , Filoviridae Infections/epidemiology , Filoviridae Infections/virology , Henipavirus Infections/epidemiology , Henipavirus Infections/virology , Serologic Tests , Trinidad and Tobago/epidemiologyABSTRACT
Bats are reservoir hosts for many paramyxoviruses, some of which cause human and zoonotic diseases of public health importance. We developed a Nipah virus nucleoprotein enzyme-linked immunosorbent assay to detect cross-reactive antibodies in serum samples from several bat species in Brazil. Our results warrant further investigation of henipa-like virus reservoirs in the Western hemisphere.