Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Org Lett ; 22(22): 8780-8785, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33119312

ABSTRACT

Helicobacter pylori, the most common cause of chronic gastritis, peptic ulcers, and gastric cancers, infects around half of the world's population. Although the drawbacks of antibiotic-based combination therapy are emerging, no effective vaccine is available to prevent H. pylori infections. Here, we describe the total synthesis of the unique α-(1→3)-linked tri-d-glycero-d-manno-heptose antigen from the lipopolysaccharide of H. pylori serogroups O3 and O6 and strains MO19, D2, D4, and D5 based on de novo synthesis of the differentially protected d-glycero-d-manno-heptosyl building blocks. Immunization of mice with the semisynthetic glycoconjugate elicited a very robust T-cell-dependent antigen-specific immune response, resulting in very high titers of IgG1 and IgG2b protective antibody isotypes. The postimmune sera recognized H. pylori NCTC 11637 and bound strongly to the surface of the intact bacteria.


Subject(s)
Helicobacter pylori/immunology , Heptoses/chemical synthesis , Lipopolysaccharides/chemistry , Animals , Glycoconjugates/chemistry , Helicobacter pylori/chemistry , Heptoses/immunology , Mice , Molecular Structure , Vaccines/immunology
2.
FASEB J ; 33(8): 9087-9099, 2019 08.
Article in English | MEDLINE | ID: mdl-31075211

ABSTRACT

The gastric pathogen Helicobacter pylori activates the NF-κB pathway in human epithelial cells via the recently discovered α-kinase 1 TRAF-interacting protein with forkhead-associated domain (TIFA) axis. We and others showed that this pathway can be triggered by heptose 1,7-bisphosphate (HBP), an LPS intermediate produced in gram-negative bacteria that represents a new pathogen-associated molecular pattern (PAMP). Here, we report that our attempts to identify HBP in lysates of H. pylori revealed surprisingly low amounts, failing to explain NF-κB activation. Instead, we identified ADP-glycero-ß-D-manno-heptose (ADP heptose), a derivative of HBP, as the predominant PAMP in lysates of H. pylori and other gram-negative bacteria. ADP heptose exhibits significantly higher activity than HBP, and cells specifically sensed the presence of the ß-form, even when the compound was added extracellularly. The data lead us to conclude that ADP heptose not only constitutes the key PAMP responsible for H. pylori-induced NF-κB activation in epithelial cells, but it acts as a general gram-negative bacterial PAMP.-Pfannkuch, L., Hurwitz, R., Traulsen, J., Sigulla, J., Poeschke, M., Matzner, L., Kosma, P., Schmid, M., Meyer, T. F. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori.


Subject(s)
Adenosine Diphosphate Sugars/metabolism , Helicobacter pylori/metabolism , Heptoses/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Adenosine Diphosphate Sugars/chemistry , Adenosine Diphosphate Sugars/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gene Deletion , Genes, Bacterial , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/immunology , Heptoses/chemistry , Heptoses/immunology , Humans , Immunity, Innate , NF-kappa B/metabolism , Pathogen-Associated Molecular Pattern Molecules/chemistry , Pathogen-Associated Molecular Pattern Molecules/immunology , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
3.
J Immunol ; 201(8): 2385-2391, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30224513

ABSTRACT

d-Glycero-ß-d-manno-heptose 1,7-biphosphate (ß-HBP) is a novel microbial-associated molecular pattern that triggers inflammation and thus has the potential to act as an immune modulator in many therapeutic contexts. To better understand the structure-activity relationship of this molecule, we chemically synthesized analogs of ß-HBP and tested their ability to induce canonical TIFA-dependent inflammation in human embryonic kidney cells (HEK 293T) and colonic epithelial cells (HCT 116). Of the analogs tested, only d-glycero-ß-d-manno-heptose 1-phosphate (ß-HMP) induced TIFA-dependent NF-κB activation and cytokine production in a manner similar to ß-HBP. This finding expands the spectrum of metabolites from the Gram-negative ADP-heptose biosynthesis pathway that can function as innate immune agonists and provides a more readily available agonist of the TIFA-dependent inflammatory pathway that can be easily produced by synthetic methods.


Subject(s)
Gram-Negative Bacteria/physiology , Heptoses/immunology , Immunity, Innate , Immunologic Factors/immunology , Inflammation/immunology , Mannose/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Phosphates/immunology , Pyrans/immunology , Adaptor Proteins, Signal Transducing/metabolism , HEK293 Cells , Heptoses/chemical synthesis , Humans , Immunization , Immunologic Factors/chemical synthesis , Inflammation/chemically induced , Mannose/chemical synthesis , Phosphates/chemical synthesis , Pyrans/chemical synthesis , Signal Transduction , Structure-Activity Relationship , Substrate Specificity
5.
PLoS Pathog ; 13(2): e1006224, 2017 02.
Article in English | MEDLINE | ID: mdl-28222186

ABSTRACT

During infection by invasive bacteria, epithelial cells contribute to innate immunity via the local secretion of inflammatory cytokines. These are directly produced by infected cells or by uninfected bystanders via connexin-dependent cell-cell communication. However, the cellular pathways underlying this process remain largely unknown. Here we perform a genome-wide RNA interference screen and identify TIFA and TRAF6 as central players of Shigella flexneri and Salmonella typhimurium-induced interleukin-8 expression. We show that threonine 9 and the forkhead-associated domain of TIFA are necessary for the oligomerization of TIFA in both infected and bystander cells. Subsequently, this process triggers TRAF6 oligomerization and NF-κB activation. We demonstrate that TIFA/TRAF6-dependent cytokine expression is induced by the bacterial metabolite heptose-1,7-bisphosphate (HBP). In addition, we identify alpha-kinase 1 (ALPK1) as the critical kinase responsible for TIFA oligomerization and IL-8 expression in response to infection with S. flexneri and S. typhimurium but also to Neisseria meningitidis. Altogether, these results clearly show that ALPK1 is a master regulator of innate immunity against both invasive and extracellular gram-negative bacteria.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Gram-Negative Bacterial Infections/immunology , Immunity, Innate/immunology , TNF Receptor-Associated Factor 6/immunology , Chemokines/biosynthesis , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/immunology , Fluorescent Antibody Technique , Gram-Negative Bacteria/immunology , HEK293 Cells , HeLa Cells , Heptoses/immunology , Humans , Image Processing, Computer-Assisted , Immunoblotting , Immunoprecipitation , Neisseria meningitidis/immunology , Salmonella typhimurium/immunology , Shigella flexneri/immunology
6.
J Immunol ; 196(11): 4576-86, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183633

ABSTRACT

Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection, gonorrhea, has developed resistance to most conventional antibiotics. Safe and effective vaccines against gonorrhea are needed urgently. A candidate vaccine that targets a lipooligosaccharide (LOS) epitope recognized mAb 2C7 attenuates gonococcal burden in the mouse vaginal colonization model. Glycan extensions from the LOS core heptoses (HepI and HepII) are controlled by phase-variable LOS glycosyltransferase (lgt) genes; we sought to define how HepI glycan extensions affect mAb 2C7 function. Isogenic gonococcal mutants in which the lgt required for mAb 2C7 reactivity (lgtG) was genetically locked on and the lgt loci required for HepI variation (lgtA, lgtC, and lgtD) were genetically locked on or off in different combinations were created. We observed 100% complement-dependent killing by mAb 2C7 of a mutant that expressed lactose (Gal-Glc) from HepI, whereas a mutant that expressed Gal-Gal-Glc-HepI fully resisted killing (>100% survival). Mutants that elaborated 4- (Gal-GlcNAc-Gal-Glc-HepI) and 5-glycan (GalNAc-Gal-GlcNAc-Gal-Glc-HepI) structures displayed intermediate phenotypes (<50% killing with 2 µg/ml and >95% killing with 4 µg/ml mAb 2C7). The contrasting phenotypes of the lactose-HepI and the Gal-Gal-Glc-HepI LOS structures were recapitulated with phase variants of a recently isolated clinical strain. Despite lack of killing of the Gal-Gal-Glc-HepI mutants, mAb 2C7 deposited sufficient C3 on these bacteria for opsonophagocytic killing by human neutrophils. In conclusion, mAb 2C7 showed functional activity against all gonococcal HepI LOS structures defined by various lgtA/C/D on/off combinations, thereby providing further impetus for use of the 2C7 epitope in a gonococcal vaccine.


Subject(s)
Antibodies, Viral/immunology , Heptoses/immunology , Lipopolysaccharides/immunology , Neisseria gonorrhoeae/immunology , Viral Vaccines/immunology , Humans
7.
Proc Natl Acad Sci U S A ; 110(25): 10234-9, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23733950

ABSTRACT

Clinical and epidemiological synergy exists between the globally important sexually transmitted infections, gonorrhea and HIV. Neisseria gonorrhoeae, which causes gonorrhea, is particularly adept at driving HIV-1 expression, but the molecular determinants of this relationship remain undefined. N. gonorrhoeae liberates a soluble factor that potently induces expression from the HIV-1 LTR in coinfected cluster of differentiation 4-positive (CD4(+)) T lymphocytes, but this factor is not a previously described innate effector. A genome-wide mutagenesis approach was undertaken to reveal which component(s) of N. gonorrhoeae induce HIV-1 expression in CD4(+) T lymphocytes. A mutation in the ADP-heptose biosynthesis gene, hldA, rendered the bacteria unable to induce HIV-1 expression. The hldA mutant has a truncated lipooligosaccharide structure, contains lipid A in its outer membrane, and remains bioactive in a TLR4 reporter-based assay but did not induce HIV-1 expression. Mass spectrometry analysis of extensively fractionated N. gonorrhoeae-derived supernatants revealed that the LTR-inducing fraction contained a compound having a mass consistent with heptose-monophosphate (HMP). Heptose is a carbohydrate common in microbes but is absent from the mammalian glycome. Although ADP-heptose biosynthesis is common among Gram-negative bacteria, and heptose is a core component of most lipopolysaccharides, N. gonorrhoeae is peculiar in that it effectively liberates HMP during growth. This N. gonorrhoeae-derived HMP activates CD4(+) T cells to invoke an NF-κB-dependent transcriptional response that drives HIV-1 expression and viral production. Our study thereby shows that heptose is a microbial-specific product that is sensed as an innate immune agonist and unveils the molecular link between N. gonorrhoeae and HIV-1.


Subject(s)
Coinfection/immunology , Gonorrhea , HIV Infections , HIV-1/enzymology , Heptoses/immunology , Neisseria gonorrhoeae/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/virology , Female , Gonorrhea/immunology , Gonorrhea/microbiology , Gonorrhea/virology , HIV Infections/immunology , HIV Infections/microbiology , HIV Infections/virology , HIV Long Terminal Repeat/genetics , HIV-1/immunology , Heptoses/genetics , Heptoses/metabolism , Humans , Jurkat Cells , Male , Neisseria gonorrhoeae/immunology , Toll-Like Receptor 5/immunology
8.
Vet J ; 195(2): 200-4, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22857892

ABSTRACT

Haemophilus parasuis is the causative agent of Glässer's disease. To investigate the role of lipooligosaccharide (LOS) in H. parasuis infection, ΔopsX, ΔrfaF and ΔwaaQ mutants defective in expressing opsX, rfaF and waaQ heptosyltransferases were constructed by transformation. Compared to the wild-type SC096 strain, the ΔopsX and ΔrfaF mutants, but not the ΔwaaQ mutant, produced severely truncated LOS. The mutants exhibited various degrees of reduction in resistance to complement-mediated killing in porcine and rabbit sera. In addition, the ΔopsX and ΔrfaF mutant strains showed impaired ability to adhere to and invade porcine kidney epithelial cells (PK-15) and porcine umbilical vein endothelial cells, indicating roles for heptose I and II residues in the interaction with host cells. The ΔwaaQ mutant strain, with no obvious truncation of LOS structure, did not exhibit significant defects in adhesion to and invasion of host cells. This study provides insight into the contribution of the inner core oligosaccharide, especially heptose I and heptose II residues, to the virulence-associated properties of H. parasuis.


Subject(s)
Haemophilus parasuis/immunology , Haemophilus parasuis/physiology , Heptoses/immunology , Heptoses/physiology , Oligosaccharides/metabolism , Animals , Cells, Cultured , Heptoses/chemistry , Mutation , Oligosaccharides/chemistry , Rabbits , Swine
9.
Vet Microbiol ; 153(1-2): 109-15, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21664074

ABSTRACT

Pasteurella multocida is a capsulated, gram-negative cocco-bacillus that can cause serious disease in a wide range of mammals and birds. P. multocida strains are classified into 16 serovars based on lipopolysaccharide (LPS) antigens. LPS is an essential virulence factor of P. multocida; mutants expressing severely truncated LPS are completely attenuated in chickens. LPS is also a major immunogen of P. multocida and protection against infections caused by P. multocida is generally considered to be serovar specific. In this review we summarize current knowledge of the structure and genetics of LPS assembly of P. multocida strains belonging to five different serovars. These include strains belonging to serovars 1 and 3, the most common serovars found in the poultry industry, and strains belonging serovars 2 and 5, the serovars associated with bovine haemorrhagic septicaemia outbreaks. A number of the serovars are genetically related; serovars 1 and 14 share the same LPS outer core biosynthesis locus, but due to a mutation within the phosphocholine biosynthesis gene, pcgA, the serovar 14 strain produces a truncated LPS structure. Similarly serovars 2 and 5 share an identical LPS outer core locus and express near-identical LPS structures. However, due to a single point mutation in the phosphoethanolamine (PEtn) transferase gene, lpt_3, the serovar 2 strain does not elaborate a PEtn residue on heptose II. Knowledge of the genetic basis for the LPS structures expressed by P. multocida will facilitate the development of rapid molecular methods for typing and diagnosis and will be essential for a rational approach to vaccine formulation.


Subject(s)
Lipopolysaccharides/chemistry , Pasteurella Infections/veterinary , Pasteurella multocida/chemistry , Animals , Heptoses/genetics , Heptoses/immunology , Humans , Lipopolysaccharides/immunology , Pasteurella Infections/genetics , Pasteurella Infections/immunology , Pasteurella multocida/genetics , Pasteurella multocida/immunology , Pasteurella multocida/pathogenicity , Virulence Factors/genetics , Virulence Factors/immunology
10.
J Bacteriol ; 191(2): 533-44, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19011031

ABSTRACT

Hafnia alvei, a gram-negative bacterium, is an opportunistic pathogen associated with mixed hospital infections, bacteremia, septicemia, and respiratory diseases. Various 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo)-containing fragments different from known structures of core oligosaccharides were previously found among fractions obtained by mild acid hydrolysis of some H. alvei lipopolysaccharides (LPSs). However, the positions of these segments in the LPS structure were not known. Analysis of de-N,O-acylated LPS by nuclear magnetic resonance spectroscopy and mass spectrometry allowed the determination of the location of a Kdo-containing trisaccharide in the structure of H. alvei PCM 32 LPS. It was established that the trisaccharide {L-alpha-D-Hepp-(1-->4)-[alpha-D-Galp6OAc-(1-->7)]-alpha-Kdop-(2-->} is an integral part of the outer-core oligosaccharide of H. alvei 32 LPS. The very labile ketosidic linkage between -->4,7)-alpha-Kdop and -->2)-Glcp in the core oligosaccharide was identified. Screening for this Kdo-containing trisaccharide was performed on the group of 37 O serotypes of H. alvei LPSs using monospecific antibodies recognizing the structure. It was established that this trisaccharide is a characteristic component of the outer-core oligosaccharides of H. alvei 2, 32, 600, 1192, 1206, and 1211 LPSs. The weaker cross-reactions with LPSs of strains 974, 1188, 1198, 1204, and 1214 suggest the presence of similar structures in these LPSs, as well. Thus, we have identified new examples of endotoxins among those elucidated so far. This type of core oligosaccharide deviates from the classical scheme by the presence of the structural Kdo-containing motif in the outer-core region.


Subject(s)
Enterobacteriaceae Infections/microbiology , Hafnia alvei/chemistry , Heptoses/chemistry , Lipopolysaccharides/chemistry , Sugar Acids/chemistry , Animals , Carbohydrate Sequence , Hafnia alvei/classification , Hafnia alvei/immunology , Heptoses/immunology , Humans , Lipopolysaccharides/immunology , Lipopolysaccharides/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Sequence Data , O Antigens/chemistry , O Antigens/immunology , O Antigens/isolation & purification , Rabbits , Serotyping , Sugar Acids/immunology , Trisaccharides/chemistry , Trisaccharides/immunology
11.
Infect Immun ; 55(4): 871-6, 1987 Apr.
Article in English | MEDLINE | ID: mdl-2435659

ABSTRACT

Two types of polysaccharide were obtained from the oral microorganism Eubacterium saburreum T18 by formamide extraction and subsequent gel filtration and ion-exchange chromatography. One polysaccharide, which was composed of D-glycero-D-galacto-heptose, had antigenic activity in an immunoprecipitation reaction with rabbit anti-T18 serum due to immunoglobulin M antibodies. The second polysaccharide was composed of D-glycero-D-manno-heptose and L-rhamnose, but it did not have immunoprecipitation activity. These polysaccharide antigens were not alkali labile and differed from E. saburreum L44 and T27 antigens, which were composed of D-glycero-D-galacto-heptose.


Subject(s)
Antigens, Bacterial/analysis , Dental Plaque/microbiology , Eubacterium/analysis , Polysaccharides, Bacterial/analysis , Antibodies, Bacterial/immunology , Antigens, Surface/analysis , Chemical Precipitation , Epitopes , Heptoses/analysis , Heptoses/immunology , Immunodiffusion , Polysaccharides, Bacterial/immunology , Rhamnose/analysis , Rhamnose/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...