Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.888
Filter
1.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829910

ABSTRACT

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Subject(s)
Herpesvirus 1, Human , Immunity, Innate , Humans , Animals , Herpesvirus 1, Human/immunology , Mice , Virus Replication , Herpes Simplex/immunology , Herpes Simplex/virology , Herpes Simplex/metabolism , Signal Transduction , HEK293 Cells , Repressor Proteins
2.
Vopr Virusol ; 69(2): 187-192, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38843024

ABSTRACT

INTRODUCTION: Herpes simplex virus type 1 (HSV-1) is one of the most common human viral infections and has a double-stranded DNA genome belonging to the Herpesviridae family. Smoking is one of the leading causes of disease and premature death worldwide, responsible for the death of up to six million people annually. The purpose of the current study was to determine the seroprevalence of HSV-1 infection among smokers. Methods. The search strategy was conducted in the period from December 2022 to January 2023. The study included a random sample of 94 (88 males, and 6 females) healthy participants, aged between ≤ 20 to ≥ 60 years, with 50 participants as the control group. The HSV serological testing consisted of detecting antibodies to HSV-1 IgG with the help of ELISA. RESULTS: Most participants were university students, consisting of 45.7% males and 5.3% females, followed by employed smokers, consisting of 0.2% males and 1.1% females. The number of females was much lower than that of males reaching 6.4 and 93.6% respectively, due to customs and traditions. The seroprevalence was 24.47, 22.3 and 2.1% in males and females respectively. The seroprevalence rate was 13.8% in hookah and cigarette smokers, 9% in cigarette smokers and 1.1% in hookah smokers exclusively. The highest rate was observed in the age groups of 21-30 and 31-40 years with 12.80% and 7.40% respectively. CONCLUSIONS: The study revealed that the seroprevalence of HSV-1 IgG was 24.47%, and was higher among hookah and cigarette smokers compared to those who exclusively smoked cigarettes or hookah.


Subject(s)
Antibodies, Viral , Herpes Simplex , Herpesvirus 1, Human , Smokers , Humans , Male , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Female , Seroepidemiologic Studies , Adult , Middle Aged , Herpes Simplex/epidemiology , Herpes Simplex/virology , Herpes Simplex/blood , Antibodies, Viral/blood , Immunoglobulin G/blood , Young Adult , Smoking/epidemiology , Aged , Adolescent
3.
J Immunother Cancer ; 12(5)2024 May 31.
Article in English | MEDLINE | ID: mdl-38821716

ABSTRACT

Cytokines are small proteins that regulate the growth and functional activity of immune cells, and several have been approved for cancer therapy. Oncolytic viruses are agents that mediate antitumor activity by directly killing tumor cells and inducing immune responses. Talimogene laherparepvec is an oncolytic herpes simplex virus type 1 (oHSV), approved for the treatment of recurrent melanoma, and the virus encodes the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). A significant advantage of oncolytic viruses is the ability to deliver therapeutic payloads to the tumor site that can help drive antitumor immunity. While cytokines are especially interesting as payloads, the optimal cytokine(s) used in oncolytic viruses remains controversial. In this review, we highlight preliminary data with several cytokines and chemokines, including GM-CSF, interleukin 12, FMS-like tyrosine kinase 3 ligand, tumor necrosis factor α, interleukin 2, interleukin 15, interleukin 18, chemokine (C-C motif) ligand 2, chemokine (C-C motif) ligand 5, chemokine (C-X-C motif) ligand 4, or their combinations, and show how these payloads can further enhance the antitumor immunity of oHSV. A better understanding of cytokine delivery by oHSV can help improve clinical benefit from oncolytic virus immunotherapy in patients with cancer.


Subject(s)
Cytokines , Immunotherapy , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Cytokines/metabolism , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Simplexvirus/immunology , Simplexvirus/genetics , Herpesvirus 1, Human/immunology
4.
Front Cell Infect Microbiol ; 14: 1383811, 2024.
Article in English | MEDLINE | ID: mdl-38808062

ABSTRACT

Introduction: While astrocytes participate in the CNS innate immunity against herpes simplex virus type 1 (HSV-1) infection, they are the major target for the virus. Therefore, it is of importance to understand the interplay between the astrocyte-mediated immunity and HSV-1 infection. Methods: Both primary human astrocytes and the astrocyte line (U373) were used in this study. RT-qPCR and Western blot assay were used to measure IFNs, the antiviral IFN-stimulated genes (ISGs), IFN regulatory factors (IRFs) and HSV-1 DNA. IRF1 knockout or knockdown was performed with CRISPR/Cas9 and siRNA transfection techniques. Results: Poly(dA:dT) could inhibit HSV-1 replication and induce IFN-ß/IFN-λs production in human astrocytes. Poly(dA:dT) treatment of astrocytes also induced the expression of the antiviral ISGs (Viperin, ISG56 and MxA). Among IRFs members examined, poly(dA:dT) selectively unregulated IRF1 and IRF9, particularly IRF1 in human astrocytes. The inductive effects of poly(dA:dT) on IFNs and ISGs were diminished in the IRF1 knockout cells. In addition, IRF1 knockout attenuated poly(dA:dT)-mediated HSV-1 inhibition in the cells. Conclusion: The DNA sensors activation induces astrocyte intracellular innate immunity against HSV-1. Therefore, targeting the DNA sensors has potential for immune activation-based HSV-1 therapy.


Subject(s)
Astrocytes , Herpesvirus 1, Human , Interferon Regulatory Factor-1 , Virus Replication , Humans , Astrocytes/virology , Astrocytes/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Immunity, Innate , Poly dA-dT , Herpes Simplex/immunology , Herpes Simplex/virology , Cytosol/metabolism , Cell Line , Cells, Cultured , DNA, Viral/genetics , Gene Knockout Techniques
5.
J Biomed Sci ; 31(1): 56, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807208

ABSTRACT

BACKGROUND: Infections with Herpes simplex virus (HSV)-1 or -2 usually present as mild chronic recurrent disease, however in rare cases can result in life-threatening conditions with a large spectrum of pathology. Monoclonal antibody therapy has great potential especially to treat infections with virus resistant to standard therapies. HDIT101, a humanized IgG targeting HSV-1/2 gB was previously investigated in phase 2 clinical trials. The aim of this study was to develop a next-generation therapy by combining different antiviral monoclonal antibodies. METHODS: A lymph-node derived phage display library (LYNDAL) was screened against recombinant gB from Herpes simplex virus (HSV) -1 and HDIT102 scFv was selected for its binding characteristics using bio-layer interferometry. HDIT102 was further developed as fully human IgG and tested alone or in combination with HDIT101, a clinically tested humanized anti-HSV IgG, in vitro and in vivo. T-cell stimulating activities by antigen-presenting cells treated with IgG-HSV immune complexes were analyzed using primary human cells. To determine the epitopes, the cryo-EM structures of HDIT101 or HDIT102 Fab bound to HSV-1F as well as HSV-2G gB protein were solved at resolutions < 3.5 Å. RESULTS: HDIT102 Fab showed strong binding to HSV-1F gB with Kd of 8.95 × 10-11 M and to HSV-2G gB with Kd of 3.29 × 10-11 M. Neutralization of cell-free virus and inhibition of cell-to-cell spread were comparable between HDIT101 and HDIT102. Both antibodies induced internalization of gB from the cell surface into acidic endosomes by binding distinct epitopes in domain I of gB and compete for binding. CryoEM analyses revealed the ability to form heterogenic immune complexes consisting of two HDIT102 and one HDIT101 Fab bound to one gB trimeric molecule. Both antibodies mediated antibody-dependent phagocytosis by antigen presenting cells which stimulated autologous T-cell activation. In vivo, the combination of HDIT101 and HDIT102 demonstrated synergistic effects on survival and clinical outcome in immunocompetent BALB/cOlaHsd mice. CONCLUSION: This biochemical and immunological study showcases the potential of an effective combination therapy with two monoclonal anti-gB IgGs for the treatment of HSV-1/2 induced disease conditions.


Subject(s)
Herpes Simplex , Humans , Animals , Mice , Herpes Simplex/immunology , Herpes Simplex/therapy , Herpes Simplex/drug therapy , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Viral/immunology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/drug effects , Mice, Inbred BALB C , Female , Herpesvirus 2, Human/immunology , Herpesvirus 2, Human/drug effects
6.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693119

ABSTRACT

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Subject(s)
Fusobacterium nucleatum , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , RNA-Binding Proteins , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Humans , Oncolytic Virotherapy/methods , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/immunology , Cell Line, Tumor , Fusobacterium nucleatum/immunology , Neoplasms/therapy , Neoplasms/immunology , Female , Immunity, Innate , Mice, Inbred BALB C
7.
Shock ; 61(6): 894-904, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38662585

ABSTRACT

ABSTRACT: Objective: We conducted a two-sample bidirectional Mendelian randomization (MR) study to investigate the causal relationships between herpes viruses and sepsis. Methods: Publicly available genome-wide association study data were used. Four viruses, HSV-1, HSV-2, EBV, and CMV, were selected, with serum positivity and levels of antibody in serum as the herpes virus data. Results: In forward MR, susceptibility to HSV-1 was a risk factor for sepsis. The susceptibility to CMV showed a severity-dependent effect on sepsis and was a risk factor for the 28-day mortality from sepsis, and was also a risk factor for 28-day sepsis mortality in critical care admission. The EBV EA-D antibody level after EBV infection was a protective factor for 28-day sepsis mortality in critical care admission, and CMV pp28 antibody level was a risk factor for 28-day sepsis mortality in critical care admission. No statistically significant causal relationships between HSV-2 and sepsis were found. No exposures having statistically significant association with sepsis critical care admission as an outcome were found. In reverse MR, the sepsis critical care admission group manifested a decrease in CMV pp52 antibody levels. No causal relationships with statistical significance between sepsis exposure and other herpes virus outcomes were found. Conclusion: Our study identifies HSV-1 susceptibility as a sepsis risk, with CMV susceptibility elevating severity. Varied effects of EBV and CMV antibodies on sepsis severity are noted. Severe sepsis results in a decline in CMV antibody levels. Our results help prognostic and predictive enrichment and offer valuable information for precision sepsis treatment.


Subject(s)
Herpesvirus 1, Human , Mendelian Randomization Analysis , Sepsis , Humans , Sepsis/genetics , Herpesvirus 1, Human/immunology , Risk Factors , Cytomegalovirus Infections/genetics , Cytomegalovirus/genetics , Herpes Simplex/genetics , Genome-Wide Association Study , Male , Genetic Predisposition to Disease , Severity of Illness Index , Female
8.
J Clin Microbiol ; 62(6): e0026324, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38687020

ABSTRACT

Herpes simplex virus (HSV) infections are one of the most common and stigmatized infections of humankind, affecting more than 4 billion people around the world and more than 100 million Americans. Yet, most people do not know their infection status, and antibody testing is not recommended, partly due to poor test performance. Here, we compared the test performance of the Roche Elecsys HSV-1 IgG and HSV-2 IgG, DiaSorin LIAISON HSV-1/2 IgG, and Bio-Rad BioPlex 2200 HSV-1 and HSV-2 IgG assays with the gold-standard HSV western blot in 1,994 persons, including 1,017 persons with PCR or culture-confirmed HSV-1 and/or HSV-2 infection. Across all samples, the Bio-Rad and Roche assays had similar performance metrics with low sensitivity (<85%) but high specificity (>97%) for detecting HSV-1 IgG and both high sensitivity (>97%) and high specificity (>98%) for detecting HSV-2 IgG. The DiaSorin assay had a higher sensitivity (92.1%) but much lower specificity (88.7%) for detecting HSV-1 IgG and comparatively poor sensitivity (94.5%) and specificity (94.2%) for detecting HSV-2 IgG. The DiaSorin assay performed poorly at low-positive index values with 60.9% of DiaSorin HSV-1 results and 20.8% of DiaSorin HSV-2 results with positive index values <3.0 yielding false positive results. Based on an estimated HSV-2 seroprevalence of 12% in the United States, positive predictive values for HSV-2 IgG were 96.1% for Roche, 87.4% for Bio-Rad, and 69.0% for DiaSorin, meaning nearly one of every three positive DiaSorin HSV-2 IgG results would be falsely positive. Further development in HSV antibody diagnostics is needed to provide appropriate patient care.IMPORTANCESerological screening for HSV infections is currently not recommended in part due to the poor performance metrics of widely used commercial HSV-1 and HSV-2 IgG assays. Here, we compare three Food and Drug Administration (FDA)-cleared automated HSV-1 and HSV-2 IgG assays to the gold-standard western blot across nearly 2,000 samples. We find that not all commercially available HSV assays are created equal, with comparably low sensitivities for HSV-1 IgG across platforms and high false positivity rates for DiaSorin on HSV-2 IgG. This study is the first large-scale comparison of performance metrics for the Bio-Rad and Roche assays in over 10 years. Our study confirms that there remains room for improvement in HSV serological diagnostic testing-especially in regard to low sensitivities for HSV-1 IgG detection-and highlights that some previously less-studied assays may have better performance metrics than previously considered typical of commercially available HSV-2 IgG assays.


Subject(s)
Antibodies, Viral , Herpes Simplex , Herpesvirus 1, Human , Herpesvirus 2, Human , Immunoglobulin G , Sensitivity and Specificity , Humans , Immunoglobulin G/blood , Herpesvirus 1, Human/immunology , Herpesvirus 2, Human/immunology , Herpesvirus 2, Human/isolation & purification , Antibodies, Viral/blood , Herpes Simplex/diagnosis , Herpes Simplex/virology , Male , Female , Adult , Middle Aged , Adolescent , Young Adult , Aged , Automation, Laboratory , Child , Aged, 80 and over , Immunoassay/methods , Child, Preschool
9.
Nature ; 628(8009): 844-853, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570685

ABSTRACT

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Subject(s)
Alleles , DNA Polymerase gamma , Encephalitis Viruses, Tick-Borne , Herpesvirus 1, Human , Immune Tolerance , SARS-CoV-2 , Animals , Female , Humans , Male , Mice , Age of Onset , COVID-19/immunology , COVID-19/virology , COVID-19/genetics , DNA Polymerase gamma/genetics , DNA Polymerase gamma/immunology , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/immunology , DNA, Mitochondrial/metabolism , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/genetics , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/virology , Founder Effect , Gene Knock-In Techniques , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Immune Tolerance/genetics , Immune Tolerance/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon Type I/immunology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/immunology , Mutation , RNA, Mitochondrial/immunology , RNA, Mitochondrial/metabolism , SARS-CoV-2/immunology
10.
Virol Sin ; 39(2): 251-263, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219860

ABSTRACT

Viral encephalitis continues to be a significant public health concern. In our previous study, we discovered a lower expression of antiviral factors, such as IFN-ß, STING and IFI16, in the brain tissues of patients with Rasmussen's encephalitis (RE), a rare chronic neurological disorder often occurred in children, characterized by unihemispheric brain atrophy. Furthermore, a higher cumulative viral score of human herpes viruses (HHVs) was also found to have a significant positive correlation with the unihemispheric atrophy in RE. Type I IFNs (IFN-I) signaling is essential for innate anti-infection response by binding to IFN-α/ß receptor (IFNAR). In this study, we infected WT mice and IFNAR-deficient A6 mice with herpes simplex virus 1 (HSV-1) via periocular injection to investigate the relationship between IFN-I signaling and HHVs-induced brain lesions. While all mice exhibited typical viral encephalitis lesions in their brains, HSV-induced epilepsy was only observed in A6 mice. The gene expression matrix, functional enrichment analysis and protein-protein interaction network revealed four gene models that were positively related with HSV-induced epilepsy. Additionally, ten key genes with the highest scores were identified. Taken together, these findings indicate that intact IFN-I signaling can effectively limit HHVs induced neural symptoms and brain lesions, thereby confirming the positive correlation between IFN-I signaling repression and brain atrophy in RE and other HHVs encephalitis.


Subject(s)
Epilepsy , Herpes Simplex , Herpesvirus 1, Human , Interferon Type I , Signal Transduction , Animals , Female , Mice , Brain/pathology , Brain/virology , Disease Models, Animal , Encephalitis, Herpes Simplex/virology , Encephalitis, Herpes Simplex/immunology , Encephalitis, Herpes Simplex/pathology , Epilepsy/virology , Epilepsy/pathology , Herpes Simplex/virology , Herpes Simplex/pathology , Herpes Simplex/immunology , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Mice, Inbred C57BL , Mice, Knockout , Protein Interaction Maps , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/deficiency
11.
Nature ; 623(7985): 157-166, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853118

ABSTRACT

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Subject(s)
Brain Neoplasms , Glioblastoma , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioblastoma/immunology , Glioblastoma/pathology , Nestin/genetics , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Viruses/physiology , Reproducibility of Results , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Microenvironment/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology
12.
Microbiol Spectr ; 10(1): e0188321, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196784

ABSTRACT

Virus infection triggers intricate signal cascade reactions to activate the host innate immunity, which leads to the production of type I interferon (IFN-I). Herpes simplex virus 1 (HSV-1), a human-restricted pathogen, is capable of encoding over 80 viral proteins, and several of them are involved in immune evasion to resist the host antiviral response through the IFN-I signaling pathway. Here, we determined that HSV-1 UL31, which is associated with nuclear matrix and is essential for the formation of viral nuclear egress complex, could inhibit retinoic acid-inducible gene I (RIG-I)-like receptor pathway-mediated interferon beta (IFN-ß)-luciferase (Luc) and (PRDIII-I)4-Luc (an expression plasmid of IFN-ß positive regulatory elements III and I) promoter activation, as well as the mRNA transcription of IFN-ß and downstream interferon-stimulated genes (ISGs), such as ISG15, ISG54, ISG56, etc., to promote viral infection. UL31 was shown to restrain IFN-ß activation at the interferon regulatory factor 3 (IRF3)/IRF7 level. Mechanically, UL31 was demonstrated to interact with TANK binding kinase 1 (TBK1), inducible IκB kinase (IKKi), and IRF3 to impede the formation of the IKKi-IRF3 complex but not the formation of the IRF7-related complex. UL31 could constrain the dimerization and nuclear translocation of IRF3. Although UL31 was associated with the CREB binding protein (CBP)/p300 coactivators, it could not efficiently hamper the formation of the CBP/p300-IRF3 complex. In addition, UL31 could facilitate the degradation of IKKi and IRF3 by mediating their K48-linked polyubiquitination. Taken together, these results illustrated that UL31 was able to suppress IFN-ß activity by inhibiting the activation of IKKi and IRF3, which may contribute to the knowledge of a new immune evasion mechanism during HSV-1 infection. IMPORTANCE The innate immune system is the first line of host defense against the invasion of pathogens. Among its mechanisms, IFN-I is an essential cytokine in the antiviral response, which can help the host eliminate a virus. HSV-1 is a double-stranded DNA virus that can cause herpes and establish a lifelong latent infection, due to its possession of multiple mechanisms to escape host innate immunity. In this study, we illustrate for the first time that the HSV-1-encoded UL31 protein has a negative regulatory effect on IFN-ß production by blocking the dimerization and nuclear translocation of IRF3, as well as promoting the K48-linked polyubiquitination and degradation of both IKKi and IRF3. This study may be helpful for fully understanding the pathogenesis of HSV-1.


Subject(s)
Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Interferon-beta/genetics , Interferon-beta/immunology , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Animals , Chlorocebus aethiops , Cytokines , DEAD Box Protein 58 , HEK293 Cells , HeLa Cells , Herpes Simplex , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7 , Interferon Type I , Interferon-beta/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases , Receptors, Immunologic , Signal Transduction , Vero Cells , Viral Proteins/metabolism
13.
Front Immunol ; 13: 789379, 2022.
Article in English | MEDLINE | ID: mdl-35154106

ABSTRACT

Autoimmunity prevalence, as measured by antinuclear antibodies (ANA), is increasing in U.S. adolescents. Improved hygiene and cleaner environments in childhood may reduce exposure to infections and other immune challenges, resulting in improper immune responses to later-life exposures. We examined associations of hygiene hypothesis indicators, including asthma, allergies, and antibodies to infectious agents, with ANA prevalence, measured by HEp-2 immunofluorescence, in adolescents (aged 12-19 years) over a 25-year time span in the National Health and Nutrition Examination Survey (NHANES) (N=2,709), adjusting for age, sex, race/ethnicity, body mass index, education and survey cycle, overall and within individual time periods, using logistic regression. Prevalence of ANA in adolescents increased from 5.0% in 1988-1991 to 12.8% in 2011-2012. ANA were positively associated with diagnosis of asthma in early childhood (OR: 2.07, CI: 1.09-3.99) and the effect estimate for current hay fever was elevated but not statistically significant (OR: 1.55, CI: 0.85-2.84). Fewer than 2% of those with ANA in 1988-1991 had been diagnosed with asthma, compared with 18% in 1999-2000, and 27% in 2003-2004 and 2011-2012. ANA trended negatively with Helicobacter pylori antibodies (OR: 0.49, CI: 0.24-0.99). ANA may be useful as an additional indicator of inadequate immune education in adolescence, a critical period of growth and development.


Subject(s)
Antibodies, Antinuclear/immunology , Asthma/epidemiology , Asthma/immunology , Autoimmunity , Hygiene Hypothesis , Hygiene , Adolescent , Asthma/diagnosis , Child , Cross-Sectional Studies , Female , Helicobacter Infections/epidemiology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Helicobacter pylori/immunology , Herpes Simplex/epidemiology , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Humans , Male , Prevalence , Self Report , Toxoplasma/immunology , Toxoplasmosis/epidemiology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , United States/epidemiology , Young Adult
14.
J Virol ; 96(4): e0151021, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34935440

ABSTRACT

Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.


Subject(s)
DEAD Box Protein 58/metabolism , Herpesvirus 1, Human/immunology , Immune Evasion , Protein Serine-Threonine Kinases/metabolism , Receptors, Immunologic/metabolism , Viral Proteins/metabolism , Alphaherpesvirinae/genetics , Alphaherpesvirinae/metabolism , Alphaherpesvirinae/physiology , Amino Acid Sequence , DEAD Box Protein 58/chemistry , HEK293 Cells , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Humans , Immunity, Innate , Interferon Type I/metabolism , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , Receptors, Immunologic/chemistry , Viral Proteins/genetics
15.
Front Immunol ; 12: 789454, 2021.
Article in English | MEDLINE | ID: mdl-34868077

ABSTRACT

Herpes simplex virus type-1 (HSV-1) ocular infection is one of the leading causes of infectious blindness in developed countries. The resultant herpetic keratitis (HK) is caused by an exacerbated reaction of the adaptive immune response that persists beyond virus clearance causing substantial damage to the cornea. Intramuscular immunization of mice with the HSV-1(VC2) live-attenuated vaccine strain has been shown to protect mice against lethal ocular challenge. Herein, we show that following ocular challenge, VC2 vaccinated animals control ocular immunopathogenesis in the absence of neutralizing antibodies on ocular surfaces. Ocular protection is associated with enhanced intracorneal infiltration of γδ T cells compared to mock-vaccinated animals. The observed γδ T cellular infiltration was inversely proportional to the infiltration of neutrophils, the latter associated with exacerbated tissue damage. Inhibition of T cell migration into ocular tissues by the S1P receptors agonist FTY720 produced significant ocular disease in vaccinated mice and marked increase in neutrophil infiltration. These results indicate that ocular challenge of mice immunized with the VC2 vaccine induce a unique ocular mucosal response that leads into the infiltration of γδ T cells resulting in the amelioration of infection-associated immunopathogenesis.


Subject(s)
Chemotaxis, Leukocyte , Cornea/immunology , Herpes Simplex Virus Vaccines/administration & dosage , Herpesvirus 1, Human/immunology , Intraepithelial Lymphocytes/immunology , Keratitis, Herpetic/prevention & control , Vaccination , Animals , Cornea/pathology , Cornea/virology , Cytokines/metabolism , Disease Models, Animal , Female , Herpes Simplex Virus Vaccines/immunology , Herpesvirus 1, Human/pathogenicity , Host-Pathogen Interactions , Injections, Intramuscular , Intraepithelial Lymphocytes/virology , Keratitis, Herpetic/immunology , Keratitis, Herpetic/pathology , Keratitis, Herpetic/virology , Lymphangiogenesis , Mice, Inbred BALB C , Neovascularization, Pathologic , Neutrophil Infiltration , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
16.
Nature ; 600(7887): 138-142, 2021 12.
Article in English | MEDLINE | ID: mdl-34759314

ABSTRACT

Pathogens use virulence factors to inhibit the immune system1. The guard hypothesis2,3 postulates that hosts monitor (or 'guard') critical innate immune pathways such that their disruption by virulence factors provokes a secondary immune response1. Here we describe a 'self-guarded' immune pathway in human monocytes, in which guarding and guarded functions are combined in one protein. We find that this pathway is triggered by ICP0, a key virulence factor of herpes simplex virus type 1, resulting in robust induction of anti-viral type I interferon (IFN). Notably, induction of IFN by ICP0 is independent of canonical immune pathways and the IRF3 and IRF7 transcription factors. A CRISPR screen identified the ICP0 target MORC34 as an essential negative regulator of IFN. Loss of MORC3 recapitulates the IRF3- and IRF7-independent IFN response induced by ICP0. Mechanistically, ICP0 degrades MORC3, which leads to de-repression of a MORC3-regulated DNA element (MRE) adjacent to the IFNB1 locus. The MRE is required in cis for IFNB1 induction by the MORC3 pathway, but is not required for canonical IFN-inducing pathways. As well as repressing the MRE to regulate IFNB1, MORC3 is also a direct restriction factor of HSV-15. Our results thus suggest a model in which the primary anti-viral function of MORC3 is self-guarded by its secondary IFN-repressing function-thus, a virus that degrades MORC3 to avoid its primary anti-viral function will unleash the secondary anti-viral IFN response.


Subject(s)
Adenosine Triphosphatases/immunology , DNA-Binding Proteins/immunology , Models, Immunological , Virulence Factors/immunology , Adenosine Triphosphatases/deficiency , Adenosine Triphosphatases/metabolism , CRISPR-Cas Systems , Cell Line , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Gene Editing , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Humans , Immediate-Early Proteins/immunology , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Type I/antagonists & inhibitors , Interferon Type I/genetics , Interferon Type I/immunology , Monocytes/immunology , Receptor, Interferon alpha-beta , Repressor Proteins/deficiency , Repressor Proteins/immunology , Repressor Proteins/metabolism , Response Elements/genetics , Ubiquitin-Protein Ligases/immunology
17.
J Immunol ; 207(11): 2673-2680, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34732469

ABSTRACT

Stimulator of IFN genes (STING) is a key molecule that binds to cyclic dinucleotides produced by the cyclic GMP-AMP synthase to activate IFN expression and autophagy in the fight against microbial infection. The regulation of STING in the activation of IFN expression has been extensively reported, whereas the regulation of STING in the initiation of autophagy is still insufficiently determined. IFN-inducible guanylate-binding proteins (GBPs) are central to the cell-autonomous immunity in defending a host against viral, bacterial, and protozoan infections. In this study using the Chinese tree shrew (Tupaia belangeri chinensis), which is genetically close to primates, we found that Tupaia GBP1 (tGBP1) combines with Tupaia STING (tSTING), promotes autophagy, and moderately inhibits HSV type 1 (HSV-1) infection. The antiviral effects of tGBP1 are IFN independent. Mechanistically, tGBP1 interacted with tSTING, Tupaia sequestosome 1, and Tupaia microtubule associated protein 1 L chain 3, forming a complex which promotes autophagy in response to HSV-1 infection. This function of tGBP1 against HSV-1 infection was lost in tSTING knockout cells. Overexpression of either tSTING or its mutant tSTING-ΔCTT that can only activate autophagy rescued the anti-HSV-1 activity of tGBP1 in tSTING knockout cells. Our study not only elucidated the underlying mechanism of tGBP1 antiviral activity against HSV-1 infection, but also uncovered the regulation of tSTING in the initiation of autophagy in response to HSV-1 infection.


Subject(s)
Autophagy/immunology , GTP-Binding Proteins/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Animals , HEK293 Cells , Humans , Tupaia
18.
Pak J Biol Sci ; 24(11): 1169-1174, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34842389

ABSTRACT

<b>Background and Objective:</b> In recent years, respiratory tract viral infections have caused many pandemics that impact the whole world. To investigate the seropositivity of <i>Toxoplasma gondii</i>, rubella, CMV, HSV-1 and group A <i>Streptococcus</i> in recovered COVID-19 patients and correlate these findings with vitamin D levels. <b>Materials and Methods:</b> A total of 417 COVID-19 patients with diarrhoea were enrolled in this study. Vitamin D and seroprevalence for <i>Toxoplasma gondii</i>, rubella, CMV, HSV-1 and group A <i>Streptococcus</i> were evaluated and correlated. <b>Results:</b> It was found that recent infection in COVID-19 patients with HSV-1, rubella, <i>Toxoplasma</i> and CMV, respectively. IgG was detected indicating the development of adaptive immunity with all microbes. <b>Conclusion:</b> Current study detected a correlation between vitamin D levels and HSV-1 and no correlation between this infection and vitamin D deficiency with the other microbes.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Calcifediol/blood , Herpes Simplex/diagnosis , Herpesvirus 1, Human/immunology , Immunoglobulin G/blood , Vitamin D Deficiency/diagnosis , Adaptive Immunity , Adult , Biomarkers/blood , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , Cytomegalovirus/immunology , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/immunology , Female , Herpes Simplex/blood , Herpes Simplex/epidemiology , Herpes Simplex/immunology , Humans , Male , Middle Aged , Predictive Value of Tests , Prevalence , Rubella/blood , Rubella/diagnosis , Rubella/epidemiology , Rubella/immunology , Rubella virus/immunology , Saudi Arabia/epidemiology , Seroepidemiologic Studies , Streptococcal Infections/blood , Streptococcal Infections/diagnosis , Streptococcal Infections/epidemiology , Streptococcal Infections/immunology , Streptococcus/immunology , Toxoplasma/immunology , Toxoplasmosis/blood , Toxoplasmosis/diagnosis , Toxoplasmosis/epidemiology , Toxoplasmosis/immunology , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology
19.
Cell Physiol Biochem ; 55(6): 726-738, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34816678

ABSTRACT

Viruses have been widely used to treat cancer for many years and they achieved tremendous success in clinical trials with outstanding results, which has led to the foundation of companies that develop recombinant viruses for a better tumor treatment. Even though there has been a great progress in the field of viral tumor immunotherapy, until now only one virus, the oncolytic virus talimogene laherparepvec (TVEC), a genetically modified herpes simplex virus type 1 (T-VEC), has been approved by the FDA for cancer treatment. Although oncolytic viruses showed progress in certain cancer types and patient populations but they have yet shown limited efficacy when it comes to solid tumors. Only recently it was demonstrated that the immune stimulatory aspect of oncolytic viruses can strongly contribute to their anti-tumoral activity. One specific example in this context are arenaviruses, which have been shown to be non-cytopathic in nature lead to the massive immune activation within the tumor resulting in strong anti-tumoral activity. This strong immune activation might be also linked to their noncytopathic features, as their immune stimulatory potential is not self-limiting as is the case for oncolytic viruses due to their fast eradication by anti-viral immune effects. Because of this strong immune activation, arenaviruses appear superior to oncolytic viruses when it comes to potent and long-lasting anti-tumor effects in a broad variety of tumor types. Currently one of the most promising therapeutics which has turned to be very much beneficial for the treatment of different cancer types is represented by antibodies targeting checkpoint inhibitors such as PD-1/PD-L-1. In this review, we will summarize anti-tumoral effects of arenaviruses, and will discuss their potential to be combined with checkpoint inhibitors for a more efficient tumor treatment, which further emphasizes that arenavirus therapy as a viroimmunotherapy can be an efficient tool for the better clearance of tumors.


Subject(s)
Arenavirus/immunology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses/immunology , Biological Products/immunology , Biological Products/therapeutic use , Herpesvirus 1, Human/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy
20.
PLoS Pathog ; 17(10): e1009999, 2021 10.
Article in English | MEDLINE | ID: mdl-34653236

ABSTRACT

Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation.


Subject(s)
Cytokine Release Syndrome/immunology , Keratitis, Herpetic/immunology , Macrophages/immunology , Animals , Herpesvirus 1, Human/immunology , Mice , Virus Activation/immunology , Virus Latency/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...