Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 399
Filter
1.
J Cancer Res Clin Oncol ; 150(5): 223, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691204

ABSTRACT

OBJECTIVE: To investigate the clinical value of contrast-enhanced computed tomography (CECT) radiomics for predicting the response of primary lesions to neoadjuvant chemotherapy in hepatoblastoma. METHODS: Clinical and CECT imaging data were retrospectively collected from 116 children with hepatoblastoma who received neoadjuvant chemotherapy. Tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST). Subsequently, they were randomly stratified into a training cohort and a test cohort in a 7:3 ratio. The clinical model was constructed using univariate and multivariate logistic regression, while the radiomics model was developed based on selected radiomics features employing the support vector machine algorithm. The combined clinical-radiomics model incorporated both clinical and radiomics features. RESULTS: The area under the curve (AUC) for the clinical, radiomics, and combined models was 0.704 (95% CI: 0.563-0.845), 0.830 (95% CI: 0.704-0.959), and 0.874 (95% CI: 0.768-0.981) in the training cohort, respectively. In the validation cohort, the combined model achieved the highest mean AUC of 0.830 (95% CI 0.616-0.999), with a sensitivity, specificity, accuracy, precision, and f1 score of 72.0%, 81.1%, 78.5%, 57.2%, and 63.5%, respectively. CONCLUSION: CECT radiomics has the potential to predict primary lesion response to neoadjuvant chemotherapy in hepatoblastoma.


Subject(s)
Contrast Media , Hepatoblastoma , Liver Neoplasms , Neoadjuvant Therapy , Tomography, X-Ray Computed , Humans , Hepatoblastoma/drug therapy , Hepatoblastoma/diagnostic imaging , Hepatoblastoma/pathology , Neoadjuvant Therapy/methods , Female , Male , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Tomography, X-Ray Computed/methods , Retrospective Studies , Child, Preschool , Infant , Child , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant/methods , Radiomics
2.
Pathol Res Pract ; 258: 155348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761648

ABSTRACT

Hepatoblastoma (HB) is the most common malignant liver tumor in childhood. Although pre-operative cisplatin (CDDP)-based chemotherapy is often used in cases of HB, about 20% of HB patients exhibit resistance to CDDP. Forkhead box protein M1 (FOXM1) and chromo-domain-helicase-DNA-binding protein 4 (CHD4) have been associated with CDDP resistance in various tumors. We here analyzed the immunohistochemical expression of FOXM1 and CHD4 in HB specimens of 33 patients (mean age: 20 months) post-chemotherapy. The differentiation of specimens was assessed using the digital pathology software QuPath®, and then the relation between the FOXM1 or CHD4 expression and the differentiation and various other clinicopathological parameters was investigated. The histological type was epithelial in 19 cases (57.6%) and mixed epithelial and mesenchymal in 14 cases (42.4%). Nine cases had only a fetal component, 1 case had only an embryonal component, 22 cases had both fetal and embryonal components, and 1 case had no viable tumor. Both the FOXM1 and CHD4 immunoexpressions were found significantly more frequently in the embryonal than fetal components (p<0.0001 and p<0.0001, respectively). Regarding chemotherapy efficacy, the alpha-fetoprotein (AFP) level after chemotherapy was correlated with both the imaging shrinkage rate (R=-0.52) and histological residual rate (the percentage of the viable tumors of HB after chemotherapy)(R=0.62). High FOXM1 score was correlated with a high-postoperative AFP value (p<0.01) and a low AFP attenuation rate (p<0.05), but the FOXM1 score was not correlated with the imaging shrinkage rate (p=0.4418) or histological residual rate (p=0.4418). High CHD4 score showed a nonsignificant trend toward correlation with high postoperative AFP value (p=0.0849) and was not significantly correlated with the other parameters. Collectively, our results showed that FOXM1 expression may be useful in evaluating the response to CDDP-based chemotherapeutic regimens. Accurate measurement of FOXM1 expression by our scoring system using QuPath® is important in cases with mixed HB components of various differentiation levels.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Forkhead Box Protein M1 , Hepatoblastoma , Liver Neoplasms , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Humans , Forkhead Box Protein M1/metabolism , Hepatoblastoma/pathology , Hepatoblastoma/drug therapy , Hepatoblastoma/metabolism , Male , Female , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Infant , Cisplatin/therapeutic use , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Child, Preschool , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Antineoplastic Agents/therapeutic use , Child
3.
J Cell Mol Med ; 28(6): e18223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451046

ABSTRACT

Hepatoblastoma (HB), a primary liver tumour, is notorious for its high metastatic potential and poor prognosis. Ganoderma lucidum, an edible mushroom species utilized in traditional Chinese medicine for addressing various tumour types, presents an intriguing avenue for HB treatment. However, the effectiveness of G. lucidum in managing HB and its underlying molecular mechanism necessitates further exploration. Standard in vitro assays were conducted to evaluate the impact of sporoderm-broken spores of G. lucidum (SBSGL) on the malignant characteristics of HB cells. The mechanism of SBSGL in treating HB and its tumour immunomodulatory effects were explored and validated by various experiments, including immunoprecipitation, Western blotting, mRFP-GFP-LC3 adenovirus transfection and co-localization analysis, as well as verified with in vivo experiments in this regard. The results showed that SBSGL effectively inhibited the malignant traits of HB cells and suppressed the O-GlcNAcylation of RACK1, thereby reducing its expression. In addition, SBSGL inhibited immune checkpoints and regulated cytokines. In conclusion, SBSGL had immunomodulatory effects and regulated the malignancy and autophagy of HB by regulating the O-GlcNAcylation of RACK1. These findings suggest that SBSGL holds promise as a potential anticancer drug for HB treatment.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Reishi , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Spores, Fungal , Autophagy , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
4.
Gene ; 908: 148292, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38369247

ABSTRACT

Hepatoblastoma (HB) is the most common malignant tumor in children under 5 years old, but its pathogenesis remains unclear. Nur77 has been reported to be an important regulator for cancer progression in various cancer types. This study found that Nur77 was downregulated in HB tumors, compared with paracancer tissue. Knockout or overexpression of Nur77 in HB tumor cell line HepG2 and HuH6 could significantly enhance or inhibit the proliferation, migration and invasion of tumor cells both in vitro and in vivo. Further studies illustrated that Nur77 regulated the proliferation of tumor cells by affecting the expression of ß-catenin. Nur77 agonist Csn-B effectively enhanced the therapeutic effect of cisplatin on HB tumors both in vitro and in vivo. This study confirms that Nur77 may act as an oncogene in HB tumors and mediate the progression of HB by inhibiting the expression of ß-catenin, which provides a new targeted therapy for the clinical treatment of HB patients; meanwhile, the combination of Nur77 agonist and cisplatin treatment may improve the chemotherapeutic efficacy of HB patients, which provides a new idea for the improvement of the clinical prognosis of HB patients.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Child , Humans , Child, Preschool , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation
5.
Drug Dev Res ; 85(1): e22140, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349263

ABSTRACT

Everolimus, a known inhibitor of the mammalian target of rapamycin (mTOR), has shown uncertain efficacy in treating hepatoblastoma. This study delves into the potential anti-hepatoblastoma properties of everolimus and its intricate relationship with autophagy and ferroptosis, both in vitro and in vivo. In vivo, tumor tissue from hepatoblastoma patient and human hepatoblastoma cell line HuH-6 were xenografted into nude mice to establish xenograft models for observing the effect of everolimus on tumor growth. In vitro, HuH-6 cells were cultured to evaluate the anti-hepatoblastoma activity of everolimus. Transmission electron microscopy and microtubule-associated proteins 1 light chain 3 (LC3), beclin 1, and p62 protein expressions were employed to investigate autophagy. Additionally, indicators of cell apoptosis, reactive oxygen species (ROS) and proteins associated with ferroptosis were measured to evaluate ferroptosis. The results demonstrate that everolimus treatment effectively induced the formation of autophagosomes in hepatoblastoma cells, upregulated the LC3II/I ratio and beclin 1 expression, and downregulated p62 expression, indicating an enhanced autophagy level both in vitro and in vivo. Furthermore, everolimus treatment induced cell apoptosis, increased ROS level, elevated concentrations of malondialdehyde, 4-hydroxynonenal, and iron content, while reducing the ratio of glutathione/oxidized glutathione, and downregulating the protein expression of glutathione peroxidase 4 and solute carrier family 7 member 11, suggesting its ability to induce ferroptosis in hepatoblastoma cells. Importantly, the induction of ferroptosis by everolimus was significantly reversed in the presence of autophinib, an autophagy inhibitor, indicating the autophagy-dependent of everolimus-induced ferroptosis. Taken together, these findings suggest that everolimus holds promise as an effective anti-hepatoblastoma drug, with its mechanism of action potentially involving the induction of autophagy-dependent ferroptosis in hepatoblastoma cells.


Subject(s)
Ferroptosis , Hepatoblastoma , Liver Neoplasms , Animals , Mice , Humans , Everolimus/pharmacology , Hepatoblastoma/drug therapy , Beclin-1 , Mice, Nude , Reactive Oxygen Species , Autophagy , Liver Neoplasms/drug therapy , Mammals
6.
Hepatol Commun ; 8(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38285887

ABSTRACT

BACKGROUND: As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS: Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS: We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS: The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cisplatin/pharmacology , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/antagonists & inhibitors
7.
J Hepatol ; 80(4): 610-621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38242326

ABSTRACT

BACKGROUND & AIMS: Patients with metastatic, treatment-refractory, and relapsed hepatoblastoma (HB) have survival rates of less than 50% due to limited treatment options. To develop new therapeutic strategies for these patients, our laboratory has developed a preclinical testing pipeline. Given that histone deacetylase (HDAC) inhibition has been proposed for HB, we hypothesized that we could find an effective combination treatment strategy utilizing HDAC inhibition. METHODS: RNA sequencing, microarray, NanoString, and immunohistochemistry data of patient HB samples were analyzed for HDAC class expression. Patient-derived spheroids (PDSp) were used to screen combination chemotherapy with an HDAC inhibitor, panobinostat. Patient-derived xenograft (PDX) mouse models were developed and treated with the combination therapy that showed the highest efficacy in the PDSp drug screen. RESULTS: HDAC RNA and protein expression were elevated in HB tumors compared to normal livers. Panobinostat (IC50 of 0.013-0.059 µM) showed strong in vitro effects and was associated with lower cell viability than other HDAC inhibitors. PDSp demonstrated the highest level of cell death with combination treatment of vincristine/irinotecan/panobinostat (VIP). All four models responded to VIP therapy with a decrease in tumor size compared to placebo. After 6 weeks of treatment, two models demonstrated necrotic cell death, with lower Ki67 expression, decreased serum alpha fetoprotein and reduced tumor burden compared to paired VI- and placebo-treated groups. CONCLUSIONS: Utilizing a preclinical HB pipeline, we demonstrate that panobinostat in combination with VI chemotherapy can induce an effective tumor response in models developed from patients with high-risk, relapsed, and treatment-refractory HB. IMPACT AND IMPLICATIONS: Patients with treatment-refractory hepatoblastoma have limited treatment options with survival rates of less than 50%. Our manuscript demonstrates that combination therapy with vincristine, irinotecan, and panobinostat reduces the size of high-risk, relapsed, and treatment-refractory tumors. With this work we provide preclinical evidence to support utilizing this combination therapy as an arm in future clinical trials.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Mice , Animals , Panobinostat/pharmacology , Panobinostat/therapeutic use , Hepatoblastoma/drug therapy , Irinotecan/therapeutic use , Vincristine/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/chemically induced , Histone Deacetylase Inhibitors/therapeutic use , Liver Neoplasms/pathology , Hydroxamic Acids/pharmacology
8.
J Pediatr Hematol Oncol ; 46(1): e83-e86, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38063411

ABSTRACT

Children with trisomy 18 tend to develop hepatoblastoma. Since the introduction of appropriate management for organ malfunction, individuals with trisomy 18 have come to have a longer life expectancy. However, the predisposition to hepatoblastoma becomes a significant issue for the quality of a case. Here, we present a rare multifocal hepatoblastoma involving predominantly Couinaud segments 5 and 7 in a 10-month-old boy with trisomy 18. Though the first-line cisplatin monotherapy resulted in unsatisfactory tumor shrinkage, the second-line neoadjuvant chemotherapy administrating irinotecan and vincristine gave rise to significant tumor reduction in volume, leading to the completion of partial resection of the liver without the microscopic residual disease. The patient has been free from recurrence for 44 months. Because anatomical right hepatectomy can cause circulatory instability, including acute onset of pulmonary hypertension in trisomy 18 patients, physicians should balance treatment benefits and potential adverse effects. Our successful experience utilizing a combination of efficacious and less cardiotoxic neoadjuvant chemotherapy followed by the partial hepatectomy encourages physicians to treat a patient with trisomy 18 and tackle hepatoblastoma with a genetic background.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Male , Child , Humans , Infant , Hepatoblastoma/therapy , Hepatoblastoma/drug therapy , Liver Neoplasms/pathology , Trisomy 18 Syndrome/therapy , Trisomy 18 Syndrome/drug therapy , Hepatectomy/adverse effects , Trisomy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
10.
J Magn Reson Imaging ; 59(3): 1034-1042, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37272790

ABSTRACT

BACKGROUND: The assessment of resectability after neoadjuvant chemotherapy of hepatoblastoma is dependent on Post-Treatment EXTENT of Disease (POSTTEXT) staging and its annotation factors P (portal venous involvement) and V (hepatic venous/inferior vena cava [IVC] involvement), but MR performance in assessing them remains unclear. PURPOSE: To assess the diagnostic performance of contrast-enhanced MR imaging for preoperative POSTTEXT staging and diagnosing vascular involvement in terms of annotation factors P and V in pediatric hepatoblastoma following neoadjuvant chemotherapy. STUDY TYPE: Retrospective. SUBJECTS: Thirty-five consecutive patients (17 males, median age, 24 months; age range, 6-98 months) with proven hepatoblastoma underwent preoperative MR imaging following neoadjuvant chemotherapy. FIELD STRENGTH/SEQUENCE: 3.0 T; T2-weighted imaging (T2WI), T2WI with fat suppression, diffusion weighted imaging, radial stack-of-the-star/Cartesian 3D Dixon T1-weighted gradient echo imaging. ASSESSMENT: Three radiologists independently assessed the POSTTEXT stages and annotation factors P and V based on the 2017 PRE/POSTTEXT system. The sensitivities and specificities were calculated for 1) diagnosing each POSTTEXT stage; 2) discrimination of stages III and IV (advanced) from those stages I and II (non-advanced) hepatoblastomas; and 3) annotation factors P and V. The combination of pathologic findings and surgical records served as the reference standard. STATISTICAL TESTS: Sensitivity, specificity, Fleiss kappa test. RESULTS: The sensitivity and specificity ranges for discriminating advanced from non-advanced hepatoblastomas were 73.3%-80.0% and 80.0%-90.0%, respectively. For annotation factor P, they were 66.7%-100.0% and 90.6%, respectively. For factor V, they were 75.0% and 67.7%-83.9%, respectively. There was excellent, substantial, and moderate agreement on POSTTEXT staging (Fleiss kappa = 0.82), factors P (Fleiss kappa = 0.64), and factors V (Fleiss kappa = 0.60), respectively. DATA CONCLUSION: MR POSTTEXT provides reliable discrimination between advanced and non-advanced tumors, and MR has moderate to excellent specificity at identifying portal venous and hepatic venous/IVC involvement. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Male , Child , Humans , Child, Preschool , Infant , Hepatoblastoma/drug therapy , Hepatoblastoma/pathology , Hepatoblastoma/surgery , Neoadjuvant Therapy , Retrospective Studies , Magnetic Resonance Imaging/methods , Hepatic Veins , Sensitivity and Specificity , Liver Neoplasms/pathology , Neoplasm Staging
11.
Pediatr Radiol ; 54(1): 58-67, 2024 01.
Article in English | MEDLINE | ID: mdl-37982901

ABSTRACT

BACKGROUND: Though neoadjuvant chemotherapy has been widely used in the treatment of hepatoblastoma, there still lacks an effective way to predict its effect. OBJECTIVE: To characterize hepatoblastoma based on radiomics image features and identify radiomics-based lesion phenotypes by unsupervised machine learning, intended to build a classifier to predict the response to neoadjuvant chemotherapy. MATERIALS AND METHODS: In this retrospective study, we segmented the arterial phase images of 137 cases of pediatric hepatoblastoma and extracted the radiomics features using PyRadiomics. Then unsupervised k-means clustering was applied to cluster the tumors, whose result was verified by t-distributed stochastic neighbor embedding (t-SNE). The least absolute shrinkage and selection operator (LASSO) regression was used for feature selection, and the clusters were visually analyzed by radiologists. The correlations between the clusters, clinical and pathological parameters, and qualitative radiological features were analyzed. RESULTS: Hepatoblastoma was clustered into three phenotypes (homogenous type, heterogenous type, and nodulated type) based on radiomics features. The clustering results had a high correlation with response to neoadjuvant chemotherapy (P=0.02). The epithelial ratio and cystic components in radiological features were also associated with the clusters (P=0.029 and 0.008, respectively). CONCLUSIONS: This radiomics-based cluster system may have the potential to facilitate the precise treatment of hepatoblastoma. In addition, this study further demonstrated the feasibility of using unsupervised machine learning in a disease without a proper imaging classification system.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Child , Humans , Neoadjuvant Therapy , Hepatoblastoma/diagnostic imaging , Hepatoblastoma/drug therapy , Radiomics , Retrospective Studies , Tomography, X-Ray Computed , Phenotype , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy
12.
Biosci Trends ; 17(6): 445-457, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38143081

ABSTRACT

Hepatoblastoma (HB) remains the most common paediatric liver tumour and survival in children with hepatoblastoma has improved considerably since the advent of sequential surgical regimens of chemotherapy based on platinum-based chemotherapeutic agents in the 1980s. With the advent of modern diagnostic imaging and pathology techniques, new preoperative chemotherapy regimens and the maturation of surgical techniques, new diagnostic and treatment options for patients with hepatoblastoma have emerged and international collaborations are investigating the latest diagnostic approaches, chemotherapy drug combinations and surgical strategies. Diagnosis of hepatoblastoma relies on imaging studies (such as ultrasound, computed tomography, and magnetic resonance imaging), alpha-fetoprotein (AFP) levels, and histological confirmation through biopsy. The standard treatment approach involves a multimodal strategy with neoadjuvant chemotherapy followed by surgical resection. In cases where complete resection is not feasible or tumors exhibit invasive characteristics, liver transplantation is considered. The management of metastatic and recurrent hepatoblastoma poses significant challenges, and ongoing research focuses on developing targeted therapies and exploring the potential of immunotherapy. Further studies are necessary to gain a better understanding of the etiology of hepatoblastoma, develop prevention strategies, and personalize treatment approaches. We aim to review the current status of diagnosis and treatment of hepatoblastoma.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Child , Humans , Infant , Hepatoblastoma/therapy , Hepatoblastoma/drug therapy , Neoplasm Recurrence, Local/surgery , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Combined Modality Therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hepatectomy/methods , Treatment Outcome
13.
Int Immunopharmacol ; 124(Pt B): 111011, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37844462

ABSTRACT

OBJECTIVE: Colchicine is the primary treatment for familial Mediterranean fever (FMF). Although colchicine is safe and effective in FMF patients, around 5-10% of patients show resistance to the drug. This study investigates the possibility of a link between colchicine resistance and the distinct miRNA profiles in colchicine resistant FMF patients. METHODS: Differentially expressed miRNAs in colchicine resistant FMF patients were detected by Affymetrix 4.0 miRNA array analysis. These miRNAs were then categorized based on the role of their target genes in drug metabolism and inflammation related pathways. qRT-PCR was used to validate candidate miRNAs selected by Enrichr, a gene enrichment analysis system based on the relevance of possible target genes in drug metabolism pathways. Expression levels of these miRNAs' potential target genes were investigated by qRT-PCR. Then, a colchicine resistant hepatoblastoma cell line (HEPG2) was established, and the differentially expressed miRNAs and genes identified in patients were also analyzed in this colchicine-resistant cell line. RESULTS: 25 differentially expressed miRNAs were detected in colchicine resistant FMF patients. miR-183-5p, miR-15b-5p, miR-505-5p, and miR-125a-5p were identified to be associated with drug resistance and inflammatory pathways and thus chosen for further validation. miR-183-5p, miR-15b-5p, miR-505-5p miRNAs showed significantly differential expression in qRT-PCR. NFKB1, NR3C1, PPARα - drug absorption, distribution, metabolism, and excretion (ADME) genes were predicted to be targeted by these miRNAs. Among these targets, NFKB1 and NR3C1 were differentially over expressed in colchicine resistant FMF patients. These findings were validated in the colchicine resistant hepatoblastoma cell line (HEPG2). CONCLUSION: This is the first study evaluating the role of miRNAs in colchicine resistant patients with FMF. Their differential expression may result in resistance to standard colchicine treatment by affecting the expression of genes that take place in drug absorption, distribution, metabolism, and excretion (ADME) or nuclear receptors that regulate ADME genes, thus potentially playing a role in both drug metabolism and inflammation.


Subject(s)
Familial Mediterranean Fever , Hepatoblastoma , Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Colchicine/pharmacology , Colchicine/therapeutic use , Familial Mediterranean Fever/drug therapy , Familial Mediterranean Fever/genetics , Hepatoblastoma/drug therapy , Inflammation/drug therapy , Inflammation/genetics , Liver Neoplasms/drug therapy
14.
Photodiagnosis Photodyn Ther ; 44: 103790, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37696318

ABSTRACT

BACKGROUND: Indocyanine green (ICG) fluorescence guided surgery has been used to treat childhood hepatoblastoma (HB), but the advantages and disadvantages of this technique have not been fully discussed. The purpose of this study is to summarize the experience and to explore the clinical value of this technique for children with HB. METHODS: 45 children with HB who underwent ICG fluorescence guided surgery (n = 22) and general surgery (n = 23) in our center from January 2020 to December 2022 were enrolled retrospectively. RESULTS: All the liver tumors in the ICG group showed hyperfluorescence, including total and partial fluorescent types. With the help of ICG navigation, minimally invasive surgery was performed in 3 cases. 18.2 % of cases with tumors could not be accurately identified under white light, but could be identified by fluorescence imaging. The fluorescent cutting lines of 59.1 % of cases were consistent with the safe cutting lines. In 36.4 % of cases, the fluorescence boundary was not clear because of tumor necrosis. In 36.4 % of cases, the fluorescence could not be detected on the inner edge of the tumors because of the depth. A total of 29 ICG (+) suspicious lesions were found during the operations, of which 5 were true positive lesions. CONCLUSION: ICG fluorescence guided surgery is safe and feasible in children with HB. This technique is helpful for locating tumors, determining margin and finding small lesions with negative imaging, especially in minimally invasive surgery. However, preoperative chemotherapy, tumor necrosis, tumor depth, and ICG administration impact the effect of fluorescence imaging.


Subject(s)
Hepatoblastoma , Photochemotherapy , Child , Humans , Hepatoblastoma/diagnostic imaging , Hepatoblastoma/surgery , Hepatoblastoma/drug therapy , Indocyanine Green/therapeutic use , Retrospective Studies , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Coloring Agents , Optical Imaging/methods , Treatment Outcome , Necrosis/drug therapy
15.
Nat Commun ; 14(1): 4003, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414763

ABSTRACT

A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Animals , Mice , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Line , Oncogenes , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics
16.
Cell Mol Gastroenterol Hepatol ; 16(5): 735-755, 2023.
Article in English | MEDLINE | ID: mdl-37478905

ABSTRACT

BACKGROUND & AIMS: Hepatoblastoma (HB) is a common pediatric malignant liver tumor that is characterized by a low level of genetic mutations. Alternative splicing (AS) has been shown to be closely associated with cancer progression, especially in tumors with a low mutational burden. However, the role of AS in HB remains unknown. METHODS: Transcriptome sequencing was performed on 5 pairs of HB tissues and matched non-tumor tissues to delineate the AS landscape in HB. AS events were validated in 92 samples from 46 patients. RNA pull-down and RNA immunoprecipitation assays were carried out to identify splicing factors that regulate the AS of small nucleolar RNA host genes (SNHG). Patient-derived organoids (PDOs) were established to investigate the role of the splicing factor polyadenylate-binding nuclear protein 1 (PABPN1). RESULTS: This study uncovered aberrant alternative splicing in HB, including lncRNAs from SNHG family that undergo intron retention in HB. Further investigations revealed that PABPN1, a significantly upregulated RNA binding protein, interacts with splicing machinery in HB, inducing the intron retention of these SNHG RNAs and the downregulation of intronic small nucleolar RNAs (snoRNAs). Functionally, PABPN1 acts as an oncofetal splicing regulator in HB by promoting cell proliferation and DNA damage repair via inducing the intron retention of SNHG19. Knock-down of PABPN1 increases the cisplatin sensitivity of HB PDOs. CONCLUSIONS: Our findings revealed the role of intron retention in regulating snoRNA expression in hepatoblastoma, explained detailed regulatory mechanism between PABPN1 and the intron retention of SNHG RNAs, and provided insight into the development of new HB treatment options.


Subject(s)
Hepatoblastoma , Liver Neoplasms , RNA, Long Noncoding , Child , Humans , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Alternative Splicing/genetics , Drug Resistance, Neoplasm/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism
17.
J Hepatol ; 79(4): 989-1005, 2023 10.
Article in English | MEDLINE | ID: mdl-37302584

ABSTRACT

BACKGROUND & AIMS: Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS: We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS: Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of ß-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS: HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS: In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Animals , Mice , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Hepatoblastoma/metabolism , Proteomics , Epigenesis, Genetic , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , DNA Methylation , Carcinogenesis/genetics
19.
J Pak Med Assoc ; 73(5): 1120-1122, 2023 May.
Article in English | MEDLINE | ID: mdl-37218249

ABSTRACT

Hepatic malignancies account for 1-4% of all childhood solid tumours and Hepatoblastoma is the most common malignant liver tumour in children. Its extrahepatic origin is rare. Here we present the case of a three-year-old boy who came with a large non-tender mass in the right upper abdomen for six months. Ultrasound abdomen revealed a huge heterogenous mass anterior to the right kidney and inferior to the liver with internal vascularity and calcifications, mimicking a neuroblastoma. Tru-cut needle biopsy showed foetal-type hepatoblastoma. After neoadjuvant chemotherapy, the tumour was explored. It was found to be adherent to the inferior surface of the liver with no capsular breech. Hence differentiating it from exophytic growth of hepatoblastoma. The tumour was completely resected. The postoperative course was uneventful and adjuvant chemotherapy was given. So far only a few cases of extrahepatic hepatoblastoma have been reported.


Subject(s)
Carcinoma, Hepatocellular , Hepatoblastoma , Liver Neoplasms , Male , Child , Humans , Child, Preschool , Hepatoblastoma/diagnostic imaging , Hepatoblastoma/surgery , Hepatoblastoma/drug therapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Chemotherapy, Adjuvant
20.
Commun Biol ; 6(1): 249, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36882565

ABSTRACT

Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Child , Humans , Cell Proliferation , Chronic Disease , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Recurrence , Ribonucleoside Diphosphate Reductase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...