Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.254
Filter
1.
Carbohydr Polym ; 341: 122294, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876708

ABSTRACT

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.


Subject(s)
Bone Morphogenetic Protein 2 , Glycosaminoglycans , Heparitin Sulfate , Signal Transduction , Bone Morphogenetic Protein 2/metabolism , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry , Humans , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Molecular Dynamics Simulation , Animals , Protein Binding
2.
Carbohydr Polym ; 341: 122297, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876729

ABSTRACT

The biological activities of heparan sulfate (HS) are intimately related to their molecular weights, degree and pattern of sulfation and homogeneity. The existing methods for synthesizing homogeneous sugar chains of low dispersity involve multiple steps and require stepwise isolation and purification processes. Here, we designed a mesoporous metal-organic capsule for the encapsulation of glycosyltransferase and obtained a microreactor capable of enzymatically catalyzing polymerization reactions to prepare homogeneous heparosan of low dispersity, the precursor of HS and heparin. Since the sugar chain extension occurs in the pores of the microreactor, low molecular weight heparosan can be synthesized through space-restricted catalysis. Moreover, the glycosylation co-product, uridine diphosphate (UDP), can be chelated with the exposed metal sites of the metal-organic capsule, which inhibits trans-cleavage to reduce the molecular weight dispersity. This microreactor offers the advantages of efficiency, reusability, and obviates the need for stepwise isolation and purification processes. Using the synthesized heparosan, we further successfully prepared homogeneous 6-O-sulfated HS of low dispersity with a molecular weight of approximately 6 kDa and a polydispersity index (PDI) of 1.032. Notably, the HS generated exhibited minimal anticoagulant activity, and its binding affinity to fibroblast growth factor 1 was comparable to that of low molecular weight heparins.


Subject(s)
Heparitin Sulfate , Polymerization , Heparitin Sulfate/chemistry , Anticoagulants/chemistry , Anticoagulants/pharmacology , Anticoagulants/chemical synthesis , Molecular Weight , Porosity , Humans , Disaccharides/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry
3.
Glycobiology ; 34(7)2024 May 26.
Article in English | MEDLINE | ID: mdl-38836441

ABSTRACT

Heparan sulfate (HS), a sulfated polysaccharide abundant in the extracellular matrix, plays pivotal roles in various physiological and pathological processes by interacting with proteins. Investigating the binding selectivity of HS oligosaccharides to target proteins is essential, but the exhaustive inclusion of all possible oligosaccharides in microarray experiments is impractical. To address this challenge, we present a hybrid pipeline that integrates microarray and in silico techniques to design oligosaccharides with desired protein affinity. Using fibroblast growth factor 2 (FGF2) as a model protein, we assembled an in-house dataset of HS oligosaccharides on microarrays and developed two structural representations: a standard representation with all atoms explicit and a simplified representation with disaccharide units as "quasi-atoms." Predictive Quantitative Structure-Activity Relationship (QSAR) models for FGF2 affinity were developed using the Random Forest (RF) algorithm. The resulting models, considering the applicability domain, demonstrated high predictivity, with a correct classification rate of 0.81-0.80 and improved positive predictive values (PPV) up to 0.95. Virtual screening of 40 new oligosaccharides using the simplified model identified 15 computational hits, 11 of which were experimentally validated for high FGF2 affinity. This hybrid approach marks a significant step toward the targeted design of oligosaccharides with desired protein interactions, providing a foundation for broader applications in glycobiology.


Subject(s)
Fibroblast Growth Factor 2 , Heparitin Sulfate , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/metabolism , Quantitative Structure-Activity Relationship , Microarray Analysis , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Protein Binding , Humans , Models, Molecular
4.
Biomacromolecules ; 25(6): 3850-3862, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38775104

ABSTRACT

Cationic polysaccharides have been extensively studied for drug delivery via the bloodstream, yet few have progressed to clinical use. Endothelial cells lining the blood vessel wall are coated in an anionic extracellular matrix called the glycocalyx. However, we do not fully comprehend the charged polysaccharide interactions with the glycocalyx. We reveal that the cationic polysaccharide poly(acetyl, arginyl) glucosamine (PAAG) exhibits the highest association with the endothelial glycocalyx, followed by dextran (neutral) and hyaluronan (anionic). Furthermore, we demonstrate that PAAG binds heparan sulfate (HS) within the glycocalyx, leading to intracellular accumulation. Using an in vitro glycocalyx model, we demonstrate a charge-based extent of association of polysaccharides with HS. Mechanistically, we observe that PAAG binding to HS occurs via a condensation reaction and functionally protects HS from degradation. Together, this study reveals the interplay between polysaccharide charge properties and interactions with the endothelial cell glycocalyx toward improved delivery system design and application.


Subject(s)
Cations , Extracellular Matrix , Glycocalyx , Heparitin Sulfate , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , Humans , Glycocalyx/metabolism , Glycocalyx/chemistry , Extracellular Matrix/metabolism , Cations/chemistry , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism
5.
ACS Appl Bio Mater ; 7(5): 2862-2871, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38699864

ABSTRACT

Mosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV). The polymers were prepared by RAFT polymerization of various acidic monomers with a target MW of 20 kDa (average Mn ∼ 27 kDa by GPC). Among the polymers, poly(SS), a homopolymer of sodium styrenesulfonate, was identified as a broad spectrum antiviral with activity against all the tested viruses and particularly potent inhibition of YFV (IC50 = 310 pM). Our results further uncovered that poly(SS) exhibited a robust inhibition of ZIKV infection in both mosquito and human cell lines, which points out the potential functions of poly(SS) in preventing mosquito-borne viruses associated diseases by blocking viral transmission in their mosquito vectors and mitigating viral infection in patients.


Subject(s)
Antiviral Agents , Heparitin Sulfate , Polymers , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Heparitin Sulfate/chemistry , Heparitin Sulfate/pharmacology , Animals , Humans , Polymers/chemistry , Polymers/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Culicidae/drug effects , Culicidae/virology , Microbial Sensitivity Tests , Materials Testing , Particle Size , Cell Line , Molecular Structure , Chlorocebus aethiops , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Zika Virus/drug effects
6.
Biol Pharm Bull ; 47(5): 1054-1057, 2024.
Article in English | MEDLINE | ID: mdl-38811191

ABSTRACT

Glycosaminoglycans (GAGs), such as heparan sulfate (HS), play essential roles in living organisms. Understanding the functionality of HS and its involvement in disease progression necessitates the sensitive and quantitative detection of HS-derived unsaturated disaccharides. Conventionally, fluorescence derivatization precedes the HPLC analysis of these disaccharides. However, the presence of excess unreacted derivatization reagents can inhibit rapid and sensitive analysis in chromatographic determinations. In this study, we describe analytical methods that use dansylhydrazine as a derivatization agent for the detection and determination of HS-derived unsaturated disaccharides using HPLC. In addition, we have developed a straightforward method for removing excess unreacted reagent using a MonoSpin NH2 column. This method may be employed to remove excess pre-labeling reagents, thereby facilitating the analysis of HS-derived unsaturated disaccharides with satisfactory reproducibility.


Subject(s)
Dansyl Compounds , Disaccharides , Heparitin Sulfate , Chromatography, High Pressure Liquid/methods , Heparitin Sulfate/chemistry , Heparitin Sulfate/analysis , Disaccharides/analysis , Dansyl Compounds/chemistry , Hydrazines/chemistry , Spectrometry, Fluorescence/methods , Fluorescence
7.
Curr Opin Chem Biol ; 80: 102455, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636446

ABSTRACT

Heparan sulfate (HS) is a linear, sulfated and highly negatively-charged polysaccharide that plays important roles in many biological events. As a member of the glycosaminoglycan (GAG) family, HS is commonly found on mammalian cell surfaces and within the extracellular matrix. The structural complexities of natural HS polysaccharides have hampered the comprehension of their biological functions and structure-activity relationships (SARs). Although the sulfation patterns and backbone structures of HS can be major determinants of their biological activities, obtaining significant amounts of pure HS from natural sources for comprehensive SAR studies is challenging. Chemical and enzyme-based synthesis can aid in the production of structurally well-defined HS oligosaccharides. In this review, we discuss recent innovations enabling the syntheses of large libraries of HS and how these libraries can provide insights into the structural preferences of various HS binding proteins.


Subject(s)
Heparitin Sulfate , Oligosaccharides , Heparitin Sulfate/chemistry , Heparitin Sulfate/chemical synthesis , Structure-Activity Relationship , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Humans , Animals , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
8.
Chem Commun (Camb) ; 60(33): 4495-4498, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38567462

ABSTRACT

We have demonstrated that cisplatin (CP), an anticancer drug, showed a preference for binding the sulfated-L-iduronic acid (S-L-IdoA) unit over the sulfated-D-glucuronic acid unit of heparan sulfate. The multivalency of S-L-IdoA, such as in the proteoglycan mimic, resulted in distinct modes of cell-surface engineering in normal and cancer cells, with these disparities having a significant impact on CP-mediated toxicity.


Subject(s)
Cisplatin , Proteoglycans , Heparitin Sulfate/chemistry , Glucuronic Acid/metabolism , Iduronic Acid , Sulfates
9.
Biomacromolecules ; 25(5): 3087-3097, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38584438

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) play a crucial role in regulating cancer growth and migration by mediating interactions with growth factors. In this study, we developed a self-assembling peptide (S1) containing a sulfate group to simulate the contiguous sulfated regions (S-domains) in heparan sulfate for growth factor binding, aiming to sequester growth factors like VEGF. Spectral and structural studies as well as simulation studies suggested that S1 self-assembled into nanostructures similar to the heparan sulfate chains and effectively bound to VEGF. On cancer cell surfaces, S1 self-assemblies sequestered VEGF, leading to a reduction in VEGF levels in the medium, consequently inhibiting cancer cell growth, invasion, and angiogenesis. This study highlights the potential of self-assembling peptides to emulate extracellular matrix functions, offering insights for future cancer therapeutic strategies.


Subject(s)
Neoplasm Invasiveness , Peptides , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Peptides/chemistry , Peptides/pharmacology , Cell Movement/drug effects , Cell Line, Tumor , Heparitin Sulfate/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Cell Proliferation/drug effects , Neovascularization, Pathologic/drug therapy
10.
Glycoconj J ; 41(2): 163-174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38642280

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.


Subject(s)
Heparin , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Heparin/pharmacology , Heparin/chemistry , Heparin/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/metabolism , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , COVID-19/metabolism , Protein Binding , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry
11.
Matrix Biol ; 129: 15-28, 2024 May.
Article in English | MEDLINE | ID: mdl-38548090

ABSTRACT

Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in resorption of bone matrix. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS regulates the biological functions of CtsK, remains largely unknown. In this report, we discovered that HS is a multifaceted regulator of the structure and function of CtsK. Structurally, HS forms a highly stable complex with CtsK and induces its dimerization. Co-crystal structures of CtsK with bound HS oligosaccharides reveal the location of the HS binding site and suggest how HS may support dimerization. Functionally, HS plays a dual role in regulating the enzymatic activity of CtsK. While it preserves the peptidase activity of CtsK by stabilizing its active conformation, it inhibits the collagenase activity of CtsK in a sulfation level-dependent manner. These opposing effects can be explained by our finding that the HS binding site is remote from the active site, which allows HS to specifically inhibit the collagenase activity without affecting the peptidase activity. At last, we show that structurally defined HS oligosaccharides effectively block osteoclast resorption of bone in vitro without inhibiting osteoclast differentiation, which suggests that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor for many diseases involving exaggerated bone resorption.


Subject(s)
Cathepsin K , Collagenases , Heparitin Sulfate , Osteoclasts , Cathepsin K/metabolism , Cathepsin K/antagonists & inhibitors , Cathepsin K/chemistry , Cathepsin K/genetics , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry , Collagenases/metabolism , Humans , Animals , Osteoclasts/metabolism , Osteoclasts/drug effects , Binding Sites , Mice , Crystallography, X-Ray , Bone Resorption/metabolism , Bone Resorption/drug therapy , Protein Binding , Catalytic Domain , Models, Molecular , Protein Multimerization
12.
Carbohydr Polym ; 333: 121979, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494232

ABSTRACT

Heparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial. Herein we present the synthesis of an HS decamer, the design of which was undertaken rationally from previously published data for HS binding to the growth factor BMP-2. The biological activity of this HS decamer was assessed in vitro, showing that it had the ability to both bind BMP-2 and increase its thermal stability as well as enhancing the bioactivity of BMP-2 in vitro in C2C12 cells. At the same time no undesired anticoagulant effect was observed. This decamer was then analysed in vivo in a rabbit model where higher bone formation, bone mineral density (BMD) and trabecular thickness were observed over an empty defect or collagen implant alone. This indicated that the HS decamer was effective in promoting bone regeneration in vivo.


Subject(s)
Glycosaminoglycans , Heparitin Sulfate , Animals , Rabbits , Heparitin Sulfate/chemistry , Osteogenesis , Protein Binding , Bone Regeneration , Intercellular Signaling Peptides and Proteins/metabolism
13.
Angew Chem Int Ed Engl ; 63(13): e202316791, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38308859

ABSTRACT

Heparin and heparan sulfate (HS) are naturally occurring mammalian glycosaminoglycans, and their synthetic and semi-synthetic mimetics have attracted significant interest as potential therapeutics. However, understanding the mechanism of action by which HS, heparin, and HS mimetics have a biological effect is difficult due to their highly charged nature, broad protein interactomes, and variable structures. To address this, a library of novel single-entity dendritic mimetics conjugated to BODIPY, Fluorine-19 (19 F), and biotin was synthesized for imaging and localization studies. The novel dendritic scaffold allowed for the conjugation of labeling moieties without reducing the number of sulfated capping groups, thereby better mimicking the multivalent nature of HS-protein interactions. The 19 F labeled mimetics were assessed in phantom studies and were detected at concentrations as low as 5 mM. Flow cytometric studies using a fluorescently labeled mimetic showed that the compound associated with immune cells from tumors more readily than splenic counterparts and was directed to endosomal-lysosomal compartments within immune cells and cancer cells. Furthermore, the fluorescently labeled mimetic entered the central nervous system and was detectable in brain-infiltrating immune cells 24 hours after treatment. Here, we report the enabling methodology for rapidly preparing various labeled HS mimetics and molecular probes with diverse potential therapeutic applications.


Subject(s)
Biotin , Boron Compounds , Heparitin Sulfate , Animals , Heparitin Sulfate/chemistry , Glycosaminoglycans/metabolism , Heparin/metabolism , Mammals/metabolism
14.
Glycobiology ; 34(3)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38181393

ABSTRACT

Heparan sulfate (HS) plays its biological functions by interacting with hundreds of secreted extracellular and transmembrane proteins. Interaction with HS has been shown to be required for the normal function of many HS-binding proteins. Receptor for advanced glycation end-product (RAGE) is such a protein, whose activation requires HS-induced oligomerization. Using RAGE as an exemplary protein, we show here the workflow of a simple method of developing and characterizing mAbs that targets the HS-binding site. We found that HS-binding site of RAGE is quite immunogenic as 18 out of 94 anti-RAGE mAbs target various epitopes within the HS-binding site. Sequence analysis found that a common feature of anti-HS-binding site mAbs is the presence of abundant acidic residues (range between 6 to 11) in the complementarity determining region, suggesting electrostatic interaction plays an important role in promoting antigen-antibody interaction. Interestingly, mAbs targeting different epitopes within the HS-binding site blocks HS-RAGE interaction to different degrees, and the inhibitory effect is highly consistent among mAbs that target the same epitope. Functional assay revealed that anti-HS-binding site mAbs show different potency in inhibiting osteoclastogenesis, and the inhibitory potency does not have a simple correlation with the affinity and the epitope. Our study demonstrates that developing HS-binding site targeting mAbs should be applicable to most HS-binding proteins. By targeting this unique functional site, these mAbs might find therapeutic applications in treating various human diseases.


Subject(s)
Antibodies, Monoclonal , Heparitin Sulfate , Humans , Heparitin Sulfate/chemistry , Epitopes/chemistry , Binding Sites
15.
Biomolecules ; 13(12)2023 12 02.
Article in English | MEDLINE | ID: mdl-38136608

ABSTRACT

(1) Background: In this study, we evaluated the modulation of urine glycosaminoglycans (GAGs), which resulted from etanercept (ETA) therapy in patients with juvenile idiopathic arthritis (JIA) in whom methotrexate therapy failed to improve their clinical condition. (2) Methods: The sulfated GAGs (sGAGs, by complexation with blue 1,9-dimethylmethylene), including chondroitin-dermatan sulfate (CS/DS) and heparan sulfate (HS), as well as non-sulfated hyaluronic acid (HA, using the immunoenzymatic method), were determined in the blood of 89 children, i.e., 30 healthy children and 59 patients with JIA both before and during two years of ETA treatment. (3) Results: We confirmed the remodeling of the urinary glycan profile of JIA patients. The decrease in the excretion of sGAGs (p < 0.05), resulting from a decrease in the concentration of the dominant fraction in the urine, i.e., CS/DS (p < 0.05), not compensated by an increase in the concentration of HS (p < 0.000005) and HA (p < 0.0005) in the urine of patients with the active disease, was found. The applied biological therapy, leading to clinical improvement in patients, at the same time, did not contribute to normalization of the concentration of sGAGs (p < 0.01) in the urine of patients, as well as CS/DS (p < 0.05) in the urine of sick girls, while it promoted equalization of HS and HA concentrations. These results indicate an inhibition of the destruction of connective tissue structures but do not indicate their complete regeneration. (4) Conclusions: The metabolisms of glycans during JIA, reflected in their urine profile, depend on the patient's sex and the severity of the inflammatory process. The remodeling pattern of urinary glycans observed in patients with JIA indicates the different roles of individual types of GAGs in the pathogenesis of osteoarticular disorders in sick children. Furthermore, the lack of normalization of urinary GAG levels in treated patients suggests the need for continued therapy and continuous monitoring of its effectiveness, which will contribute to the complete regeneration of the ECM components of the connective tissue and thus protect the patient against possible disability.


Subject(s)
Arthritis, Juvenile , Glycosaminoglycans , Child , Female , Humans , Glycosaminoglycans/chemistry , Arthritis, Juvenile/drug therapy , Dermatan Sulfate/chemistry , Dermatan Sulfate/urine , Heparitin Sulfate/chemistry , Chondroitin Sulfates/chemistry
16.
Biomolecules ; 13(11)2023 11 09.
Article in English | MEDLINE | ID: mdl-38002315

ABSTRACT

Although molecular docking has evolved dramatically over the years, its application to glycosaminoglycans (GAGs) has remained challenging because of their intrinsic flexibility, highly anionic character and rather ill-defined site of binding on proteins. GAGs have been treated as either fully "rigid" or fully "flexible" in molecular docking. We reasoned that an intermediate semi-rigid docking (SRD) protocol may be better for the recapitulation of native heparin/heparan sulfate (Hp/HS) topologies. Herein, we study 18 Hp/HS-protein co-complexes containing chains from disaccharide to decasaccharide using genetic algorithm-based docking with rigid, semi-rigid, and flexible docking protocols. Our work reveals that rigid and semi-rigid protocols recapitulate native poses for longer chains (5→10 mers) significantly better than the flexible protocol, while 2→4-mer poses are better predicted using the semi-rigid approach. More importantly, the semi-rigid docking protocol is likely to perform better when no crystal structure information is available. We also present a new parameter for parsing selective versus non-selective GAG-protein systems, which relies on two computational parameters including consistency of binding (i.e., RMSD) and docking score (i.e., GOLD Score). The new semi-rigid protocol in combination with the new computational parameter is expected to be particularly useful in high-throughput screening of GAG sequences for identifying promising druggable targets as well as drug-like Hp/HS sequences.


Subject(s)
Heparin , Proteins , Heparin/chemistry , Molecular Docking Simulation , Proteins/chemistry , Glycosaminoglycans/chemistry , Heparitin Sulfate/chemistry , Oligosaccharides , Algorithms , Protein Binding , Binding Sites
17.
Nat Commun ; 14(1): 6425, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37828045

ABSTRACT

Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS.


Subject(s)
Chondroitin Sulfates , Glycosaminoglycans , Glycosaminoglycans/metabolism , Chondroitin Sulfates/metabolism , Heparitin Sulfate/chemistry , Phosphorylation , Glycopeptides/metabolism
18.
Inorg Chem ; 62(33): 13212-13220, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37552525

ABSTRACT

In this study, we have used [1H, 15N] NMR spectroscopy to investigate the interactions of the trinuclear platinum anticancer drug triplatin (1) (1,0,1/t,t,t or BBR3464) with site-specific sulfated and carboxylated disaccharides. Specifically, the disaccharides GlcNS(6S)-GlcA (I) and GlcNS(6S)-IdoA(2S) (II) are useful models of longer-chain glycosaminoglycans (GAGs) such as heparan sulfate (HS). For both the reactions of 15N-1 with I and II, equilibrium conditions were achieved more slowly (65 h) compared to the reaction with the monosaccharide GlcNS(6S) (9 h). The data suggest both carboxylate and sulfate binding of disaccharide I to the Pt with the sulfato species accounting for <1% of the total species at equilibrium. The rate constant for sulfate displacement of the aqua ligand (kL2) is 4 times higher than the analogous rate constant for carboxylate displacement (kL1). There are marked differences in the equilibrium concentrations of the chlorido, aqua, and carboxy-bound species for reactions with the two disaccharides, notably a significantly higher concentration of carboxylate-bound species for II, where sulfate-bound species were barely detectable. The trend mirrors that reported for the corresponding dinuclear platinum complex 1,1/t,t, where the rate constant for sulfate displacement of the aqua ligand was 3 times higher than that for acetate. Also similar to what we observed for the reactions of 1,1/t,t with the simple anions, aquation of the sulfato group is rapid, and the rate constant k-L2 is 3 orders of magnitude higher than that for displacement of the carboxylate (k-L1). Molecular dynamics calculations suggest that extra hydrogen-bonding interactions with the more sulfated disaccharide II may prevent or diminish sulfate binding of the triplatin moiety. The overall results suggest that Pt-O donor interactions should be considered in any full description of platinum complex cellular chemistry.


Subject(s)
Heparitin Sulfate , Platinum , Ligands , Heparitin Sulfate/chemistry , Disaccharides/chemistry , Sulfates/chemistry
19.
Carbohydr Res ; 532: 108919, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37557021

ABSTRACT

Heparan sulfate (HS) is ubiquitous polysaccharide on the surface of all mammalian cells and extracellular matrices. The incredible structural complexity of HS arises from its sulfation patterns and disaccharide compositions, which orchestrate a wide range of biological activities. Researchers have developed elegant synthetic methods to obtain well-defined HS oligosaccharides to understand the structure-activity relationship. These studies revealed that specific sulfation codes and uronic acid variants could synergistically modulate HS-protein interactions (HSPI). Additionally, the conformational flexibility of l-Iduronic acid, a uronic acid unit has emerged as a critical factor in fine-tuning the microenvironment to modulate HSPI. This review delineates how uronic acid composition in HS modulates protein binding affinity, selectivity, and biological activity. Finally, the significance of sulfated homo-oligo uronic acid as heparin mimics in drug development is also discussed.


Subject(s)
Heparitin Sulfate , Uronic Acids , Animals , Heparitin Sulfate/chemistry , Oligosaccharides/chemistry , Heparin/metabolism , Protein Binding , Mammals/metabolism
20.
Angew Chem Int Ed Engl ; 62(32): e202304325, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37285191

ABSTRACT

Heparan sulfate (HS) contains variably repeating disaccharide units organized into high- and low-sulfated domains. This rich structural diversity enables HS to interact with many proteins and regulate key signaling pathways. Efforts to understand structure-function relationships and harness the therapeutic potential of HS are hindered by the inability to synthesize an extensive library of well-defined HS structures. We herein report a rational and expedient approach to access a library of 27 oligosaccharides from natural aminoglycosides as HS mimetics in 7-12 steps. This strategy significantly reduces the number of steps as compared to the traditional synthesis of HS oligosaccharides from monosaccharide building blocks. Combined with computational insight, we identify a new class of four trisaccharide compounds derived from the aminoglycoside tobramycin that mimic natural HS and have a strong binding to heparanase but a low affinity for off-target platelet factor-4 protein.


Subject(s)
Aminoglycosides , Heparitin Sulfate , Aminoglycosides/pharmacology , Heparitin Sulfate/chemistry , Proteins/metabolism , Oligosaccharides/chemistry , Disaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...