Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.922
Filter
1.
Arch Microbiol ; 206(6): 269, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767708

ABSTRACT

Bacteriocins are ribosomally synthesized bacterial peptides endowed with antibacterial, antiprotozoal, anticancer and antiviral activities. In the present study, we evaluated the antiviral activities of two bacteriocins, enterocin DD14 (EntDD14) and lacticaseicin 30, against herpes simplex virus type 1 (HSV-1), human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Vero, Huh7 and Vero E6 cells, respectively. In addition, the interactions of these bacteriocins with the envelope glycoprotein D of HSV-1 and the receptor binding domains of HCoV-229E and SARS-CoV-2 have been computationally evaluated using protein-protein docking and molecular dynamics simulations. HSV-1 replication in Vero cells was inhibited by EntDD14 and, to a lesser extent, by lacticaseicin 30 added to cells after virus inoculation. EntDD14 and lacticaseicin 30 had no apparent antiviral activity against HCoV-229E; however, EntDD14 was able to inhibit SARS-CoV-2 in Vero E6 cells. Further studies are needed to elucidate the antiviral mechanism of these bacteriocins.


Subject(s)
Antiviral Agents , Bacteriocins , SARS-CoV-2 , Bacteriocins/pharmacology , Chlorocebus aethiops , Animals , Antiviral Agents/pharmacology , Vero Cells , Humans , SARS-CoV-2/drug effects , Virus Replication/drug effects , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Molecular Docking Simulation , Molecular Dynamics Simulation , Bridged-Ring Compounds
2.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710573

ABSTRACT

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Subject(s)
Antiviral Agents , Herpesvirus 1, Human , Polysaccharides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Herpesvirus 1, Human/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Vero Cells , Humans , Sulfates/chemistry , Sulfates/pharmacology , Respiratory Syncytial Viruses/drug effects
3.
Biomolecules ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786010

ABSTRACT

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MßCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MßCD treatment. Moreover, MßCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MßCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aß) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cholesterol , Herpes Simplex , Herpesvirus 1, Human , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Cholesterol/metabolism , Humans , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/virology , Alzheimer Disease/pathology , Alzheimer Disease/drug therapy , Herpes Simplex/virology , Herpes Simplex/metabolism , Herpes Simplex/drug therapy , Herpes Simplex/pathology , Cell Line, Tumor , Animals , beta-Cyclodextrins/pharmacology , Lysosomes/metabolism , Lysosomes/drug effects , tau Proteins/metabolism , Phenotype , Mice
4.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732185

ABSTRACT

Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the ß-carboline (ßC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Humans , Vero Cells , Animals , Simplexvirus/drug effects , Simplexvirus/physiology , Herpes Simplex/drug therapy , Herpes Simplex/virology , Carbolines/pharmacology , Carbolines/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Harmine/pharmacology , Harmine/chemistry , Harmine/analogs & derivatives
5.
Virology ; 595: 110096, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710129

ABSTRACT

Herpes stromal keratitis is the leading cause of infectious blindness in the western world. Infection by HSV1 is most common, but VZV and hCMV also infect the cornea. Multiple models of HSV1 corneal infection exist, but none for VZV and hCMV because of their host specificity. Here, we used commercially available 3D human corneal epithelial equivalents (HCEE) to study infection by these herpesviruses. HCEE was infected by HSV-1 and hCMV without requiring scarification and resulted in spreading infections. Spread of HSV-1 infection was rapid, while that of hCMV was slow. In contrast, infections with VZV required damage to the HCEE and did not spread. Acyclovir dramatically reduced replication of HSV-1 in this model. We conclude that highly quality-controlled, readily available HCEE is a useful model to study human-restricted herpesvirus infection of the human corneal epithelium and for screening of antiviral drugs for treating HSK in an 3D model system.


Subject(s)
Antiviral Agents , Epithelium, Corneal , Herpesvirus 1, Human , Keratitis, Herpetic , Humans , Keratitis, Herpetic/virology , Keratitis, Herpetic/drug therapy , Epithelium, Corneal/virology , Epithelium, Corneal/pathology , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Herpesvirus 3, Human/physiology , Herpesvirus 3, Human/drug effects , Cytomegalovirus/physiology , Cytomegalovirus/drug effects , Virus Replication , Acyclovir/pharmacology , Acyclovir/therapeutic use , Epithelial Cells/virology , Models, Biological
6.
J Biomed Sci ; 31(1): 56, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807208

ABSTRACT

BACKGROUND: Infections with Herpes simplex virus (HSV)-1 or -2 usually present as mild chronic recurrent disease, however in rare cases can result in life-threatening conditions with a large spectrum of pathology. Monoclonal antibody therapy has great potential especially to treat infections with virus resistant to standard therapies. HDIT101, a humanized IgG targeting HSV-1/2 gB was previously investigated in phase 2 clinical trials. The aim of this study was to develop a next-generation therapy by combining different antiviral monoclonal antibodies. METHODS: A lymph-node derived phage display library (LYNDAL) was screened against recombinant gB from Herpes simplex virus (HSV) -1 and HDIT102 scFv was selected for its binding characteristics using bio-layer interferometry. HDIT102 was further developed as fully human IgG and tested alone or in combination with HDIT101, a clinically tested humanized anti-HSV IgG, in vitro and in vivo. T-cell stimulating activities by antigen-presenting cells treated with IgG-HSV immune complexes were analyzed using primary human cells. To determine the epitopes, the cryo-EM structures of HDIT101 or HDIT102 Fab bound to HSV-1F as well as HSV-2G gB protein were solved at resolutions < 3.5 Å. RESULTS: HDIT102 Fab showed strong binding to HSV-1F gB with Kd of 8.95 × 10-11 M and to HSV-2G gB with Kd of 3.29 × 10-11 M. Neutralization of cell-free virus and inhibition of cell-to-cell spread were comparable between HDIT101 and HDIT102. Both antibodies induced internalization of gB from the cell surface into acidic endosomes by binding distinct epitopes in domain I of gB and compete for binding. CryoEM analyses revealed the ability to form heterogenic immune complexes consisting of two HDIT102 and one HDIT101 Fab bound to one gB trimeric molecule. Both antibodies mediated antibody-dependent phagocytosis by antigen presenting cells which stimulated autologous T-cell activation. In vivo, the combination of HDIT101 and HDIT102 demonstrated synergistic effects on survival and clinical outcome in immunocompetent BALB/cOlaHsd mice. CONCLUSION: This biochemical and immunological study showcases the potential of an effective combination therapy with two monoclonal anti-gB IgGs for the treatment of HSV-1/2 induced disease conditions.


Subject(s)
Herpes Simplex , Humans , Animals , Mice , Herpes Simplex/immunology , Herpes Simplex/therapy , Herpes Simplex/drug therapy , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Viral/immunology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/drug effects , Mice, Inbred BALB C , Female , Herpesvirus 2, Human/immunology , Herpesvirus 2, Human/drug effects
7.
Sci Rep ; 14(1): 11914, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789457

ABSTRACT

Herpes simplex virus (HSV) is a causative agent of fever blister, genital herpes, and neonatal herpes. Nowadays, edible algae are recognized as health food due to high nutrition content and their many active compounds that are beneficial to health. The purpose of this study is to investigate the inhibitory effects of algal polysaccharide extract from Cladophora spp. against herpes simplex virus type 1 and type 2 on Vero cells. In this study, the structure of polysaccharide extract is presented as S=O and C-O-S of the sulfate group, as identified by the FT-IR technique. The toxicity of algal polysaccharide extract on Vero cells was determined by MTT assay. The algal extract showed low toxicity on the cells, with 50% cytotoxic concentration (CC50) value greater than 5000 µg mL-1. The inhibition of HSV infection by the algal extract was then evaluated on Vero cells using plaque reduction assay. The 50% effective concentration (EC50) values of algal extract exhibited antiviral activity against HSV-1 upon treatment before, during, and after viral adsorption with and without removal of the extract were 70.31, 15.17, > 5000 and 9.78 µg mL-1, respectively. Additionally, the EC50 values of algal extract against HSV-2 upon treatment before, during and after viral adsorption with, and without removal of the extract were 5.85, 2.57, > 5000 and 26.96 µg mL-1, respectively. Moreover, the algal extract demonstrated direct inactivation of HSV-1 and HSV-2 virions as well as inhibitory effect against HSV replication. Accordingly, algal polysaccharide extract containing sulfated polysaccharides showed strong activity against HSV. Therefore, it is proved to be useful to apply Cladophora spp. polysaccharide extract as an anti-HSV agent.


Subject(s)
Antiviral Agents , Chlorophyta , Herpesvirus 1, Human , Polysaccharides , Animals , Chlorocebus aethiops , Vero Cells , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorophyta/chemistry , Herpesvirus 1, Human/drug effects , Herpes Simplex/drug therapy , Herpes Simplex/virology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Herpesvirus 2, Human/drug effects
8.
Virol J ; 21(1): 118, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802860

ABSTRACT

Herpes simplex virus type 1 (HSV-1) infection of the eyes results in herpes simplex keratitis (HSK), which has led to vision loss and even blindness in patients. However, the rate of drug resistance in HSV is on the rise; therefore, new antiviral agents with sufficient safety profiles must be developed. At present, we assessed the anti-HSV-1 activity of 502 natural compounds and their ability to reduce the HSV-1-induced cytopathic effect. We chose harmol for further studies because it exhibited the highest antiviral activity. We found that harmol inhibited both HSV-1 F and HSV-1/153 (a clinical drug-resistant strain) replication, with an EC50 of 9.34 µM and 5.84 µM, respectively. Moreover, harmol reduced HSV-1 replication in corneal tissues and viral progeny production in tears, and also alleviated early corneal surface lesions related to HSK. For example, harmol treatment preserved corneal thickness and nerve density in HSK mice. Interestingly, harmol also showed a promising antiviral effect on HSV-1/153 induced HSK in mouse model. Furthermore, harmol combined with acyclovir (ACV) treatment showed a greater antiviral effect than either one alone in vitro. Therefore, harmol may be a promising therapeutic agent for managing HSK.


Subject(s)
Antiviral Agents , Disease Models, Animal , Herpesvirus 1, Human , Keratitis, Herpetic , Virus Replication , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Keratitis, Herpetic/drug therapy , Keratitis, Herpetic/virology , Mice , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Virus Replication/drug effects , Acyclovir/pharmacology , Acyclovir/therapeutic use , Cornea/virology , Cornea/drug effects , Cornea/pathology , Chlorocebus aethiops , Humans , Female , Vero Cells , Mice, Inbred BALB C
9.
Antimicrob Agents Chemother ; 68(5): e0011024, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38619252

ABSTRACT

Ocular herpes simplex virus 1 (HSV-1) infections can lead to visual impairment. Long-term acyclovir (ACV) prophylaxis reduces the frequency of recurrences but is associated with drug resistance. Novel therapies are needed to treat drug-resistant HSV-1 infections. Here, we describe the effects of trifluridine (TFT) in combination with ACV or ganciclovir (GCV) on HSV-1 replication and drug-resistance emergence. Wild-type HSV-1 was grown under increasing doses of one antiviral (ACV, GCV, or TFT) or combinations thereof (ACV + TFT or GCV + TFT). Virus cultures were analyzed by Sanger sequencing and deep sequencing of the UL23 [thymidine kinase (TK)] and UL30 [DNA polymerase (DP)] genes. The phenotypes of novel mutations were determined by cytopathic effect reduction assays. TFT showed overall additive anti-HSV-1 activity with ACV and GCV. Five passages under ACV, GCV, or TFT drug pressure gave rise to resistance mutations, primarily in the TK. ACV + TFT and GCV + TFT combinatory pressure induced mutations in the TK and DP. The DP mutations were mainly located in terminal regions, outside segments that typically carry resistance mutations. TK mutations (R163H, A167T, and M231I) conferring resistance to all three nucleoside analogs (ACV, TFT, and GCV) emerged under ACV, TFT, ACV + TFT pressure and under GCV + TFT pressure initiated from suboptimal drug concentrations. However, higher doses of GCV and TFT prevented drug resistance in the resistance selection experiments. In summary, we identified novel mutations conferring resistance to nucleoside analogs, including TFT, and proposed that GCV + TFT combination therapy may be an effective strategy to prevent the development of drug resistance.


Subject(s)
Acyclovir , Antiviral Agents , Drug Resistance, Viral , Ganciclovir , Herpesvirus 1, Human , Trifluridine , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , Trifluridine/pharmacology , Ganciclovir/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Drug Resistance, Viral/drug effects , Vero Cells , Acyclovir/pharmacology , Chlorocebus aethiops , Thymidine Kinase/genetics , Animals , Virus Replication/drug effects , Humans , Mutation , DNA-Directed DNA Polymerase/genetics , Herpes Simplex/drug therapy , Herpes Simplex/virology
10.
Bioorg Med Chem Lett ; 106: 129761, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38642810

ABSTRACT

Helicase-primase is an interesting target for the therapy of herpes simplex virus (HSV) infections. Since amenamevir is already approved for varicella-zoster virus (VZV) and HSV in Japan and pritelivir has received breakthrough therapy status for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in me-too approaches. Here, we describe the attempt to improve nervous tissue penetration in Phaeno Therapeutics drug candidate HN0037 to target the latent reservoir of HSV by installing less polar moieties, mainly a difluorophenyl instead of a pyridyl group, and replacing the primary sulfonamide with a methyl sulfoximine moiety. However, all obtained stereoisomers exhibited a weaker inhibitory activity on HSV-1 and HSV-2.


Subject(s)
Antiviral Agents , DNA Primase , Sulfonamides , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , DNA Primase/antagonists & inhibitors , DNA Primase/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , DNA Helicases/antagonists & inhibitors , DNA Helicases/metabolism , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Humans , Molecular Structure , Microbial Sensitivity Tests , Dose-Response Relationship, Drug , Imines/chemistry , Imines/pharmacology , Imines/chemical synthesis
11.
Sci Rep ; 14(1): 9828, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684729

ABSTRACT

The pharmacological effects of limonene, especially their derivatives, are currently at the forefront of research for drug development and discovery as well and structure-based drug design using huge chemical libraries are already widespread in the early stages of therapeutic and drug development. Here, various limonene derivatives are studied computationally for their potential utilization against the capsid protein of Herpes Simplex Virus-1. Firstly, limonene derivatives were designed by structural modification followed by conducting a molecular docking experiment against the capsid protein of Herpes Simplex Virus-1. In this research, the obtained molecular docking score exhibited better efficiency against the capsid protein of Herpes Simplex Virus-1 and hence we conducted further in silico investigation including molecular dynamic simulation, quantum calculation, and ADMET analysis. Molecular docking experiment has documented that Ligands 02 and 03 had much better binding affinities (- 7.4 kcal/mol and - 7.1 kcal/mol) to capsid protein of Herpes Simplex Virus-1 than Standard Acyclovir (- 6.5 kcal/mol). Upon further investigation, the binding affinities of primary limonene were observed to be slightly poor. But including the various functional groups also increases the affinities and capacity to prevent viral infection of the capsid protein of Herpes Simplex Virus-1. Then, the molecular dynamic simulation confirmed that the mentioned ligands might be stable during the formation of drug-protein complexes. Finally, the analysis of ADMET was essential in establishing them as safe and human-useable prospective chemicals. According to the present findings, limonene derivatives might be a promising candidate against the capsid protein of Herpes Simplex Virus-1 which ultimately inhibits Herpes Simplex Virus-induced encephalitis that causes interventions in brain inflammation. Our findings suggested further experimental screening to determine their practical value and utility.


Subject(s)
Antiviral Agents , Capsid Proteins , Drug Design , Herpesvirus 1, Human , Limonene , Molecular Docking Simulation , Molecular Dynamics Simulation , Limonene/chemistry , Limonene/pharmacology , Herpesvirus 1, Human/drug effects , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Ligands , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Computer Simulation , Protein Binding
12.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673729

ABSTRACT

Here, we continued the investigation of anti-HSV-1 activity and neuroprotective potential of 14 polyphenolic compounds isolated from Maackia amurensis heartwood. We determined the absolute configurations of asymmetric centers in scirpusin A (13) and maackiazin (10) as 7R,8R and 1″S,2″S, respectively. We showed that dimeric stilbens maackin (9) and scirpusin A (13) possessed the highest anti-HSV-1 activity among polyphenols 1-14. We also studied the effect of polyphenols 9 and 13 on the early stages of HSV-1 infection. Direct interaction with the virus (virucidal activity) was the main mechanism of the antiviral activity of these compounds. The neuroprotective potential of polyphenolic compounds from M. amurensis was studied using models of 6-hydroxydopamine (6-OHDA)-and paraquat (PQ)-induced neurotoxicity. A dimeric stilbene scirpusin A (13) and a flavonoid liquiritigenin (6) were shown to be the most active compounds among the tested polyphenols. These compounds significantly increased the viability of 6-OHDA-and PQ-treated Neuro-2a cells, elevated mitochondrial membrane potential and reduced the intracellular ROS level. We also found that scirpusin A (13), liquiritigenin (6) and retusin (3) considerably increased the percentage of live Neuro-2a cells and decreased the number of early apoptotic cells. Scirpusin A (13) was the most promising compound possessing both anti-HSV-1 activity and neuroprotective potential.


Subject(s)
Antiviral Agents , Herpes Simplex , Herpesvirus 1, Human , Neurons , Neuroprotective Agents , Oxidative Stress , Polyphenols , Polyphenols/pharmacology , Polyphenols/chemistry , Oxidative Stress/drug effects , Herpesvirus 1, Human/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Neurons/drug effects , Neurons/metabolism , Animals , Herpes Simplex/drug therapy , Mice , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Cell Survival/drug effects
13.
Eur J Med Chem ; 271: 116412, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38643669

ABSTRACT

New acyclic pyrimidine nucleoside phosphonate prodrugs with a 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl]phosphonic acid skeleton (O-DAPy nucleobase) were prepared through a convergent synthesis by olefin cross-metathesis as the key step. Several acyclic nucleoside 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl]phosphonic acid prodrug exhibited in vitro antiviral activity in submicromolar or nanomolar range against varicella zoster virus (VZV), human cytomegalovirus (HCMV), human herpes virus type 1 (HSV-1) and type 2 (HSV-2), and vaccinia virus (VV), with good selective index (SI). Among them, the analogue 9c (LAVR-289) proved markedly inhibitory against VZV wild-type (TK+) (EC50 0.0035 µM, SI 740) and for thymidine kinase VZV deficient strains (EC50 0.018 µM, SI 145), with a low morphological toxicity in cell culture at 100 µM and acceptable cytostatic activity resulting in excellent selectivity. Compound 9c exhibited antiviral activity against HCMV (EC50 0.021 µM) and VV (EC50 0.050 µM), as well as against HSV-1 (TK-) (EC50 0.0085 µM). Finally, LAVR-289 (9c) deserves further (pre)clinical investigations as a potent candidate broad-spectrum anti-herpesvirus drug.


Subject(s)
Antiviral Agents , DNA Viruses , Microbial Sensitivity Tests , Prodrugs , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Prodrugs/chemistry , Humans , DNA Viruses/drug effects , Structure-Activity Relationship , Herpesvirus 1, Human/drug effects , Molecular Structure , Herpesvirus 3, Human/drug effects , Organophosphonates/pharmacology , Organophosphonates/chemistry , Organophosphonates/chemical synthesis , Cytomegalovirus/drug effects , Dose-Response Relationship, Drug , Vaccinia virus/drug effects , Herpesvirus 2, Human/drug effects
14.
Virology ; 595: 110063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38564935

ABSTRACT

This experimental study aimed to evaluate the antiviral and synergistic effects of photoenergy irradiation on human herpes simplex virus type I (HSV-1) infection. We assessed viral replication, plaque formation, and relevant viral gene expression to examine the antiviral and synergistic effects of blue light (BL) with acyclovir treatment. Our results showed that daily BL (10 J/cm2) irradiation inhibited plaque-forming ability and decreased viral copy numbers in HSV-1-infected monkey kidney epithelial Vero cells and primary human oral keratinocyte (HOK) cells. Combined treatment with the antiviral agent acyclovir and BL irradiation increased anti-viral activity, reducing viral titers and copy numbers. In particular, accumulated BL irradiation suppressed characteristic viral genes including UL19 and US6, and viral DNA replication-essential genes including UL9, UL30, UL42, and UL52 in HOK cells. Our results suggest that BL irradiation has anti-viral and synergistic properties, making it a promising therapeutic candidate for suppressing viral infections in clinical trials.


Subject(s)
Acyclovir , Antiviral Agents , Herpesvirus 1, Human , Virus Replication , Antiviral Agents/pharmacology , Animals , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/radiation effects , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/genetics , Chlorocebus aethiops , Vero Cells , Humans , Virus Replication/drug effects , Virus Replication/radiation effects , Acyclovir/pharmacology , Light , Herpes Simplex/virology , Herpes Simplex/drug therapy , Keratinocytes/virology , Keratinocytes/radiation effects , Keratinocytes/drug effects , Viral Plaque Assay
15.
J Antibiot (Tokyo) ; 77(6): 389-392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519549

ABSTRACT

Okichromanone (1), a new chromanone, was isolated from the culture extract of a sponge-derived actinomycete Microbispora, along with known 1-hydroxyphenazine (2). Compound 1 was elucidated to exist as a mixture of two isomeric structures (1a and 1b) at a ratio of nearly 3:2. Compounds 1 and 2 showed anti HSV-I activity with IC50 values 40 and 86 µM, respectively, and anti HSV-II activity with IC50 values 59 and 123 µM, respectively.


Subject(s)
Actinobacteria , Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/chemistry , Actinobacteria/chemistry , Animals , Porifera , Chromones/pharmacology , Chromones/chemistry , Chromones/isolation & purification , Chlorocebus aethiops , Vero Cells , Herpesvirus 1, Human/drug effects , Inhibitory Concentration 50 , Molecular Structure
16.
J Nat Med ; 78(3): 525-536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38457082

ABSTRACT

Ipomoea muricata (L.) Jacq. seeds (Convolvulaceae) are used as a traditional laxative and carminative medicine. Muricatins XIV (1), XV (2), XVI (3), and XVII (4), were isolated from I. muricata seeds as four new resin glycosides, along with seven known compounds, three of which were isolated for the first time as natural products; their structures were determined using MS and NMR spectroscopy. Compounds 1-4 are macrolactones (jalapins); the sugar moieties of 1, 2, and 4 are partially acylated with 2S-methylbutyric acid, while that of 3 is esterified with 2S-methylbutyric and 2S-methyl-3S-hydroxybutyric acids. In addition, the antiviral activities of the seven compounds obtained in this study, together with five known compounds obtained in our previous study into resin glycosides from I. muricata seeds, were evaluated against herpes simplex virus type 1 (HSV-1); their cytotoxicities against HL-60 human promyelocytic leukemia cells were also investigated. All examined jalapins exhibited similar or slightly weaker anti-HSV-1 activities than acyclovir, the positive control; however, the glycosidic acid of 4 was inactive, while its methyl ester was weakly active. On the other hand, cytotoxicity testing against HL-60 cells showed similar results to those observed during anti-HSV-1 activity testing, with the exception that one jalapin was less active.


Subject(s)
Antiviral Agents , Glycosides , Ipomoea , Resins, Plant , Seeds , Ipomoea/chemistry , Seeds/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Resins, Plant/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Molecular Structure , Herpesvirus 1, Human/drug effects , HL-60 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology , Magnetic Resonance Spectroscopy
17.
Viruses ; 15(8)2023 08 09.
Article in English | MEDLINE | ID: mdl-37632051

ABSTRACT

The thymidine kinase (TK) and DNA polymerase (pol) genes of the herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are two important genes involved in antiviral resistance. We investigated the genetic polymorphisms of the HSV-TK and pol genes in clinical isolates from Korean HSV-infected patients using next-generation sequencing (NGS) for the first time in Korea. A total of 81 HSV-1 and 47 HSV-2 isolates were examined. NGS was used to amplify and sequence the TK and pol genes. Among the 81 HSV-1 isolates, 12 and 17 natural polymorphisms and 9 and 23 polymorphisms of unknown significance in TK and pol were found, respectively. Two HSV-1 isolates (2.5%) exhibited the E257K amino acid substitution in TK, associated with antiviral resistance. Out of 47 HSV-2 isolates, 8 natural polymorphisms were identified in TK, and 9 in pol, with 13 polymorphisms of unknown significance in TK and 10 in pol. No known resistance-related mutations were observed in HSV-2. These findings contribute to our understanding of the genetic variants associated with antiviral resistance in HSV-1 and HSV-2 in Korea, with frequencies of known antiviral resistance-related mutations of 2.5% and 0% in HSV-1 and HSV-2, respectively.


Subject(s)
DNA-Directed DNA Polymerase , Herpesvirus 1, Human , Thymidine Kinase , Humans , Acyclovir/pharmacology , Antiviral Agents/pharmacology , DNA-Directed DNA Polymerase/genetics , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , Herpesvirus 2, Human/genetics , Mutation , Republic of Korea/epidemiology , Thymidine Kinase/genetics , Drug Resistance, Viral
18.
Virol J ; 20(1): 8, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36647143

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a widely disseminated virus that establishes latency in the brain and causes occasional but fatal herpes simplex encephalitis. Currently, acyclovir (ACV) is the main clinical drug used in the treatment of HSV-1 infection, and the failure of therapy in immunocompromised patients caused by ACV-resistant HSV-1 strains necessitates the requirement to develop novel anti-HSV-1 drugs. Artemisia argyi, a Traditional Chinese Medicine, has been historically used to treat inflammation, bacterial infection, and cancer. In this study, we demonstrated the antiviral effect and mechanism of ethanol extract of A. argyi leaves (hereafter referred to as 'AEE'). We showed that AEE at 10 µg/ml exhibits potent antiviral effects on both normal and ACV-resistant HSV-1 strains. AEE also inhibited the infection of HSV-2, rotavirus, and influenza virus. Transmission electron microscopy revealed that AEE destroys the membrane integrity of HSV-1 viral particles, resulting in impaired viral attachment and penetration. Furthermore, mass spectrometry assay identified 12 major components of AEE, among which two new flavones, deoxysappanone B 7,3'-dimethyl ether, and 3,7-dihydroxy-3',4'-dimethoxyflavone, exhibited the highest binding affinity to HSV-1 glycoprotein gB at the surface site critical for gB-gH-gL interaction and gB-mediated membrane fusion, suggesting their involvement in inactivating virions. Therefore, A. argyi is an important source of antiviral drugs, and the AEE may be a potential novel antiviral agent against HSV-1 infection.


Subject(s)
Antiviral Agents , Artemisia , Herpesvirus 1, Human , Plant Extracts , Acyclovir/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Ethanol , Herpesvirus 1, Human/drug effects , Viral Envelope , Plant Extracts/chemistry , Plant Extracts/pharmacology , Artemisia/chemistry , Plant Leaves/chemistry
19.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080247

ABSTRACT

Combretaceae, an immense family involving species (500) or genera (20), originates in tropical and subtropical regions. This family has evinced medicinal values such as anti-leishmanial, cytotoxic, antibacterial, antidiabetic, antiprotozoal, and antifungal properties. Conocarpus lancifolius (C. lancifolius) methanol extract (CLM) was prepared, then compound isolation performed by open column chromatography, and compound structure was determined by spectroscopic techniques (13C NMR, IR spectroscopy, 1H-NMR, mass spectrometry UV-visible, and 2D correlation techniques). Molecular docking studies of ligand were performed on transcriptional regulators 4EY7 and 2GV9 to observe possible interactions. Phytochemical screening revealed the presence of secondary metabolites including steroids, cardiac glycosides, saponins, anthraquinones, and flavonoids. The isolated compound was distinguished as lancifolamide (LFD). It showed cytotoxic activity against human breast cancer, murine lymphocytic leukemia, and normal cells, human embryonic kidney cells, and rat glioma cells with IC50 values of 0.72 µg/mL, 2.01 µg/mL, 1.55 µg/mL, and 2.40 µg/mL, respectively. Although no cytotoxic activity was noticed against human colon cancer and human lung cancer, LFD showed 24.04% inhibition against BChE and 60.30% inhibition against AChE and is therefore beneficial for Alzheimer's disease (AD). AChE and LFD interact mechanistically in a way that is optimum for neurodegenerative disorders, according to molecular docking studies. Methanol and dichloromethane extract of C. lancifolius and LFD shows antibacterial and antifungal activity against antibiotic resistance Bacillus subtilis, Streptococcus mutans, Brevibacillus laterosporus, Salmonella Typhi, Candida albicans, and Cryptococcus neoformans, respectively. LFD shows antiviral activity against HSV-1 with 26% inhibition IP. The outcomes of this study support the use of LFD for cognitive disorders and highlight its underlying mechanism, targeting AChE, DNA-POL, NF-KB, and TNF-α, etc., for the first time.


Subject(s)
Cholinesterase Inhibitors , Combretaceae , Herpes Simplex , Herpesvirus 1, Human , Acetylcholinesterase/metabolism , Animals , Cholinesterase Inhibitors/chemistry , Combretaceae/chemistry , Herpesvirus 1, Human/drug effects , Humans , Methanol , Mice , Molecular Docking Simulation , Plant Extracts/chemistry , Rats
20.
Int J Biol Macromol ; 210: 415-429, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35504413

ABSTRACT

In our survey for a new antiviral agent, two types of lectin were purified from Nostoc muscorum using both ion-exchange and affinity columns chromatography. Nostoc muscorum lectins (NMLs) are categorized based on their carbohydrate preference. Nostoc muscorum lectin-1(NML-1) exhibited a strict binding specificity for complex glycoproteins without linked carbohydrates, and the other displayed specificity for α- glycosides mannose polymers (NML-2) and was classified as a glycoprotein with 16.8% linked carbohydrates. NML-1 displayed a single band of 166 kDa on native-PAGE and two bands of 81 kDa and 85 kDa on SDS-PAGE, which confirmed the heterodimeric nature of this lectin. While NML-2 is a 50 kDa glycoprotein composed of 25 kDa subunits. Physical characterization of NML-1 displayed its stability at a higher temperature of 90 °C for 5 min and over a wide pH range (4-9), while MNL-2 displayed stability up to a temperature of 80 °C for 25 min and a pH range of 5-8. NML-1 didn't require metal ions for agglutination activity, while the activity of NML-2 was doubled by manganese ions. The antiviral activity of two lectins was assessed against herpes simplex type-1 (HSV-1) using a plaque assay which revealed that NML-1 inhibited HSV-1 infection at an early stage in contrast to NML-2 which exerted its antiviral effect at the late stage of infection. These results suggest that Nostoc muscorum is a unique lead for antiviral drug discovery as it is a novel source for antiviral lectins with different modes of action.


Subject(s)
Antiviral Agents , Herpesvirus 1, Human , Nostoc muscorum , Plant Lectins , Antiviral Agents/pharmacology , Carbohydrates/chemistry , Chromatography, Affinity , Glycoproteins , Herpesvirus 1, Human/drug effects , Hydrogen-Ion Concentration , Ions , Nostoc muscorum/chemistry , Plant Lectins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...