Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.659
Filter
1.
J Med Virol ; 96(5): e29654, 2024 May.
Article in English | MEDLINE | ID: mdl-38727099

ABSTRACT

Human Herpesvirus 8 (HHV-8) has been classified by sequence analysis of open reading frame (ORF) K1, ORF K15, and variable sequence loci within the central constant region. The purpose of this study was to examine the molecular epidemiology of HHV-8 in an Irish population. This retrospective study included 30 patients who had HHV-8 DNA detected in plasma. Nested end-point PCR was used to characterise four regions of the HHV-8 genome, K1, T0.7 (K12), ORF 75, and K15. Sequencing data were obtained for 23 specimens from 19 patients. Phylogenetic analysis of ORF K1 demonstrated that subtypes A, B, C and F were present in 37%, 11%, 47% and 5%, respectively. For T0.7 and ORF 75, sequencing data were obtained for 12 patients. For T0.7, subtypes A/C, J, B, R and Q were present in 58%, 17%, 8%, 8%, and 8%, respectively. For ORF 75, subtypes A, B, C and D were present in 58%, 8%, 25%, and 8%, respectively. K15 sequences were determined for 13 patients. 69% had the P allele and 31% had the M allele. The data generated by this study demonstrate that a broad variety of HHV-8 subtypes are represented in patients exhibiting HHV-8-related disease in Ireland, a low prevalence country. The predominance of C and A K1 subtypes was as expected for a Western European population. The 31% prevalence for K15 subtype M was higher than expected for a Western European population. This may represent the changing and evolving epidemiology in Ireland due to altered migration patterns.


Subject(s)
DNA, Viral , Herpesviridae Infections , Herpesvirus 8, Human , Molecular Epidemiology , Phylogeny , Sequence Analysis, DNA , Humans , Ireland/epidemiology , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/classification , Herpesvirus 8, Human/isolation & purification , Male , Female , Retrospective Studies , Middle Aged , Adult , DNA, Viral/genetics , Aged , Young Adult , Polymerase Chain Reaction , Genotype , Adolescent , Open Reading Frames , Aged, 80 and over , Child , Molecular Sequence Data
2.
J Med Virol ; 96(5): e29684, 2024 May.
Article in English | MEDLINE | ID: mdl-38773828

ABSTRACT

Kaposi's sarcoma (KS) may derive from Kaposi's sarcoma herpesvirus (KSHV)-infected human mesenchymal stem cells (hMSCs) that migrate to sites characterized by inflammation and angiogenesis, promoting the initiation of KS. By analyzing the RNA sequences of KSHV-infected primary hMSCs, we have identified specific cell subpopulations, mechanisms, and conditions involved in the initial stages of KSHV-induced transformation and reprogramming of hMSCs into KS progenitor cells. Under proangiogenic environmental conditions, KSHV can reprogram hMSCs to exhibit gene expression profiles more similar to KS tumors, activating cell cycle progression, cytokine signaling pathways, endothelial differentiation, and upregulating KSHV oncogenes indicating the involvement of KSHV infection in inducing the mesenchymal-to-endothelial (MEndT) transition of hMSCs. This finding underscores the significance of this condition in facilitating KSHV-induced proliferation and reprogramming of hMSCs towards MEndT and closer to KS gene expression profiles, providing further evidence of these cell subpopulations as precursors of KS cells that thrive in a proangiogenic environment.


Subject(s)
Herpesvirus 8, Human , Mesenchymal Stem Cells , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Herpesvirus 8, Human/genetics , Sarcoma, Kaposi/virology , Mesenchymal Stem Cells/virology , Cell Differentiation , Cells, Cultured , Gene Expression Profiling , Cell Proliferation
3.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793630

ABSTRACT

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Subject(s)
DNA, Viral , Herpesvirus 8, Human , Immunity, Innate , Signal Transduction , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Humans , DNA, Viral/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Sarcoma, Kaposi/virology , Nucleotidyltransferases/metabolism , Host-Pathogen Interactions , Animals , Membrane Proteins/metabolism , Nuclear Proteins , Phosphoproteins
4.
BMC Infect Dis ; 24(1): 454, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684967

ABSTRACT

BACKGROUND: Clinically, most patients with Kaposi's sarcoma (KS) are male, and several direct and indirect mechanisms may underlie this increased susceptibility in men, Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is considered to be the primary etiological agent responsible for KS. Thus, we propose the hypothesis that men are more susceptible to HHV-8 infection, leading to a higher incidence of Kaposi's sarcoma among males. A meta-analysis was conducted to evaluate the association between gender and HHV-8 seropositivity in the general population. METHODS: A comprehensive literature search was performed using 6 online databases: PubMed, EMBASE, Cochrane library, Web of Science, CNKI, and Wanfang. Studies published before March 15, 2023, were included. RESULTS: In all, 33 articles including 41 studies were included in the meta-analysis. In the included adult population. men had a higher risk of HHV-8 infection than did women in adult populations from all over the world (odds ratio [OR]: 1.08, 95% confidence interval [CI]: 1.01-1.15), but no differences were found in child population from all over the world (OR: 0.90, 95% CI: 0.79-1.01). There was a significant difference in HHV-8 seroprevalence between men and women in sub-Saharan Africa (SSA) adult population (OR: 1.15, 95% CI: 1.05-1.26). However, no significant differences were observed in sub-Saharan Africa (SSA) child population (OR: 0.90, 95%CI 0.78-1.03). As for other continents, the results showed no significant difference, such as the Asian population (OR: 1.03, 95%CI: 0.92-1.16). or the European and American populations (OR 1.01, 95%CI 0.87-1.17). CONCLUSION: There was a slight gender disparity for HHV-8 infection in the adult population. Among the adult populations from SSA and globally, men were more likely to be infected with HHV-8 than were women. However, no statistical significance was observed in the child populations from SSA and globally. In the future, the inclusion of more standardized studies may strengthen the results of this study.


Subject(s)
Herpesviridae Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Male , Female , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Sarcoma, Kaposi/epidemiology , Sarcoma, Kaposi/virology , Sex Factors , Adult , Incidence , Risk Factors , Child
5.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626263

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Subject(s)
Golgi Apparatus , Herpesvirus 8, Human , Lipoylation , Viral Proteins , Virion , Virus Replication , Herpesvirus 8, Human/physiology , Herpesvirus 8, Human/metabolism , Golgi Apparatus/metabolism , Golgi Apparatus/virology , Humans , Virion/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication/physiology , HEK293 Cells
6.
Arch Virol ; 169(5): 98, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619650

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. The tegument is a structure that is unique to herpesviruses that includes host and viral proteins, including the viral ORF42 and ORF55 proteins. Alphaherpesvirus tegument proteins have been well studied, but much is unknown regarding KSHV. Here, we report an interaction between the ORF42 and ORF55 proteins. ORF55 interacted with and recruited ORF42 from the nucleus to the cytoplasm. When ORF42 and ORF55 were expressed simultaneously in cultured cells, the expression level of these two viral proteins was higher than when either was expressed independently. ORF55, but not ORF42, was polyubiquitinated, suggesting that an unidentified regulatory mechanism may be present. A recombinant virus with an ectopic stop codon in ORF42 exhibited normal replication of genomic DNA, but fewer virus particles were released with the recombinant than with the wild-type virus. A unique R136Q mutation in ORF42, which is found in a KSHV strain that is prevalent on Miyako Island, Okinawa Prefecture, Japan, further increased the expression of ORF42 and ORF55 when these proteins were expressed simultaneously. However, the ORF42 R136Q mutation did not affect the localization pattern of ORF42 itself or of ORF55. In addition, experiments with a recombinant virus possessing the ORF42 R136Q mutation showed lower levels of production of the mutant virus than of the wild-type virus, despite similar levels of genome replication. We suggest that the R136Q mutation in ORF42 plays an important role in ORF55 protein expression and virus production.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , Cytoplasm , Japan , Viral Proteins/genetics
7.
Cell Host Microbe ; 32(5): 755-767.e4, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38653242

ABSTRACT

Kaposi sarcoma (KS) is the most common cancer in persons living with HIV. It is caused by KS-associated herpesvirus (KSHV). There exists no animal model for KS. Pronuclear injection of the 170,000-bp viral genome induces early-onset, aggressive angiosarcoma in transgenic mice. The tumors are histopathologically indistinguishable from human KS. As in human KS, all tumor cells express the viral latency-associated nuclear antigen (LANA). The tumors transcribe most viral genes, whereas endothelial cells in other organs only transcribe the viral latent genes. The tumor cells are of endothelial lineage and exhibit the same molecular pattern of pathway activation as KS, namely phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR, interleukin-10 (IL-10), and vascular endothelial growth factor (VEGF). The KSHV-induced tumors are more aggressive than Ha-ras-induced angiosarcomas. Overall survival is increased by prophylactic ganciclovir. Thus, whole-virus KSHV-transgenic mice represent an accurate model for KS and open the door for the genetic dissection of KS pathogenesis and evaluation of therapies, including vaccines.


Subject(s)
Disease Models, Animal , Hemangiosarcoma , Herpesvirus 8, Human , Mice, Transgenic , Sarcoma, Kaposi , Animals , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/pathogenicity , Mice , Hemangiosarcoma/virology , Hemangiosarcoma/genetics , Hemangiosarcoma/pathology , Sarcoma, Kaposi/virology , Sarcoma, Kaposi/pathology , Genome, Viral , Humans , Antigens, Viral/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Ganciclovir/therapeutic use , Ganciclovir/pharmacology , Interleukin-10/genetics
8.
Cancer Res Commun ; 4(4): 1024-1040, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592451

ABSTRACT

Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE: The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance.


Subject(s)
Herpesvirus 8, Human , Lymphoma, Non-Hodgkin , Lymphoma, Primary Effusion , Male , Animals , Mice , Humans , Female , Lymphoma, Primary Effusion/drug therapy , ATP-Binding Cassette Transporters , Aggression , Disease Models, Animal , NIMA-Related Kinases/genetics
10.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612584

ABSTRACT

Human herpesvirus 8 (HHV8)-associated diseases include Kaposi sarcoma (KS), multicentric Castleman disease (MCD), germinotropic lymphoproliferative disorder (GLPD), Kaposi sarcoma inflammatory cytokine syndrome (KICS), HHV8-positive diffuse large B-cell lymphoma (HHV8+ DLBCL), primary effusion lymphoma (PEL), and extra-cavitary PEL (ECPEL). We report the case of a human immunodeficiency virus (HIV)-negative male treated for cutaneous KS, who developed generalized lymphadenopathy, hepatosplenomegaly, pleural and abdominal effusions, renal insufficiency, and pancytopenia. The excised lymph node showed features of concomitant involvement by micro-KS and MCD, with aggregates of HHV8+, Epstein Barr virus (EBV)-negative, IgM+, and lambda+ plasmablasts reminiscent of microlymphoma. Molecular investigations revealed a somatically hypermutated (SHM) monoclonal rearrangement of the immunoglobulin heavy chain (IGH), accounting for 4% of the B-cell population of the lymph node. Mutational analyses identified a pathogenic variant of KMT2D and variants of unknown significance in KMT2D, FOXO1, ARID1A, and KMT2A. The patient died shortly after surgery. The histological features (HHV8+, EBV-, IgM+, Lambda+, MCD+), integrated with the molecular findings (monoclonal IGH, SHM+, KMT2D mutated), supported the diagnosis of a monoclonal HHV8+ microlymphoma, with features intermediate between an incipient HHV8+ DLBCL and an EBV-negative ECPEL highlighting the challenges in the accurate classification of HHV8-driven lymphoid proliferations.


Subject(s)
Castleman Disease , Epstein-Barr Virus Infections , HIV Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Male , Humans , Herpesvirus 8, Human/genetics , Sarcoma, Kaposi/genetics , Herpesvirus 4, Human , HIV Infections/complications , Immunoglobulin M
11.
Rinsho Ketsueki ; 65(2): 74-77, 2024.
Article in Japanese | MEDLINE | ID: mdl-38448001

ABSTRACT

An 80-year-old Japanese man presented with systemic lymphadenopathy, including the para-aortic area and left inguinal nodes, which was diagnosed as diffuse large B-cell lymphoma (DLBCL) and human herpesvirus (HHV) 8-positive/HIV-negative Kaposi's sarcoma (KS). Immunohistochemical examination revealed that the lymphoma cells were negative for HHV-8. The patient received combined chemotherapy with rituximab, pirarubicin, cyclophosphamide, vincristine, and prednisolone for six cycles and achieved complete remission. In the literature, five cases of simultaneous appearance of malignant lymphoma and KS in the same lymph node have been reported, but DLBCL as a histological subtype has not yet been reported.


Subject(s)
Herpesvirus 8, Human , Lymphoma, Large B-Cell, Diffuse , Sarcoma, Kaposi , Male , Humans , Aged, 80 and over , Sarcoma, Kaposi/complications , Sarcoma, Kaposi/drug therapy , Lymphoma, Large B-Cell, Diffuse/complications , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymph Nodes , HIV
12.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474177

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) can cause a variety of malignancies. Ganciclovir (GCV) is one of the most efficient drugs against KSHV, but its non-specificity can cause other side effects in patients. Nucleic acid miR-34a-5p can inhibit the transcription of KSHV RNA and has great potential in anti-KSHV therapy, but there are still problems such as easy degradation and low delivery efficiency. Here, we constructed a co-loaded dual-drug nanocomplex (GCV@ZIF-8/PEI-FA+miR-34a-5p) that contains GCV internally and adsorbs miR-34a-5p externally. The folic acid (FA)-coupled polyethyleneimine (PEI) coating layer (PEI-FA) was shown to increase the cellular uptake of the nanocomplex, which is conducive to the enrichment of drugs at the KSHV infection site. GCV and miR-34a-5p are released at the site of the KSHV infection through the acid hydrolysis characteristics of ZIF-8 and the "proton sponge effect" of PEI. The co-loaded dual-drug nanocomplex not only inhibits the proliferation and migration of KSHV-positive cells but also decreases the mRNA expression level of KSHV lytic and latent genes. In conclusion, this co-loaded dual-drug nanocomplex may provide an attractive strategy for antiviral drug delivery and anti-KSHV therapy.


Subject(s)
Herpesvirus 8, Human , MicroRNAs , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , Ganciclovir/pharmacology , MicroRNAs/genetics , Sarcoma, Kaposi/genetics
13.
J Med Virol ; 96(3): e29534, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38501356

ABSTRACT

Human endogenous retrovirus sequences (HERVs) constitute up to 8% of the human genome, yet not all HERVs remain silent passengers within our genomes. Some HERVs, especially the HERV type K (HERV-K), have been found to be frequently transactivated in a variety of inflammatory diseases and human cancers. Np9, a 9-kDa HERV-K encoded protein, has been reported as an oncoprotein and found present in a variety of tumors and transformed cells. In the current study, we for the first time reported that ectopic expression of Np9 protein was able to induce DNA damage response from host cells especially through upregulation of γH2AX. Furthermore, we found that direct knockdown of Np9 by RNAi in Kaposi's Sarcoma-associated herpesvirus (KSHV) infected cells effectively reduced LANA expression, the viral major latent oncoprotein in vitro and in vivo, which may represent a novel strategy against virus-associated malignancies.


Subject(s)
Endogenous Retroviruses , Herpesvirus 8, Human , Neoplasms , Humans , Endogenous Retroviruses/genetics , Herpesvirus 8, Human/physiology , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , DNA Repair
14.
Front Immunol ; 15: 1361009, 2024.
Article in English | MEDLINE | ID: mdl-38482011

ABSTRACT

The development of lymphoma is a complex multistep process that integrates numerous experimental findings and clinical data that have not yet yielded a definitive explanation. Studies of oncogenic viruses can help to deepen insight into the pathogenesis of lymphoma, and identifying associations between lymphoma and viruses that are established and unidentified should lead to cellular and pharmacologically targeted antiviral strategies for treating malignant lymphoma. This review focuses on the pathogenesis of lymphomas associated with hepatitis B and C, Epstein-Barr, and human immunodeficiency viruses as well as Kaposi sarcoma-associated herpesvirus to clarify the current status of basic information and recent advances in the development of virus-associated lymphomas.


Subject(s)
Herpesvirus 8, Human , Lymphoma , Humans , Lymphoma/etiology , Oncogenic Viruses
15.
J Cancer Res Ther ; 20(1): 469-471, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38554367

ABSTRACT

Kaposi's sarcoma (KS) is an angiogenic tumor. KS lesions frequently develop in the skin and oral cavity mucosa in the head and neck regions, and pure laryngeal localization is extremely rare. We reported a 64-year-old male patient without HIV, HBV, and HCV positivity presented with a hemangiomatous lesion detected incidentally in the right vocal cord. Biopsy was taken for histopathological and immunohistochemical evaluation. Examination revealed that spindle cells were of vascular origin and expressed HHV-8, a specific marker associated with Kaposi's sarcoma-associated herpesvirus. Positron emission tomography-computed tomography (PET/CT) demonstrated an increased fluorodeoxyglucose (FDG) uptake in the vocal cord. The patient was treated with a 30 Gy volumetric arc plan. Disease-free follow-up continues in the first year after low-dose definitive RT. This is the first case report of KS in the vocal cord in which the most detailed data about RT were shared.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Male , Humans , Middle Aged , Sarcoma, Kaposi/diagnosis , Sarcoma, Kaposi/radiotherapy , Vocal Cords , Positron Emission Tomography Computed Tomography , Skin/pathology
16.
PLoS Pathog ; 20(3): e1012082, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38470932

ABSTRACT

Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.


Subject(s)
Ferroptosis , Herpesvirus 8, Human , Neoplasms , Sarcoma, Kaposi , Sirtuin 3 , Rats , Animals , Herpesvirus 8, Human/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism , Cell Transformation, Neoplastic , Viral Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Pathol Res Pract ; 255: 155185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342036

ABSTRACT

Herein, we report a rare case of Kaposi sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8)-positive diffuse large B-cell lymphoma (DLBCL), which is characterized by malignant ascites and complex karyotypes. A 72-year-old male patient who tested negative for human immunodeficiency virus presented with thrombocytopenia and lymphadenopathies. He was diagnosed with KSHV/HHV8-associated multicentric Castleman disease (MCD). After three years, he developed progressive lymphadenopathies and massive ascites. The lymphoma cells in the ascitic fluid presented with characteristic immunophenotype and monoclonality, which support the diagnosis of KSHV/HHV8-positive DLBCL. Lymphadenopathies and massive splenomegaly are common manifestations of KSHV/HHV8-positive DLBCL. Nevertheless, peritoneal involvement, as observed in this case, is a rare presentation. This emphasizes the diagnostic complexities of KSHV/HHV8-associated lymphoproliferative disorders. Within the context of preexisting KSHV/HHV8-associated multicentric Castleman disease, the differential diagnosis of this disorder can be challenging.


Subject(s)
Castleman Disease , Herpesvirus 8, Human , Lymphadenopathy , Lymphoma, Large B-Cell, Diffuse , Sarcoma, Kaposi , Male , Humans , Aged , Sarcoma, Kaposi/complications , Sarcoma, Kaposi/pathology , Castleman Disease/complications , Castleman Disease/pathology , Ascites/etiology , Lymphoma, Large B-Cell, Diffuse/complications , Lymphoma, Large B-Cell, Diffuse/diagnosis
18.
Virus Genes ; 60(2): 148-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340271

ABSTRACT

Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.


Subject(s)
Herpesviridae , Herpesvirus 8, Human , Cricetinae , Guinea Pigs , Humans , Animals , Rats , Chlorocebus aethiops , Antigens, Viral/genetics , Mesocricetus , Cyclins , Herpesvirus 8, Human/genetics
19.
J Med Virol ; 96(2): e29436, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380509

ABSTRACT

Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Carcinogenesis , Herpesvirus 8, Human/physiology , NF-kappa B/metabolism , Sarcoma, Kaposi/genetics , Virus Latency/genetics , Virus Replication
20.
EBioMedicine ; 100: 104986, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306893

ABSTRACT

BACKGROUND: While acute SARS-CoV-2 infection and associated inflammation resulted in substantial morbidity and mortality during the COVID-19 pandemic, particularly in unvaccinated patients, long-term effects of SARS-CoV-2 exposure for reactivation of latent oncogenic herpesviruses, such as KSHV, is unknown. METHODS: We performed a longitudinal observational cross-sectional study on 407 non-hospitalised adult HIV-infected (CD4 count <350 cells/µL) patients attending antiretroviral therapy services in Gugulethu, South Africa, from October 2020 to April 2023. FINDINGS: KSHV seroprevalence was 53.5%; the quarterly SARS-CoV-2 seroprevalence increased from 76.2% (before roll-out of COVID-19 vaccinations) to 94.9%, with 32.2% being self-reportedly vaccinated against COVID-19. Over the course of recruitment, the quarterly percentage of patients with detectable KSHV viral load (VL) in the peripheral blood increased from 3.3% to 69.2%. The presence of KSHV VL was significantly associated with SARS-CoV-2 RBD antibody titers in unvaccinated (median RBD IgG OD 1.24 [IQR 0.82-2.42] in non-reactivated versus 2.83 [IQR 1.08-4.72] in reactivated patients, p = 0.0030) but not in vaccinated patients (median RBD IgG OD 5.13 [IQR 4.11-6.36] in non-reactivated versus 4.53 [IQR 2.90-5.92] in reactivated patients, p = 0.086). Further logistic regression revealed significantly higher odds of KSHV reactivation in unvaccinated, previously SARS-CoV-2 exposed patients (p = 0.015, adjusted OR 1.28 [95% CI: 1.05-1.55]), but not vaccinated patients (p = 0.080, adjusted OR 0.83 [95% CI: 0.67-1.02]). Interestingly, detectable KSHV VL was not associated with increased inflammatory markers such as C-reactive protein and interleukin-6. INTERPRETATION: High, and most likely repeated, exposure to SARS-CoV-2 in unvaccinated individuals may have long-term consequences for reactivation of KSHV infection as shown here in the context of HIV-infected patients with impaired immune functions. Post-pandemic prevention and/or monitoring strategies of potential KSHV-associated pathologies in high-risk patients with immunodeficiencies are therefore highly recommended. FUNDING: This research was funded by the EDCTP2 programme (Training and Mobility Action TMA2018SF-2446).


Subject(s)
COVID-19 , HIV Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Adult , Humans , Sarcoma, Kaposi/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Cross-Sectional Studies , Pandemics , COVID-19/epidemiology , COVID-19/complications , HIV Infections/complications , HIV Infections/epidemiology , Immunoglobulin G
SELECTION OF CITATIONS
SEARCH DETAIL
...