Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 500, 2019.
Article in English | MEDLINE | ID: mdl-30949169

ABSTRACT

Herpes simplex virus type-2 (HSV-2) is a common cause of genital infections throughout the world. Currently no prophylactic vaccine or therapeutic cure exists against the virus that establishes a latent infection for the life of the host. Intravaginal microbivac is a developing out-of-the-box strategy that combines instant microbicidal effects with future vaccine-like benefits. We have recently shown that our uniquely designed zinc oxide tetrapod nanoparticles (ZOTEN) show strong microbivac efficacy against HSV-2 infection in a murine model of genital infection. In our attempts to further understand the antiviral and immune bolstering effects of ZOTEN microbivac and to develop ZOTEN as a platform for future live virus vaccines, we tested a ZOTEN/HSV-2 cocktail and found that prior incubation of HSV-2 with ZOTEN inhibits the ability of the virus to infect vaginal tissue in female Balb/c mice and blocks virus shedding as judged by plaque assays. Quite interestingly, the ZOTEN-neutralized virions elicit a local immune response that is highly comparable with the HSV-2 infection alone with reduced inflammation and clinical manifestations of disease. Information provided by our study will pave the way for the further development of ZOTEN as a microbivac and a future platform for live virus vaccines.


Subject(s)
Administration, Intravaginal , Herpes Genitalis , Herpesvirus 2, Human/immunology , Herpesvirus Vaccines , Nanoparticles/chemistry , Animals , Female , Herpes Genitalis/immunology , Herpes Genitalis/pathology , Herpes Genitalis/prevention & control , Herpesvirus Vaccines/chemistry , Herpesvirus Vaccines/pharmacology , Mice , Zinc Oxide/chemistry
2.
Nanomedicine ; 16: 138-148, 2019 02.
Article in English | MEDLINE | ID: mdl-30594660

ABSTRACT

Herpes simplex viruses 1 and 2 are among the most ubiquitous human infections and persist lifelong in their host. Upon primary infection or reactivation from ganglia, the viruses spread by direct cell-cell contacts (cell-to-cell spread) and thus escape from the host immune response. We have developed a monoclonal antibody (mAb 2c), which inhibits the HSV cell-to-cell spread, thereby protecting from lethal genital infection and blindness in animal models. In the present study we have designed a nanoparticle-based vaccine to induce protective antibody responses exceeding the cell-to-cell spread inhibiting properties of mAb 2c. We used biodegradable calcium phosphate (CaP) nanoparticles coated with a synthetic peptide that represents the conformational epitope on HSV-1 gB recognized by mAb 2c. The CaP nanoparticles additionally contained a TLR-ligand CpGm and were formulated with adjuvants to facilitate the humoral immune response. This vaccine effectively protected mice from lethal HSV-1 infection by inducing cell-to-cell spread inhibiting antibodies.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Calcium Phosphates/chemistry , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Herpesvirus Vaccines/immunology , Herpesvirus Vaccines/therapeutic use , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals , Chlorocebus aethiops , Female , Herpesvirus Vaccines/chemistry , Mice , Mice, Inbred BALB C , Vero Cells
3.
Cell ; 162(5): 1090-100, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26279189

ABSTRACT

Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.


Subject(s)
Herpesvirus Vaccines/chemistry , Herpesvirus Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Crystallography, X-Ray , Drug Design , Female , Herpesvirus 4, Human , Herpesvirus Vaccines/genetics , Herpesvirus Vaccines/isolation & purification , Macaca fascicularis , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Receptors, Complement 3d/chemistry , Receptors, Complement 3d/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification
4.
J Immunol ; 180(1): 426-37, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18097044

ABSTRACT

Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell epitopes identified to date. In this study, we screened the HSV-1 gD amino acid sequence for HLA-A*0201-restricted epitopes using several predictive computational algorithms and identified 10 high probability CD8+ T cell epitopes. Synthetic peptides corresponding to four of these epitopes, each nine to 10 amino acids in length, exhibited high-affinity binding in vitro to purified human HLA-A*0201 molecules. Three of these four peptide epitopes, gD53-61, gD70-78, and gD278-286, significantly stabilized HLA-A*0201 molecules on T2 cell lines and are highly conserved among and between HSV-1 and HSV-2 strains. Consistent with this, in 33 sequentially studied HLA-A*0201-positive, HSV-1-seropositive, and/or HSV-2-seropositive healthy individuals, the most frequent and robust CD8+ T cell responses, assessed by IFN-gamma ELISPOT, CD107a/b cytotoxic degranulation, and tetramer assays, were directed mainly against gD53-61, gD70-78, and gD278-286 epitopes. In addition, CD8+ T cell lines generated by gD53-61, gD70-78, and gD278-286 peptides recognized infected target cells expressing native gD. Lastly, CD8+ T cell responses specific to gD53-61, gD70-78, and gD278-286 epitopes were induced in HLA-A*0201 transgenic mice following ocular or genital infection with either HSV-1 or HSV-2. The functional gD CD8+ T cell epitopes described herein are potentially important components of clinical immunotherapeutic and immunoprophylactic herpes vaccines.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , Herpesvirus Vaccines/immunology , T-Lymphocytes, Cytotoxic/immunology , Viral Envelope Proteins/immunology , Animals , CD8 Antigens/analysis , Computational Biology , Cytotoxicity, Immunologic , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Female , HLA-A Antigens/chemistry , HLA-A Antigens/genetics , HLA-A2 Antigen , Herpesvirus Vaccines/chemistry , Humans , Male , Mice , Mice, Transgenic , Peptides/genetics , Peptides/immunology , Viral Envelope Proteins/chemistry
5.
J Immunother ; 30(2): 215-26, 2007.
Article in English | MEDLINE | ID: mdl-17471168

ABSTRACT

The Epstein-Barr virus (EBV) is associated with several malignant diseases, which can be distinguished by their patterns of viral latent gene expression. The latency II program is limited to the expression of the nonimmunodominant antigens EBNA1, LMP1 and LMP2 and is seen in EBV-positive Hodgkin disease, nasopharyngeal carcinomas, and peripheral T/NK-cell lymphomas. CD4 T cells may play a crucial role in controlling these EBV latency II malignancies. In this study, we used the prediction software TEPITOPE to predict promiscuous major histocompatibility complex class II epitopes derived from the latency II antigens EBNA1, LMP1, and LMP2. The predicted peptides were then submitted to peptide-binding assays on HLA II purified molecules, which allowed the selection of 6 peptides (EBNA1: 3; LMP1: 1; and LMP2: 2) with a highly promiscuous capability of binding. This peptide cocktail was immunogenic in a model of HLA-DR1 transgenic mice, leading to a specific cellular and humoral TH1 response. The peptides were also recognized by human CD4 T cells from individuals expressing various HLA II genotypes. This promiscuous peptide cocktail could be immunogenic in the majority of the population and may be used as a peptide-based vaccine in EBV latency II malignancies.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/immunology , Herpesvirus Vaccines/immunology , Histocompatibility Antigens Class II/immunology , Hodgkin Disease/immunology , Hodgkin Disease/prevention & control , Adult , Animals , CD4-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Nuclear Antigens/chemistry , Female , HLA-DR1 Antigen/genetics , Herpesvirus Vaccines/chemistry , Humans , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Male , Mice , Mice, Transgenic , Peptides/chemistry , Peptides/immunology , Software , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...