Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.103
Filter
1.
J Immunol ; 213(3): 251-256, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39008791

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by infiltration of monocyte-derived macrophages (MdMs) into the liver; however, the function of these macrophages is largely unknown. We previously demonstrated that a population of MdMs, referred to as hepatic lipid-associated macrophages (LAMs), assemble into aggregates termed hepatic crown-like structures in areas of liver fibrosis. Intriguingly, decreasing MdM recruitment resulted in increased liver fibrosis, suggesting that LAMs contribute to antifibrotic pathways in MASH. In this study, we determined that hepatic crown-like structures are characterized by intimate interactions between activated hepatic stellate cells (HSCs) and macrophages in a collagen matrix in a mouse model of MASH. MASH macrophages displayed collagen-degrading capacities, and HSCs derived from MASH livers promoted expression of LAM marker genes and acquisition of a collagen-degrading phenotype in naive macrophages. These data suggest that crosstalk between HSCs and macrophages may contribute to collagen degradation MASH.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Macrophages , Phenotype , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/immunology , Hepatic Stellate Cells/pathology , Animals , Mice , Macrophages/immunology , Macrophages/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/immunology , Mice, Inbred C57BL , Collagen/metabolism , Disease Models, Animal , Humans , Liver/pathology , Liver/metabolism , Liver/immunology , Male , Fatty Liver/pathology , Fatty Liver/metabolism , Fatty Liver/immunology
2.
J Agric Food Chem ; 72(28): 15740-15754, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970822

ABSTRACT

Hepatic fibrosis is a compensatory response to chronic liver injury and inflammation, and dietary intervention is recommended as one of the fundamental prevention strategies. Raspberry ketone (RK) is an aromatic compound first isolated from raspberry and widely used to prepare food flavors. The current study investigated the hepatoprotection and potential mechanism of RK against hepatic fibrosis. In vitro, hepatic stellate cell (HSC) activation was stimulated with TGF-ß and cultured with RK, farnesoid X receptor (FXR), or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) agonist or inhibitor, respectively. In vivo, C57BL/6 mice were injected intraperitoneally with thioacetamide (TAA) at 100/200 mg/kg from the first to the fifth week. Mice were intragastrically administrated with RK or Cur once a day from the second to the fifth week. In activated HSCs, RK inhibited extracellular matrix (ECM) accumulation, inflammation, and epithelial-mesenchymal transition (EMT) process. RK both activated FXR/PGC-1α and regulated their crosstalk, which were verified by their inhibitors and agonists. Deficiency of FXR or PGC-1α also attenuated the effect of RK on the reverse of activated HSCs. RK also decreased serum ALT/AST levels, liver histopathological change, ECM accumulation, inflammation, and EMT in mice caused by TAA. Double activation of FXR/PGC-1α might be the key targets for RK against hepatic fibrosis. Above all, these discoveries supported the potential of RK as a novel candidate for the dietary intervention of hepatic fibrosis.


Subject(s)
Butanones , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/drug therapy , Male , Signal Transduction/drug effects , Humans , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Butanones/pharmacology , Rubus/chemistry , Inflammation/metabolism , Inflammation/drug therapy , Epithelial-Mesenchymal Transition/drug effects
3.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000553

ABSTRACT

Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvß3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvß3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.


Subject(s)
Endothelial Cells , Hepatic Stellate Cells , Hepatitis, Alcoholic , Liver , Non-alcoholic Fatty Liver Disease , Hepatic Stellate Cells/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Endothelial Cells/metabolism , Hepatitis, Alcoholic/metabolism , Hepatitis, Alcoholic/pathology , Liver/metabolism , Liver/pathology , Apoptosis , Humans , Integrin alphaVbeta3/metabolism , Male , Mice
4.
Drug Des Devel Ther ; 18: 2715-2727, 2024.
Article in English | MEDLINE | ID: mdl-38974122

ABSTRACT

Hepatic fibrosis (HF) is a pathological process of structural and functional impairment of the liver and is a key component in the progression of chronic liver disease. There are no specific anti-hepatic fibrosis (anti-HF) drugs, and HF can only be improved or prevented by alleviating the cause. Autophagy of hepatic stellate cells (HSCs) is closely related to the development of HF. In recent years, traditional Chinese medicine (TCM) has achieved good therapeutic effects in the prevention and treatment of HF. Several active ingredients from TCM (AITCM) can regulate autophagy in HSCs to exert anti-HF effects through different pathways, but relevant reviews are lacking. This paper reviewed the research progress of AITCM regulating HSCs autophagy against HF, and also discussed the relationship between HSCs autophagy and HF, pointing out the problems and limitations of the current study, in order to provide references for the development of anti-HF drugs targeting HSCs autophagy in TCM. By reviewing the literature in PubMed, Web of Science, Embase, CNKI and other databases, we found that the relationship between autophagy of HSCs and HF is currently controversial. HSCs autophagy may promote HF by consuming lipid droplets (LDs) to provide energy for their activation. However, in contrast, inducing autophagy in HSCs can exert the anti-HF effect by stimulating their apoptosis or senescence, reducing type I collagen accumulation, inhibiting the extracellular vesicles release, degrading pro-fibrotic factors and other mechanisms. Some AITCM inhibit HSCs autophagy to resist HF, with the most promising direction being to target LDs. While, others induce HSCs autophagy to resist HF, with the most promising direction being to target HSCs apoptosis. Future research needs to focus on cell targeting research, autophagy targeting research and in vivo verification research, and to explore the reasons for the contradictory effects of HSCs autophagy on HF.


Subject(s)
Autophagy , Drugs, Chinese Herbal , Hepatic Stellate Cells , Liver Cirrhosis , Medicine, Chinese Traditional , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Autophagy/drug effects , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals
5.
Anal Cell Pathol (Amst) ; 2024: 2751280, 2024.
Article in English | MEDLINE | ID: mdl-38946862

ABSTRACT

Background: Biliary atresia (BA) is a devastating congenital disease characterized by inflammation and progressive liver fibrosis. Activation of hepatic stellate cells (HSCs) plays a central role in the pathogenesis of hepatic fibrosis. Our study aimed to investigate the pharmacological effect and potential mechanism of pirfenidone (PFD) and andrographolide (AGP) separately and together on liver fibrosis of BA. Materials and Methods: The bile ducts of male C57BL/6J mice were ligated or had the sham operation. The in vivo effects of PFD and/or AGP on liver fibrosis of BA were evaluated. Human hepatic stellate cells (LX-2) were also treated with PFD and/or AGP in vitro. Results: PFD and/or AGP ameliorates liver fibrosis and inflammation in the mice model of BA, as evidenced by significant downregulated in the accumulation of collagen fibers, hepatic fibrosis markers (α-SMA, collagen I, and collagen IV), and inflammatory markers (IL-1ß, IL-6, and TNF-α). Moreover, compared with monotherapy, these changes are more obvious in the combined treatment of PFD and AGP. Consistent with animal experiments, hepatic fibrosis markers (α-SMA, collagen I, and CTGF) and inflammatory markers (IL-1ß, IL-6, and TNF-α) were significantly decreased in activated LX-2 cells after PFD and/or AGP treatment. In addition, PFD and/or AGP inhibited the activation of HSCs by blocking the TGF-ß/Smad signaling pathway, and the combined treatment of PFD and AGP synergistically inhibited the phosphorylation of Smad2 and Smad3. Conclusion: The combined application of PFD and AGP exerted superior inhibitive effects on HSC activation and liver fibrosis by mediating the TGF-ß/Smad signaling pathway as compared to monotherapy. Therefore, the combination of PFD and AGP may be a promising treatment strategy for liver fibrosis in BA.


Subject(s)
Diterpenes , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Inbred C57BL , Pyridones , Signal Transduction , Smad Proteins , Transforming Growth Factor beta , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Animals , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Signal Transduction/drug effects , Diterpenes/pharmacology , Diterpenes/therapeutic use , Male , Transforming Growth Factor beta/metabolism , Smad Proteins/metabolism , Humans , Pyridones/pharmacology , Cell Line , Mice , Biliary Atresia/pathology , Biliary Atresia/drug therapy , Biliary Atresia/metabolism , Disease Models, Animal , Drug Therapy, Combination
6.
Bull Exp Biol Med ; 177(1): 74-78, 2024 May.
Article in English | MEDLINE | ID: mdl-38955854

ABSTRACT

Activated hepatic stellate cells differentiate into myofibroblasts, which synthesize and secrete extracellular matrix (ECM) leading to liver fibrosis. It was previously demonstrated that bulleyaconitine A (BLA), an alkaloid from Aconitum bulleyanum, inhibits proliferation and promotes apoptosis of human hepatic Lieming Xu-2 (LX-2) cells. In this study, we analyzed the effect of BLA on the production of ECM and related proteins by LX-2 cells activated with acetaldehyde (AA). The cells were randomized into the control group, AA group (cells activated with 400 µM AA), and BLA+AA group (cells cultured in the presence of 400 µM AA and 18.75 µg/ml BLA). In the BLA+AA group, the contents of collagens I and III and the expression of α-smooth muscle actin and transforming growth factor-ß1 (TGF-ß1) were statistically significantly higher than in the control, but lower than in the AA group. Expression of MMP-1 in the BLA+AA group was also significantly higher than in the AA group, but lower than in the control. Expression of TIMP-1 in the BLA+AA group was significantly higher than in the control, but lower than in the AA group. Thus, BLA suppressed activation and proliferation of LX-2 cells by inhibiting TGF-ß1 signaling pathway and decreasing the content of collagens I and III by reducing the MMP-1/TIMP-1 ratio.


Subject(s)
Acetaldehyde , Aconitine , Actins , Collagen Type I , Extracellular Matrix , Hepatic Stellate Cells , Tissue Inhibitor of Metalloproteinase-1 , Transforming Growth Factor beta1 , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Acetaldehyde/pharmacology , Acetaldehyde/analogs & derivatives , Aconitine/pharmacology , Aconitine/analogs & derivatives , Collagen Type I/metabolism , Collagen Type I/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Actins/metabolism , Actins/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Cell Line , Collagen Type III/metabolism , Collagen Type III/genetics , Cell Proliferation/drug effects , Aconitum/chemistry , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
7.
Mol Med ; 30(1): 99, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982366

ABSTRACT

BACKGROUND: Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS: The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-ß1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-ß1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS: CCl4 exposure or TGF-ß1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-ß1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-ß1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION: GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.


Subject(s)
Carbon Tetrachloride , Cyclic AMP Response Element-Binding Protein , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Knockout , Receptors, G-Protein-Coupled , Signal Transduction , Smad7 Protein , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/chemically induced , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatic Stellate Cells/metabolism , Smad7 Protein/metabolism , Smad7 Protein/genetics , Transforming Growth Factor beta1/metabolism , Male , Humans , Cell Line , Disease Models, Animal , Mice, Inbred C57BL , Gene Deletion
8.
J Cell Mol Med ; 28(13): e18529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984945

ABSTRACT

In this in vitro study, for the first time, we evaluate the effects of simvastatin-loaded liposome nanoparticles (SIM-LipoNPs) treatment on fibrosis-induced liver microtissues, as simvastatin (SIM) has shown potential benefits in the non-alcoholic fatty liver disease process. We developed multicellular liver microtissues composed of hepatic stellate cells, hepatoblastoma cells and human umbilical vein endothelial cells. The microtissues were supplemented with a combination of palmitic acid and oleic acid to develop fibrosis models. Subsequently, various groups of microtissues were exposed to SIM and SIM-LipoNPs at doses of 5 and 10 mg/mL. The effectiveness of the treatments was evaluated by analysing cell viability, production of reactive oxygen species (ROS) and nitric oxide (NO), the expression of Kruppel-like factor (KLF) 2, and pro-inflammatory cytokines (interleukin(IL)-1 α, IL-1 ß, IL-6 and tumour necrosis factor-α), and the expression of collagen I. Our results indicated that SIM-LipoNPs application showed promising results. SIM-LipoNPs effectively amplified the SIM-klf2-NO pathway at a lower dosage compatible with a high dosage of free SIM, which also led to reduced oxidative stress by decreasing ROS levels. SIM-LipoNPs administration also resulted in a significant reduction in pro-inflammatory cytokines and Collagen I mRNA levels, as a marker of fibrosis. In conclusion, our study highlights the considerable therapeutic potential of using SIM-LipoNPs to prevent liver fibrosis progress, underscoring the remarkable properties of SIM-LipoNPs in activating the KLF2-NO pathway and anti-oxidative and anti-inflammatory response.


Subject(s)
Hepatic Stellate Cells , Kruppel-Like Transcription Factors , Liposomes , Liver Cirrhosis , Nanoparticles , Reactive Oxygen Species , Simvastatin , Humans , Simvastatin/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Cell Survival/drug effects , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Nitric Oxide/metabolism
9.
PLoS One ; 19(7): e0306775, 2024.
Article in English | MEDLINE | ID: mdl-38985836

ABSTRACT

BACKGROUND: This study evaluated the effect of microvesicles(MVs) from quiescent and TGF-ß1 stimulated hepatic stellate cells (HSC-MVs, TGF-ß1HSC-MVs) on H2O2-induced human umbilical vein endothelial cells (HUVECs) injury and CCl4-induced rat hepatic vascular injury. METHODS: HUVECs were exposed to hydrogen peroxide (H2O2) to establish a model for vascular endothelial cell injury. HSC-MVs or TGF-ß1HSC-MVs were co-cultured with H2O2-treated HUVECs, respectively. Indicators including cell survival rate, apoptosis rate, oxidative stress, migration, invasion, and angiogenesis were measured. Simultaneously, the expression of proteins such as PI3K, AKT, MEK1+MEK2, ERK1+ERK2, VEGF, eNOS, and CXCR4 was assessed, along with activated caspase-3. SD rats were intraperitoneally injected with CCl4 twice a week for 10 weeks to induce liver injury models. HSC-MVs or TGF-ß1HSC-MVs were injected into the tail vein of rats. Liver and hepatic vascular damage were also detected. RESULTS: In H2O2-treated HUVECs, HSC-MVs increased cell viability, reduced cytotoxicity and apoptosis, improved oxidative stress, migration, and angiogenesis, and upregulated protein expression of PI3K, AKT, MEK1/2, ERK1/2, VEGF, eNOS, and CXCR4. Conversely, TGF-ß1HSC-MVs exhibited opposite effects. CCl4- induced rat hepatic injury model, HSC-MVs reduced the release of ALT and AST, hepatic inflammation, fatty deformation, and liver fibrosis. HSC-MVs also downregulated the protein expression of CD31 and CD34. Conversely, TGF-ß1HSC-MVs demonstrated opposite effects. CONCLUSION: HSC-MVs demonstrated a protective effect on H2O2-treated HUVECs and CCl4-induced rat hepatic injury, while TGF-ß1HSC-MVs had an aggravating effect. The effects of MVs involve PI3K/AKT/VEGF, CXCR4, and MEK/ERK/eNOS pathways.


Subject(s)
Hepatic Stellate Cells , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide , Transforming Growth Factor beta1 , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Humans , Transforming Growth Factor beta1/metabolism , Hydrogen Peroxide/pharmacology , Rats , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Oxidative Stress/drug effects , Male , Liver/pathology , Liver/metabolism , Liver/drug effects , Liver/injuries , Rats, Sprague-Dawley , Apoptosis/drug effects , Cell-Derived Microparticles/metabolism , Cell Survival/drug effects , Carbon Tetrachloride/toxicity , Cell Movement/drug effects , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism
10.
FASEB J ; 38(13): e23757, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38965999

ABSTRACT

Hepatic stellate cells (HSCs) are responsible for liver fibrosis accompanied by its activation into myofibroblasts and the abundant production of extracellular matrix. However, the HSC contribution to progression of liver inflammation has been less known. We aimed to elucidate the mechanism in HSCs underlying the inflammatory response and the function of tumor necrosis factor α-related protein A20 (TNFAIP3). We established A20 conditional knockout (KO) mice crossing Twist2-Cre and A20 floxed mice. Using these mice, the effect of A20 was analyzed in mouse liver and HSCs. The human HSC line LX-2 was also used to examine the role and underlying molecular mechanism of A20. In this KO model, A20 was deficient in >80% of HSCs. Spontaneous inflammation with mild fibrosis was found in the liver of the mouse model without any exogenous agents, suggesting that A20 in HSCs suppresses chronic hepatitis. Comprehensive RNA sequence analysis revealed that A20-deficient HSCs exhibited an inflammatory phenotype and abnormally expressed chemokines. A20 suppressed JNK pathway activation in HSCs. Loss of A20 function in LX-2 cells also induced excessive chemokine expression, mimicking A20-deficient HSCs. A20 overexpression suppressed chemokine expression in LX-2. In addition, we identified DCLK1 in the genes regulated by A20. DCLK1 activated the JNK pathway and upregulates chemokine expression. DCLK1 inhibition significantly decreased chemokine induction by A20-silencing, suggesting that A20 controlled chemokine expression in HSCs via the DCLK1-JNK pathway. In conclusion, A20 suppresses chemokine induction dependent on the DCLK1-JNK signaling pathway. These findings demonstrate the therapeutic potential of A20 and the DCLK1-JNK pathway for the regulation of inflammation in chronic hepatitis.


Subject(s)
Chemokines , Hepatic Stellate Cells , MAP Kinase Signaling System , Mice, Knockout , Protein Serine-Threonine Kinases , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Hepatic Stellate Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Mice , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Chemokines/metabolism , Chemokines/genetics , Hepatitis, Chronic/metabolism , Hepatitis, Chronic/pathology , Hepatitis, Chronic/genetics , Doublecortin-Like Kinases , Mice, Inbred C57BL , Cell Line , Male
11.
Int J Biol Sci ; 20(9): 3334-3352, 2024.
Article in English | MEDLINE | ID: mdl-38993557

ABSTRACT

Type 2 diabetes mellitus (T2DM) increases the risk of non-alcoholic fatty liver disease (NAFLD) progression to advanced stages, especially upon high-fat diet (HFD). HFD-induced hepatic fibrosis can be marked by oxidative stress, inflammation, and activation of hepatic stellate cells. Sirtuin 1/2 (SIRT1/2), NAD-dependent class III histone deacetylases, are involved in attenuation of fibrosis. In our conducted research, TGF-ß1-activated LX-2 cells, free fatty acid (FFA)-treated simultaneous co-culture (SCC) cells, and HFD-induced hepatic fibrosis in Zucker diabetic fatty (ZDF) rats, a widely used animal model in the study of metabolic syndromes, were used to evaluate the protective effect of Tenovin-1, a SIRT1/2 inhibitor. ZDF rats were divided into chow diet, HFD, and HFD + Tenovin-1 groups. Tenovin-1 reduced hepatic damage, inhibited inflammatory cell infiltration, micro/ macro-vesicular steatosis and prevented collagen deposition HFD-fed rats. Tenovin-1 reduced serum biochemical parameters, triglyceride (TG) and malondialdehyde (MDA) levels but increased glutathione, catalase, and superoxide dismutase levels. Tenovin-1 mitigated proinflammatory cytokines IL-6, IL-1ß, TNFα and fibrosis biomarkers in HFD rats, TGF-ß1-activated LX-2 and FFA treated SCC cells. Additionally, Tenovin-1 suppressed SIRT1/2 expression and inhibited JNK-1 and STAT3 phosphorylation in HFD rats and FFA-treated SCC cells. In conclusion, Tenovin-1 attenuates hepatic fibrosis by stimulating antioxidants and inhibiting inflammatory cytokines under HFD conditions in diabetic rats.


Subject(s)
Diet, High-Fat , Liver Cirrhosis , Rats, Zucker , Sirtuin 1 , Sirtuin 2 , Animals , Diet, High-Fat/adverse effects , Rats , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Sirtuin 1/metabolism , Sirtuin 2/metabolism , Sirtuin 2/antagonists & inhibitors , Male , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Oxidative Stress/drug effects
12.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000343

ABSTRACT

Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-ß, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.


Subject(s)
Hepatic Stellate Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Hepatic Stellate Cells/metabolism , Animals , Mice , Mesenchymal Stem Cell Transplantation/methods , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/therapy , Chemical and Drug Induced Liver Injury/genetics , Male , Carbon Tetrachloride/adverse effects , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/genetics , Mice, Inbred C57BL , Cell Movement
13.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000518

ABSTRACT

While obesity-related nonalcoholic fatty liver disease (NAFLD) is linked with metabolic dysfunctions such as insulin resistance and adipose tissue inflammation, lean NAFLD more often progresses to liver fibrosis even in the absence of metabolic syndrome. This review aims to summarize the current knowledge regarding the mechanisms of liver fibrosis in lean NAFLD. The most commonly used lean NAFLD models include a methionine/choline-deficient (MCD) diet, a high-fat diet with carbon tetrachloride (CCl4), and a high-fructose and high-cholesterol diet. The major pro-fibrogenic mechanisms in lean NAFLD models include increased activation of the extracellular signal-regulated kinase (ERK) pathway, elevated expression of α-smooth muscle actin (α-SMA), collagen type I, and TGF-ß, and modulation of fibrogenic markers such as tenascin-X and metalloproteinase inhibitors. Additionally, activation of macrophage signaling pathways promoting hepatic stellate cell (HSC) activation further contributes to fibrosis development. Animal models cannot cover all clinical features that are evident in patients with lean or obese NAFLD, implicating the need for novel models, as well as for deeper comparisons of clinical and experimental studies. Having in mind the prevalence of fibrosis in lean NAFLD patients, by addressing specific pathways, clinical studies can reveal new targeted therapies along with novel biomarkers for early detection and enhancement of clinical management for lean NAFLD patients.


Subject(s)
Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Obesity , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Obesity/metabolism , Obesity/complications , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Animals , Hepatic Stellate Cells/metabolism , Disease Models, Animal
14.
Signal Transduct Target Ther ; 9(1): 169, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956074

ABSTRACT

More than 90% of hepatocellular carcinoma (HCC) cases develop in the presence of fibrosis or cirrhosis, making the tumor microenvironment (TME) of HCC distinctive due to the intricate interplay between cancer-associated fibroblasts (CAFs) and cancer stem cells (CSCs), which collectively regulate HCC progression. However, the mechanisms through which CSCs orchestrate the dynamics of the tumor stroma during HCC development remain elusive. Our study unveils a significant upregulation of Sema3C in fibrotic liver, HCC tissues, peripheral blood of HCC patients, as well as sorafenib-resistant tissues and cells, with its overexpression correlating with the acquisition of stemness properties in HCC. We further identify NRP1 and ITGB1 as pivotal functional receptors of Sema3C, activating downstream AKT/Gli1/c-Myc signaling pathways to bolster HCC self-renewal and tumor initiation. Additionally, HCC cells-derived Sema3C facilitated extracellular matrix (ECM) contraction and collagen deposition in vivo, while also promoting the proliferation and activation of hepatic stellate cells (HSCs). Mechanistically, Sema3C interacted with NRP1 and ITGB1 in HSCs, activating downstream NF-kB signaling, thereby stimulating the release of IL-6 and upregulating HMGCR expression, consequently enhancing cholesterol synthesis in HSCs. Furthermore, CAF-secreted TGF-ß1 activates AP1 signaling to augment Sema3C expression in HCC cells, establishing a positive feedback loop that accelerates HCC progression. Notably, blockade of Sema3C effectively inhibits tumor growth and sensitizes HCC cells to sorafenib in vivo. In sum, our findings spotlight Sema3C as a novel biomarker facilitating the crosstalk between CSCs and stroma during hepatocarcinogenesis, thereby offering a promising avenue for enhancing treatment efficacy and overcoming drug resistance in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Semaphorins , Tumor Microenvironment , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Tumor Microenvironment/genetics , Semaphorins/genetics , Semaphorins/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Mice , Signal Transduction/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Neuropilin-1/genetics , Neuropilin-1/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Animals , Gene Expression Regulation, Neoplastic/genetics , Sorafenib/pharmacology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Disease Progression
15.
J Zhejiang Univ Sci B ; 25(7): 594-604, 2024 May 17.
Article in English, Chinese | MEDLINE | ID: mdl-39011679

ABSTRACT

Liver fibrosis is a significant health burden, marked by the consistent deposition of collagen. Unfortunately, the currently available treatment approaches for this condition are far from optimal. Lysyl oxidase-like protein 2 (LOXL2) secreted by hepatic stellate cells (HSCs) is a crucial player in the cross-linking of matrix collagen and is a significant target for treating liver fibrosis. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have been proposed as a potential treatment option for chronic liver disorders. Previous studies have found that MSC-sEV can be used for microRNA delivery into target cells or tissues. It is currently unclear whether microRNA-4465 (miR-4465) can target LOXL2 and inhibit HSC activation. Additionally, it is uncertain whether MSC-sEV can be utilized as a gene therapy vector to carry miR-4465 and effectively inhibit the progression of liver fibrosis. This study explored the effect of miR-4465-modified MSC-sEV (MSC-sEVmiR-4465) on LOXL2 expression and liver fibrosis development. The results showed that miR-4465 can bind specifically to the promoter of the LOXL2 gene in HSC. Moreover, MSC-sEVmiR-4465 inhibited HSC activation and collagen expression by downregulating LOXL2 expression in vitro. MSC-sEVmiR-4465 injection could reduce HSC activation and collagen deposition in the CCl4-induced mouse model. MSC-sEVmiR-4465 mediating via LOXL2 also hindered the migration and invasion of HepG2 cells. In conclusion, we found that MSC-sEV can deliver miR-4465 into HSC to alleviate liver fibrosis via altering LOXL2, which might provide a promising therapeutic strategy for liver diseases.


Subject(s)
Amino Acid Oxidoreductases , Extracellular Vesicles , Hepatic Stellate Cells , Liver Cirrhosis , Mesenchymal Stem Cells , MicroRNAs , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Animals , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Liver Cirrhosis/therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Extracellular Vesicles/metabolism , Hepatic Stellate Cells/metabolism , Male , Humans , Mice, Inbred C57BL
16.
Hepatol Commun ; 8(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39023343

ABSTRACT

BACKGROUND: When massive necrosis occurs in acute liver failure (ALF), rapid expansion of HSCs called liver progenitor cells (LPCs) in a process called ductular reaction is required for survival. The underlying mechanisms governing this process are not entirely known to date. In ALF, high levels of retinoic acid (RA), a molecule known for its pleiotropic roles in embryonic development, are secreted by activated HSCs. We hypothesized that RA plays a key role in ductular reaction during ALF. METHODS: RNAseq was performed to identify molecular signaling pathways affected by all-trans retinoid acid (atRA) treatment in HepaRG LPCs. Functional assays were performed in HepaRG cells treated with atRA or cocultured with LX-2 cells and in the liver tissue of patients suffering from ALF. RESULTS: Under ALF conditions, activated HSCs secreted RA, inducing RARα nuclear translocation in LPCs. RNAseq data and investigations in HepaRG cells revealed that atRA treatment activated the WNT-ß-Catenin pathway, enhanced stemness genes (SOX9, AFP, and others), increased energy storage, and elevated the expression of ATP-binding cassette transporters in a RARα nuclear translocation-dependent manner. Further, atRA treatment-induced pathways were confirmed in a coculture system of HepaRG with LX-2 cells. Patients suffering from ALF who displayed RARα nuclear translocation in the LPCs had significantly better MELD scores than those without. CONCLUSIONS: During ALF, RA secreted by activated HSCs promotes LPC activation, a prerequisite for subsequent LPC-mediated liver regeneration.


Subject(s)
Liver Failure, Acute , Stem Cells , Tretinoin , Humans , Tretinoin/pharmacology , Stem Cells/drug effects , Wnt Signaling Pathway/drug effects , Liver/drug effects , Retinoic Acid Receptor alpha/genetics , Retinoic Acid Receptor alpha/metabolism , Coculture Techniques , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism
17.
Sci Rep ; 14(1): 13473, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866800

ABSTRACT

Aging enhances numerous processes that compromise homeostasis and pathophysiological processes. Among these, activated HSCs play a pivotal role in advancing liver fibrosis. This research delved into how aging impacts liver fibrosis mechanisms. The study involved 32 albino rats categorized into four groups: Group I (young controls), Group II (young with liver fibrosis), Group III (old controls), and Group IV (old with liver fibrosis). Various parameters including serum ALT, adiponectin, leptin, and cholesterol levels were evaluated. Histopathological analysis was performed, alongside assessments of TGF-ß, FOXP3, and CD133 gene expressions. Markers of fibrosis and apoptosis were the highest in group IV. Adiponectin levels significantly decreased in Group IV compared to all other groups except Group II, while cholesterol levels were significantly higher in liver fibrosis groups than their respective control groups. Group III displayed high hepatic expression of desmin, α-SMA, GFAP and TGF- ß and in contrast to Group I. Increased TGF-ß and FOXP3 gene expressions were observed in Group IV relative to Group II, while CD133 gene expression decreased in Group IV compared to Group II. In conclusion, aging modulates immune responses, impairs regenerative capacities via HSC activation, and influences adipokine and cholesterol levels, elevating the susceptibility to liver fibrosis.


Subject(s)
Aging , Hepatic Stellate Cells , Liver Cirrhosis , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Rats , Male , Transforming Growth Factor beta/metabolism , Cholesterol/metabolism , Cholesterol/blood , Apoptosis , Liver/metabolism , Liver/pathology
18.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38836815

ABSTRACT

BACKGROUND: Smoking is a risk factor for liver cirrhosis; however, the underlying mechanisms remain largely unexplored. The α7 nicotinic acetylcholine receptor (α7nAChR) has recently been detected in nonimmune cells possessing immunoregulatory functions. We aimed to verify whether nicotine promotes liver fibrosis via α7nAChR. METHODS: We used osmotic pumps to administer nicotine and carbon tetrachloride to induce liver fibrosis in wild-type and α7nAChR-deficient mice. The severity of fibrosis was evaluated using Masson trichrome staining, hydroxyproline assays, and real-time PCR for profibrotic genes. Furthermore, we evaluated the cell proliferative capacity and COL1A1 mRNA expression in human HSCs line LX-2 and primary rat HSCs treated with nicotine and an α7nAChR antagonist, methyllycaconitine citrate. RESULTS: Nicotine exacerbated carbon tetrachloride-induced liver fibrosis in mice (+42.4% in hydroxyproline assay). This effect of nicotine was abolished in α7nAChR-deficient mice, indicating nicotine promotes liver fibrosis via α7nAChR. To confirm the direct involvement of α7nAChRs in liver fibrosis, we investigated the effects of genetic suppression of α7nAChR expression on carbon tetrachloride-induced liver fibrosis without nicotine treatment. Profibrotic gene expression at 1.5 weeks was significantly suppressed in α7nAChR-deficient mice (-83.8% in Acta2, -80.6% in Col1a1, -66.8% in Tgfb1), and collagen content was decreased at 4 weeks (-22.3% in hydroxyproline assay). The in vitro analysis showed α7nAChR expression in activated but not in quiescent HSCs. Treatment of LX-2 cells with nicotine increased COL1A1 expression (+116%) and cell proliferation (+10.9%). These effects were attenuated by methyllycaconitine citrate, indicating the profibrotic effects of nicotine via α7nAChR. CONCLUSIONS: Nicotine aggravates liver fibrosis induced by other factors by activating α7nAChR on HSCs, thereby increasing their collagen-producing capacity. We suggest the profibrotic effect of nicotine is mediated through α7nAChRs.


Subject(s)
Carbon Tetrachloride , Collagen Type I, alpha 1 Chain , Collagen Type I , Hepatic Stellate Cells , Liver Cirrhosis , Nicotine , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Nicotine/adverse effects , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Humans , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain/metabolism , Rats , Male , Cell Proliferation/drug effects , Aconitine/pharmacology , Aconitine/analogs & derivatives , Cell Line , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism , Mice, Knockout , Nicotinic Agonists/pharmacology
19.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38840336

ABSTRACT

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is unavoidable even despite the development of more effective surgical approaches. During hepatic IRI, activated HSC (aHSC) are involved in liver injury and recovery. APPROACH AND RESULT: A proportion of aHSC increased significantly both in the mouse liver tissues with IRI and in the primary mouse HSCs and LX-2 cells during hypoxia-reoxygenation. "Loss-of-function" experiments revealed that depleting aHSC with gliotoxin exacerbated liver damage in IRI mice. Subsequently, we found that the transcription of mRNA and the expression of B and T lymphocyte attenuator (BTLA) protein were lower in aHSC compared with quiescent HSCs. Interestingly, overexpression or knockdown of BTLA resulted in opposite changes in the activation of specific markers for HSCs such as collagen type I alpha 1, α-smooth muscle actin, and Vimentin. Moreover, the upregulation of these markers was also observed in the liver tissues of global BLTA-deficient (BTLA-/-) mice and was higher after hepatic IRI. Compared with wild-type mice, aHSC were higher, and liver injury was lower in BTLA-/- mice following IRI. However, the depletion of aHSC reversed these effects. In addition, the depletion of aHSC significantly exacerbated liver damage in BTLA-/- mice with hepatic IRI. Furthermore, the TGF-ß1 signaling pathway was identified as a potential mechanism for BTLA to negatively regulate the activation of HSCs in vivo and in vitro. CONCLUSIONS: These novel findings revealed a critical role of BTLA. Particularly, the receptor inhibits HSC-activated signaling in acute IRI, implying that it is a potential immunotherapeutic target for decreasing the IRI risk.


Subject(s)
Hepatic Stellate Cells , Liver , Receptors, Immunologic , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/deficiency , Mice , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Male , Mice, Knockout , Humans
20.
PLoS One ; 19(6): e0304185, 2024.
Article in English | MEDLINE | ID: mdl-38857261

ABSTRACT

OBJECTIVE: The present study aims to investigate the specific protective effects and underlying mechanisms of Ganshuang granule (GSG) on dimethylnitrosamine (DMN)-induced hepatic fibrosis in rat models. METHODS: Hepatic fibrosis was experimentally evoked in rats by DMN administration, and varying dosages of GSG were employed as an intervention. Hepatocellular damage was assessed by measuring serum levels of aminotransferase and bilirubin, accompanied by histopathological examinations of hepatic tissue. The hepatic concentrations of platelet-derived growth factor (PDGF) and transforming growth factor-ß1 (TGF-ß1) were quantitated via enzyme-linked immunosorbent assay (ELISA). The expression of α-smooth muscle actin (α-SMA) within hepatic tissue was evaluated using immunohistochemical techniques. The levels of hepatic interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and a spectrum of interleukins (IL-2, IL-4, IL-6, IL-10) were quantified by quantitative real-time PCR (qRT-PCR). Additionally, hepatic stellate cells (HSCs) were cultured in vitro and exposed to TNF-α in the presence of naringin, a principal component of GSG. The gene expression levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metallopeptidase-1 (MMP-1) in these cells were also quantified by qRT-PCR. Proliferative activity of HSCs was evaluated by the Cell Counting Kit-8 assay. Finally, alterations in Smad protein expression were analyzed through Western blotting. RESULTS: Administration of GSG in rats with fibrosis resulted in reduced levels of serum aminotransferases and bilirubin, along with alleviation of histopathological liver injury. Furthermore, the fibrosis rats treated with GSG exhibited significant downregulation of hepatic TGF-ß1, PDGF, and TNF-α levels. Additionally, GSG treatment led to increased mRNA levels of IFN-γ, IL-2, and IL-4, as well as decreased expression of α-SMA in the liver. Furthermore, treatment with naringin, a pivotal extract of GSG, resulted in elevated expression of MMP-1 and decreased levels of TIMP-1 in TNF-α-stimulated HSCs when compared to the control group. Additionally, naringin administration led to a reduction in Smad expression within the HSCs. CONCLUSION: GSG has the potential to mitigate fibrosis induced by DMN in rat models through the regulation of inflammatory and fibrosis factors. Notably, naringin, the primary extract of GSG, may exert a pivotal role in modulating the TGF-ß-Smad signaling pathway.


Subject(s)
Drugs, Chinese Herbal , Flavanones , Hepatic Stellate Cells , Liver Cirrhosis , Signal Transduction , Smad Proteins , Animals , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Signal Transduction/drug effects , Flavanones/pharmacology , Flavanones/therapeutic use , Male , Rats , Smad Proteins/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Rats, Sprague-Dawley , Dimethylnitrosamine , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Platelet-Derived Growth Factor/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Actins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...