Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.886
Filter
1.
J Med Virol ; 96(5): e29654, 2024 May.
Article in English | MEDLINE | ID: mdl-38727099

ABSTRACT

Human Herpesvirus 8 (HHV-8) has been classified by sequence analysis of open reading frame (ORF) K1, ORF K15, and variable sequence loci within the central constant region. The purpose of this study was to examine the molecular epidemiology of HHV-8 in an Irish population. This retrospective study included 30 patients who had HHV-8 DNA detected in plasma. Nested end-point PCR was used to characterise four regions of the HHV-8 genome, K1, T0.7 (K12), ORF 75, and K15. Sequencing data were obtained for 23 specimens from 19 patients. Phylogenetic analysis of ORF K1 demonstrated that subtypes A, B, C and F were present in 37%, 11%, 47% and 5%, respectively. For T0.7 and ORF 75, sequencing data were obtained for 12 patients. For T0.7, subtypes A/C, J, B, R and Q were present in 58%, 17%, 8%, 8%, and 8%, respectively. For ORF 75, subtypes A, B, C and D were present in 58%, 8%, 25%, and 8%, respectively. K15 sequences were determined for 13 patients. 69% had the P allele and 31% had the M allele. The data generated by this study demonstrate that a broad variety of HHV-8 subtypes are represented in patients exhibiting HHV-8-related disease in Ireland, a low prevalence country. The predominance of C and A K1 subtypes was as expected for a Western European population. The 31% prevalence for K15 subtype M was higher than expected for a Western European population. This may represent the changing and evolving epidemiology in Ireland due to altered migration patterns.


Subject(s)
DNA, Viral , Herpesviridae Infections , Herpesvirus 8, Human , Molecular Epidemiology , Phylogeny , Sequence Analysis, DNA , Humans , Ireland/epidemiology , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/classification , Herpesvirus 8, Human/isolation & purification , Male , Female , Retrospective Studies , Middle Aged , Adult , DNA, Viral/genetics , Aged , Young Adult , Polymerase Chain Reaction , Genotype , Adolescent , Open Reading Frames , Aged, 80 and over , Child , Molecular Sequence Data
2.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Article in English | MEDLINE | ID: mdl-38725448

ABSTRACT

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Subject(s)
Antiviral Agents , Heme Oxygenase-1 , Herpesviridae Infections , NF-E2-Related Factor 2 , Oxidative Stress , Rutin , Signal Transduction , Rutin/pharmacology , Rutin/therapeutic use , Animals , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Mice , Herpesviridae Infections/drug therapy , Antiviral Agents/pharmacology , Virus Replication/drug effects , Disease Models, Animal , Antioxidants/pharmacology , Cell Line , Viral Load/drug effects , Horses , Female , Membrane Proteins
3.
Sci Rep ; 14(1): 10169, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702375

ABSTRACT

Bovine viral diarrhea virus (BVDV) is considered to be the most common agent of severe diarrhea in cattle worldwide, causing fever, diarrhea, ulcers, and abortion. Bovine herpesvirus 1 (BoHV-1) is also a major bovine respiratory disease agent that spreads worldwide and causes extensive damage to the livestock industry. Recombinase polymerase amplification (RPA) is a novel nucleic acid amplification method with the advantages of high efficiency, rapidity and sensitivity, which has been widely used in the diagnosis of infectious diseases. A dual RPA assay was developed for the simultaneous detection of BVDV and BoHV-1. The assay was completed at a constant temperature of 37 °C for 30 min. It was highly sensitive and had no cross-reactivity with other common bovine viruses. The detection rate of BVDV RPA in clinical samples (36.67%) was higher than that of PCR (33.33%), the detection rate of BoHV-1 RPA and PCR were equal. Therefore, the established dual RPA assay for BVDV and BoHV-1 could be a potential candidate for use as an immediate diagnostic.


Subject(s)
Diarrhea Viruses, Bovine Viral , Herpesvirus 1, Bovine , Nucleic Acid Amplification Techniques , Recombinases , Animals , Cattle , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/isolation & purification , Nucleic Acid Amplification Techniques/methods , Recombinases/metabolism , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Sensitivity and Specificity , Bovine Virus Diarrhea-Mucosal Disease/virology , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , DNA, Viral/genetics
4.
Virol J ; 21(1): 117, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802935

ABSTRACT

BACKGROUND: Equine herpesvirus type 1 (EHV-1) is commonly associated with horse abortion. Currently, there are no reported cases of abortion resulting from EHV-1 infection in donkeys. RESULTS: This was the first survey-based study of Chinese donkeys. The presence of EHV-1 was identified by PCR. This survey was conducted in Chabuchar County, North Xinjiang, China, in 2020. A donkey EHV-1 strain (Chabuchar/2020) was successfully isolated in MDBK cells. Seventy-two of 100 donkey sera were able to neutralize the isolated EHV-1. Moreover, the ORF33 sequence of the donkey-origin EHV-1 Chabuchar/2020 strain showed high levels of similarity in both its nucleotide (99.7‒100%) and amino acid (99.5‒100%) sequences, with those of horse EHV-1 strains. EHV-1 Chabuchar/2020 showed significant consistency and was classified within cluster 1 of horse EHV-1 strains. Further, analysis of the expected ORF30 nucleotide sequence revealed that donkey EHV-1 strains contained guanine at position 2254, resulting in a change to aspartic acid at position 752 of the viral DNA polymerase. Therefore, these strains were classified as horse neuropathogenic strains. Lastly, a phylogenetic tree was constructed using the partial ORF68 nucleotide sequences, showing that the identified donkey EHV-1 strain and the EHV-1 strain found in aborted Yili horses in China comprised a novel independent VIII group. CONCLUSION: This study showed the first isolation and identification of EHV-1 as an etiological agent of abortions in donkeys. Further analysis of the ORF33, ORF30, and ORF68 sequences indicated that the donkey EHV-1 contained the neuropathogenic genotype of strains in the VIII group. It is thus important to be aware of EHV-1 infection in the donkey population, even though the virus has only been identified in donkey abortions in China.


Subject(s)
Equidae , Herpesviridae Infections , Herpesvirus 1, Equid , Lung , Phylogeny , Animals , Equidae/virology , Herpesvirus 1, Equid/isolation & purification , Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/classification , China , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Lung/virology , Aborted Fetus/virology , Female , DNA, Viral/genetics , Open Reading Frames , Sequence Analysis, DNA , Pregnancy , Polymerase Chain Reaction
5.
Rev Med Virol ; 34(3): e2550, 2024 May.
Article in English | MEDLINE | ID: mdl-38801246

ABSTRACT

Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aß) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.


Subject(s)
Alzheimer Disease , Herpesviridae Infections , Herpesviridae , Humans , Alzheimer Disease/virology , Alzheimer Disease/immunology , Herpesviridae/pathogenicity , Herpesviridae/genetics , Herpesviridae/physiology , Herpesviridae Infections/virology , Herpesviridae Infections/immunology , Amyloid beta-Peptides/metabolism , Animals
6.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38767608

ABSTRACT

Herpesviruses establish a well-adapted balance with their host's immune system. Despite this co-evolutionary balance, infections can lead to severe disease including neurological disorders in their natural host. In horses, equine herpesvirus 1 (EHV-1) causes respiratory disease, abortions, neonatal foal death and myeloencephalopathy (EHM) in ~10 % of acute infections worldwide. Many aspects of EHM pathogenesis and protection from EHM are still poorly understood. However, it has been shown that the incidence of EHM increases to >70 % in female horses >20 years of age. In this study we used old mares as an experimental equine EHV-1 model of EHM to identify host-specific factors contributing to EHM. Following experimental infection with the neuropathogenic strain EHV-1 Ab4, old mares and yearling horses were studied for 21 days post-infection. Nasal viral shedding and cell-associated viremia were assessed by quantitative PCR. Cytokine/chemokine responses were evaluated in nasal secretions and cerebrospinal fluid (CSF) by Luminex assay and in whole blood by quantitative real-time PCR. EHV-1-specific IgG sub-isotype responses were measured by ELISA. All young horses developed respiratory disease and a bi-phasic fever post-infection, but only 1/9 horses exhibited ataxia. In contrast, respiratory disease was absent in old mares, but all old mares developed EHM that resulted in euthanasia in 6/9 old mares. Old mares also presented significantly decreased nasal viral shedding but higher viremia coinciding with a single fever peak at the onset of viremia. According to clinical disease manifestation, horses were sorted into an EHM group (nine old horses and one young horse) and a non-EHM group (eight young horses) for assessment of host immune responses. Non-EHM horses showed an early upregulation of IFN-α (nasal secretions), IRF7/IRF9, IL-1ß, CXCL10 and TBET (blood) in addition to an IFN-γ upregulation during viremia (blood). In contrast, IFN-α levels in nasal secretions of EHM horses were low and peak levels of IRF7, IRF9, CXCL10 and TGF-ß (blood) coincided with viremia. Moreover, EHM horses showed significantly higher IL-10 levels in nasal secretions, peripheral blood mononuclear cells and CSF and higher serum IgG3/5 antibody titres compared to non-EHM horses. These results suggest that protection from EHM depends on timely induction of type 1 IFN and upregulation cytokines and chemokines that are representative of cellular immunity. In contrast, induction of regulatory or TH-2 type immunity appeared to correlate with an increased risk for EHM. It is likely that future vaccine development for protection from EHM must target shifting this 'at-risk' immunophenotype.


Subject(s)
Cytokines , Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses , Herpesvirus 1, Equid/immunology , Female , Horse Diseases/virology , Horse Diseases/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Cytokines/blood , Cytokines/immunology , Antibodies, Viral/blood , Virus Shedding , Viremia/immunology , Viremia/veterinary , Immunoglobulin G/blood
7.
Virol J ; 21(1): 115, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778352

ABSTRACT

BACKGROUND: Feline herpesvirus type 1 (FHV-1) is a life threatening highly contagious virus in cats and typically causes upper respiratory tract infections as well as conjunctival and corneal ulcers. Genetic variability could alter the severity of diseases and clinical signs. Despite regular vaccine practices against FHV-1 in China, new FHV-1 cases still commonly occur. The genetic and phylogenetic characteristics of FHV-1 in Kunshan city of China has not been studied yet. Therefore, this study was planned to investigate the prevalence, molecular characteristics of circulating strains, and phylogenetic analyses of FHV-1. This is the first report of molecular epidemiology and phylogenetic characteristics of FHV-1 from naturally infected cats in Kunshan, China. METHODS: The occulo-nasal swabs were collected from diseased cats showing respiratory distress, conjunctivitis, and corneal ulcers at different veterinary clinics in Kunshan from 2022 to 2023. Clinical data and general information were recorded. Swab samples were processed for preliminary detection of FHV-1. Thymidine kinase (TK), glycoprotein B (gB) and glycoprotein D (gD) genes were sequenced and analyzed to investigate genetic diversity and evolution of FHV-1. RESULTS: The FHV-1 genome was detected in 43 (43/200, 21.5%) samples using RT-PCR targeting the TK gene. Statistical analysis showed a significant correlation between age, vaccination status and living environment (p < 0.05) with FHV-1 positivity, while a non-significant correlation was observed for FHV-1 positivity and sex of cats (p > 0.05). Additionally, eight FHV-1 positive cats were co-infected with feline calicivirus (8/43,18.6%). FHV-1 identified in the present study was confirmed as FHV-1 based on phylogenetic analyses. The sequence analyses revealed that 43 FHV-1 strains identified in the present study did not differ much with reference strains within China and worldwide. A nucleotide homology of 99-100% was determined among gB, TK and gD genes nucleotide sequences when compared with standard strain C-27 and vaccine strains. Amino acid analysis showed some amino acid substitutions in TK, gB and gD protein sequences. A potential N-linked glycosylation site was observed in all TK protein sequences. Phylogenetic analyses revealed minor variations and short evolutionary distance among FHV-1 strains detected in this study. CONCLUSIONS: Our findings indicate that genomes of 43 FHV-1 strains are highly homogenous and antigenically similar, and the degree of variation in major envelope proteins between strains is low. This study demonstrated some useful data about prevalence, genetic characteristics, and evolution of FHV-1 in Kunshan, which may aid in future vaccine development.


Subject(s)
Cat Diseases , Genetic Variation , Herpesviridae Infections , Molecular Epidemiology , Phylogeny , Varicellovirus , Animals , Cats , China/epidemiology , Cat Diseases/virology , Cat Diseases/epidemiology , Herpesviridae Infections/epidemiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Varicellovirus/genetics , Varicellovirus/classification , Female , Male , Prevalence
8.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690731

ABSTRACT

Herpesviruses establish latent infections, and most reactivate frequently, resulting in symptoms and virus shedding in healthy individuals. In immunocompromised patients, reactivating virus can cause severe disease. Persistent EBV has been associated with several malignancies in both immunocompromised and nonimmunocompromised persons. Reactivation and shedding occur with most herpesviruses, despite potent virus-specific antibodies and T cell immunity as measured in the blood. The licensure of therapeutic vaccines to reduce zoster indicates that effective therapeutic vaccines for other herpesviruses should be feasible. However, varicella-zoster virus is different from other human herpesviruses in that it is generally only shed during varicella and zoster. Unlike prophylactic vaccines, in which the correlate of immunity is antibody function, T cell immunity is the correlate of immunity for the only effective therapeutic herpesvirus vaccine-zoster vaccine. While most studies of therapeutic vaccines have measured immunity in the blood, cellular immunity at the site of reactivation is likely critical for an effective therapeutic vaccine for certain viruses. This Review summarizes the status of therapeutic vaccines for herpes simplex virus, cytomegalovirus, and Epstein-Barr virus and proposes approaches for future development.


Subject(s)
Herpesvirus Vaccines , Humans , Herpesvirus Vaccines/immunology , Herpesvirus Vaccines/therapeutic use , Herpesviridae Infections/immunology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , Herpesvirus 4, Human/immunology , Animals , Herpesviridae/immunology , Virus Activation/immunology , Cytomegalovirus/immunology
9.
Vet Q ; 44(1): 1-12, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726839

ABSTRACT

Duck plague (DP) is an acute, contagious and fatal disease, caused by duck enteritis virus (DEV), with worldwide distribution causing several outbreaks and posing severe economic losses. The present study was carried out with a goal of development of a live attenuated cell culture based DP vaccine using an Indian strain of DEV and evaluation of its safety, efficacy along with complete genome analysis. The live attenuated DP vaccine (DPvac/IVRI-19) was developed by serial propagation of a virulent isolate of DEV (DEV/India/IVRI-2016) in the chicken embryo fibroblast (CEF) primary cell culture. Adaptation of DEV in CEF cell culture was indicated by more rapid appearance of cytopathic effects (CPE) and gradual increase of virus titre, which reached up to 107.5 TCID50/mL after 41 passages. The safety, immunogenicity and efficacy of the vaccine were determined by immunization trials in ducklings. The DPvac/IVRI-19 was found to be avirulent and completely safe in the ducklings. Further, the vaccine induced both humoral and cell mediated immune responses and afforded 100% protection against the virulent DEV challenge. A comparison of the whole genome of DPvac/IVRI-19 (MZ911871) and DEV/India/IVRI-2016 (MZ824102) revealed significant number of mutations, which might be associated with viral attenuation. Phylogenetic tree of DEV/India/IVRI-2016 revealed its evolutionary relationship with other DEV isolates, but it formed a separate cluster with certain unique mutations. Thus, with the proven safety and 100% efficacy, the DPvac/IVRI-19 is suitable for large scale production with precisely pure form of vaccine and has potential utility at national and global levels.


Subject(s)
Ducks , Fibroblasts , Mardivirus , Poultry Diseases , Vaccines, Attenuated , Viral Vaccines , Animals , Vaccines, Attenuated/immunology , Ducks/virology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Fibroblasts/virology , Chick Embryo , Viral Vaccines/immunology , Mardivirus/immunology , Mardivirus/pathogenicity , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , India
10.
Sci Rep ; 14(1): 11783, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782944

ABSTRACT

Cyprinid herpesvirus is a causative agent of a destructive disease in common and koi carp (Cyprinus carpio), which leads to substantial global financial losses in aquaculture industries. Among the strains of C. herpesvirus, C. herpesvirus 1 (CyHV-1) and C. herpesvirus 3 (CyHV-3) are known as highly pathogenic to carp fishes in Europe, Asia, and Africa. To date, no effective vaccine has been developed to combat these viruses. This study aimed to develop unique multi-epitope subunit vaccines targeting the CyHV-1 and CyHV-3 using a reverse vaccinology approach. The study began with a comprehensive literature review to identify the most critical proteins, which were then subjected to in silico analyses to predict highly antigenic epitopes. These analyses involved assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. We constructed two multi-epitope-based vaccines incorporating a suitable adjuvant and appropriate linkers. It revealed that both the vaccines are non-toxic and immunogenic. The tertiary structures of the vaccine proteins were generated, refined, and validated to ensure their suitability. The binding affinity between the vaccine constructs and TLR3 and TLR5 receptors were assessed by molecular docking studies. Molecular dynamics simulations indicated that vaccine construct V1 exhibited greater stability with both TLR3 and TLR5 based on RMSD analysis. Hydrogen bond analysis revealed a stronger binding affinity between the vaccine constructs and TLR5 compared to TLR3. Furthermore, MM-PBSA analysis suggested that both vaccine constructs exhibited a better affinity for TLR5. Considering all aspects, the results suggest that in silico development of CyHV vaccines incorporating multiple epitopes holds promise for management of diseases caused by CyHV-1 and CyHV-3. However, further in vivo trials are highly recommended to validate the efficacies of these vaccines.


Subject(s)
Carps , Fish Diseases , Herpesviridae Infections , Herpesviridae , Molecular Docking Simulation , Vaccines, Subunit , Animals , Vaccines, Subunit/immunology , Carps/virology , Carps/immunology , Herpesviridae/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/virology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Viral Vaccines/immunology , Epitopes/immunology , Epitopes/chemistry , Computational Biology/methods , Herpesvirus Vaccines/immunology , Immunoinformatics
11.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793621

ABSTRACT

Bovine gammaherpesvirus 4 (BoGHV4) is a member of the Gammaherspivirinae subfamily, Rhadinovirus genus. Its natural host is the bovine, and it is prevalent among the global cattle population. Although the complete genome of BoGHV4 has been successfully sequenced, the functions of most of its genes remain unknown. Currently, only six strains of BoGHV4, all belonging to Genotype 1, have been sequenced. This is the first report of the nearly complete genome of Argentinean BoGHV4 strains isolated from clinical cases of abortion, representing the first BoGHV4 Genotype 2 and 3 genomes described in the literature. Both Argentinean isolates presented the highest nt p-distance values, indicating a greater level of divergence. Overall, the considerable diversity observed in the complete genomes and open reading frames underscores the distinctiveness of both Argentinean isolates compared to the existing BoGHV4 genomes. These findings support previous studies that categorized the Argentinean BoGHV4 strains 07-435 and 10-154 as Genotypes 3 and 2, respectively. The inclusion of these sequences represents a significant expansion to the currently limited pool of BoGHV4 genomes while providing an important basis to increase the knowledge of local isolates.


Subject(s)
Abortion, Veterinary , Cattle Diseases , Genome, Viral , Genotype , Herpesviridae Infections , Herpesvirus 4, Bovine , Phylogeny , Whole Genome Sequencing , Animals , Cattle , Herpesvirus 4, Bovine/genetics , Herpesvirus 4, Bovine/isolation & purification , Abortion, Veterinary/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Cattle Diseases/virology , Female , Argentina , Open Reading Frames , Pregnancy , Genetic Variation , DNA, Viral/genetics
12.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793627

ABSTRACT

Equid herpesvirus 4 (EHV-4) is a common respiratory pathogen in horses. It sporadically induces abortion or neonatal death. Although its contribution in neurological disorders is not clearly demonstrated, there is a strong suspicion of its involvement. Despite preventive treatments using vaccines against EHV-1/EHV-4, the resurgence of alpha-EHV infection still constitutes an important threat to the horse industry. Yet very few studies have been conducted on the search for antiviral molecules against EHV-4. A screening of 42 antiviral compounds was performed in vitro on equine fibroblast cells infected with the EHV-4 405/76 reference strain (VR2230). The formation of cytopathic effects was monitored by real-time cell analysis (RTCA), and the viral load was quantified by quantitative PCR. Aciclovir, the most widely used antiviral against alpha-herpesviruses in vivo, does not appear to be effective against EHV-4 in vitro. Potential antiviral activities were confirmed for eight molecules (idoxuridine, vidarabine, pritelivir, cidofovir, valganciclovir, ganciclovir, aphidicolin, and decitabine). Decitabine demonstrates the highest efficacy against EHV-4 in vitro. Transcriptomic analysis revealed the up-regulation of various genes implicated in interferon (IFN) response, suggesting that decitabine triggers the immune antiviral pathway.


Subject(s)
Antiviral Agents , Decitabine , Herpesvirus 4, Equid , Immunity, Innate , Animals , Antiviral Agents/pharmacology , Horses , Decitabine/pharmacology , Immunity, Innate/drug effects , Herpesvirus 4, Equid/drug effects , Fibroblasts/drug effects , Fibroblasts/virology , Herpesviridae Infections/drug therapy , Herpesviridae Infections/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Horse Diseases/virology , Horse Diseases/drug therapy , Horse Diseases/immunology , Viral Load/drug effects , Cell Line , Virus Replication/drug effects , Drug Evaluation, Preclinical
13.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793630

ABSTRACT

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Subject(s)
DNA, Viral , Herpesvirus 8, Human , Immunity, Innate , Signal Transduction , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Humans , DNA, Viral/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Sarcoma, Kaposi/virology , Nucleotidyltransferases/metabolism , Host-Pathogen Interactions , Animals , Membrane Proteins/metabolism , Nuclear Proteins , Phosphoproteins
14.
Sci Rep ; 14(1): 10651, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724545

ABSTRACT

Herpesviruses are large double-stranded DNA viruses that cause infections in animals and humans with a characteristic of latent infectious within specific tissues. Bats are natural hosts of variety human-infecting viruses and recently have been described as hosts for herpesviruses in several countries around the world. In this study we collected 140 insectivorous bats in the neighboring urban areas of Wuhan City, Hubei Province in the central China between 2020 and 2021. Nested PCR targeting the dpol gene sequence indicated that a total of 22 individuals (15.7% of the sample) tested positive for herpesvirus with 4 strains belonging to the genus Betaherpesvirus and the remaining 18 strains classified as Gammahersvirus. Furthermore, the herpesvirus prevalence in Rhinolophus pusillus was higher at 26.3%, compared to 8.4% in Myotis davidii. The RP701 strain from R. pusillus was the predominant gammaherpesvirus strain detected in bats, accounting for 94.4% (17/18) of all strains. The variations in γ-herpesviruses genomic sequences was evident in phylogenetic tree, where RP701 strain was clustered together with ruminant γ-herpesviruses, while MD704 strain formed a distinct clade with a hedgehog γ-herpesvirus. Four betaherpesviruses exclusively identified from M. davidii, with nucleotide identities ranging from 79.7 to 82.6% compared to known betaherpesviruses. Our study provided evidence that M. davidii can sever as natural host for ß-herpesviruses, which extended the host species range. In conclusion, we found that bats from central China harbored novel ß-herpesviruses and γ-herpesviruses which were phylogenetically related to ruminant γ-herpesvirus and hedgehog γ-herpesvirus. Our study indicates that bats are natural hosts of ß- and γ-herpesviruses and further studies are needed to determine whether there is cross-species transmission of herpesviruses between bats and other animals, or humans.


Subject(s)
Betaherpesvirinae , Chiroptera , Gammaherpesvirinae , Herpesviridae Infections , Phylogeny , Animals , Chiroptera/virology , China/epidemiology , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/classification , Betaherpesvirinae/genetics , Betaherpesvirinae/isolation & purification , Betaherpesvirinae/classification , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/epidemiology , Genome, Viral , DNA, Viral/genetics
15.
BMC Infect Dis ; 24(1): 454, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684967

ABSTRACT

BACKGROUND: Clinically, most patients with Kaposi's sarcoma (KS) are male, and several direct and indirect mechanisms may underlie this increased susceptibility in men, Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is considered to be the primary etiological agent responsible for KS. Thus, we propose the hypothesis that men are more susceptible to HHV-8 infection, leading to a higher incidence of Kaposi's sarcoma among males. A meta-analysis was conducted to evaluate the association between gender and HHV-8 seropositivity in the general population. METHODS: A comprehensive literature search was performed using 6 online databases: PubMed, EMBASE, Cochrane library, Web of Science, CNKI, and Wanfang. Studies published before March 15, 2023, were included. RESULTS: In all, 33 articles including 41 studies were included in the meta-analysis. In the included adult population. men had a higher risk of HHV-8 infection than did women in adult populations from all over the world (odds ratio [OR]: 1.08, 95% confidence interval [CI]: 1.01-1.15), but no differences were found in child population from all over the world (OR: 0.90, 95% CI: 0.79-1.01). There was a significant difference in HHV-8 seroprevalence between men and women in sub-Saharan Africa (SSA) adult population (OR: 1.15, 95% CI: 1.05-1.26). However, no significant differences were observed in sub-Saharan Africa (SSA) child population (OR: 0.90, 95%CI 0.78-1.03). As for other continents, the results showed no significant difference, such as the Asian population (OR: 1.03, 95%CI: 0.92-1.16). or the European and American populations (OR 1.01, 95%CI 0.87-1.17). CONCLUSION: There was a slight gender disparity for HHV-8 infection in the adult population. Among the adult populations from SSA and globally, men were more likely to be infected with HHV-8 than were women. However, no statistical significance was observed in the child populations from SSA and globally. In the future, the inclusion of more standardized studies may strengthen the results of this study.


Subject(s)
Herpesviridae Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Male , Female , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Sarcoma, Kaposi/epidemiology , Sarcoma, Kaposi/virology , Sex Factors , Adult , Incidence , Risk Factors , Child
16.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620036

ABSTRACT

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Mitochondria , Mitochondria/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/metabolism , Humans , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpes Simplex/pathology , Animals , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/pathology , Disease Progression , Chlorocebus aethiops
17.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661718

ABSTRACT

Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.


Subject(s)
Cell Communication , Chemokine CCL3 , Models, Animal , Protein Biosynthesis , Transcription, Genetic , Animals , Mice , Cell Communication/immunology , Chemokine CCL3/genetics , Chemokine CCL3/immunology , Gene Knock-In Techniques , Mice, Transgenic , Muromegalovirus , Protein Biosynthesis/drug effects , Protein Biosynthesis/immunology , Transcription, Genetic/immunology , Killer Cells, Natural/immunology , Interferon-beta/pharmacology , Herpesviridae Infections/immunology
18.
Viruses ; 16(4)2024 04 08.
Article in English | MEDLINE | ID: mdl-38675914

ABSTRACT

Understanding the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothesis that a herpesvirus infection of endothelial cells (ECs) may underlie ME/CFS symptomatology. We review evidence linking herpesviruses to persistent EC infection and the implications for endothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment-symptoms consistent with ME/CFS and Long COVID. This paper provides a synthesis of current research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent systemic complications, including latent modulation and long-term maladaptation. We suggest that the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the necessity for further investigation into the prevalence and load of herpesvirus infection within the ECs of ME/CFS patients. This review offers conceptual advances by proposing an endothelial infection model as a systemic mechanism contributing to ME/CFS, steering future research toward potentially unexplored avenues in understanding and treating this complex syndrome.


Subject(s)
Endothelial Cells , Fatigue Syndrome, Chronic , Herpesviridae Infections , Humans , Endothelial Cells/virology , Fatigue Syndrome, Chronic/virology , Fatigue Syndrome, Chronic/physiopathology , Herpesviridae/physiology , Herpesviridae Infections/virology , Virus Latency , Post-Acute COVID-19 Syndrome/pathology , Post-Acute COVID-19 Syndrome/physiopathology
19.
Viruses ; 16(4)2024 04 16.
Article in English | MEDLINE | ID: mdl-38675960

ABSTRACT

Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia is the most critical clinical manifestation of CMV infection. Recent studies have demonstrated the potential therapeutic benefits of exosomes derived from mesenchymal stem cells (MSC-exos) in preclinical models of acute lung injury, including pneumonia, ARDS, and sepsis. However, the role of MSC-exos in the pathogenesis of infectious viral diseases, such as CMV pneumonia, remains unclear. In a mouse model of murine CMV-induced pneumonia, we observed that intravenous administration of mouse MSC (mMSC)-exos reduced lung damage, decreased the hyperinflammatory response, and shifted macrophage polarization from the M1 to the M2 phenotype. Treatment with mMSC-exos also significantly reduced the infiltration of inflammatory cells and pulmonary fibrosis. Furthermore, in vitro studies revealed that mMSC-exos reversed the hyperinflammatory phenotype of bone marrow-derived macrophages infected with murine CMV. Mechanistically, mMSC-exos treatment decreased activation of the NF-κB/NLRP3 signaling pathway both in vivo and in vitro. In summary, our findings indicate that mMSC-exo treatment is effective in severe CMV pneumonia by reducing lung inflammation and fibrosis through the NF-κB/NLRP3 signaling pathway, thus providing promising therapeutic potential for clinical CMV infection.


Subject(s)
Disease Models, Animal , Exosomes , Mesenchymal Stem Cells , Muromegalovirus , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Muromegalovirus/physiology , Mice, Inbred C57BL , Macrophages/immunology , Cytomegalovirus Infections/therapy , Cytomegalovirus Infections/virology , Lung/virology , Lung/pathology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Herpesviridae Infections/therapy , Herpesviridae Infections/virology , Herpesviridae Infections/immunology , Pneumonia/therapy , Pneumonia/virology
20.
Epidemiol Infect ; 152: e60, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584132

ABSTRACT

Previous studies suggest that influenza virus infection may provide temporary non-specific immunity and hence lower the risk of non-influenza respiratory virus infection. In a randomized controlled trial of influenza vaccination, 1 330 children were followed-up in 2009-2011. Respiratory swabs were collected when they reported acute respiratory illness and tested against influenza and other respiratory viruses. We used Poisson regression to compare the incidence of non-influenza respiratory virus infection before and after influenza virus infection. Based on 52 children with influenza B virus infection, the incidence rate ratio (IRR) of non-influenza respiratory virus infection after influenza virus infection was 0.47 (95% confidence interval: 0.27-0.82) compared with before infection. Simulation suggested that this IRR was 0.87 if the temporary protection did not exist. We identified a decreased risk of non-influenza respiratory virus infection after influenza B virus infection in children. Further investigation is needed to determine if this decreased risk could be attributed to temporary non-specific immunity acquired from influenza virus infection.


Subject(s)
Herpesviridae Infections , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Respiratory Tract Infections , Child , Humans , Influenza, Human/epidemiology , Influenza B virus , Respiratory Tract Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...