Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Chem ; 402(6): 703-715, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33951764

ABSTRACT

Liver fibrosis is a common consequence of chronic liver diseases involved with the activation of hepatic stellate cells (HSCs) and endoplasmic reticulum (ER) stress. Irisin is a small polypeptide hormone that shows beneficial effects on metabolic disorders. The current study aimed to investigate the biological function of irisin on hepatic fibrosis. A mouse model of carbon tetrachloride (CCl4)-induced hepatic fibrosis was established. CCl4-treated mice showed elevated serum levels of AST and ALT, increased collagen accumulation, induced ER stress, and upregulated expressions of pro-fibrotic proteins in the liver compared to the controls. The administration of irisin, however, ameliorated CCl4-induced hepatic fibrosis in both cultured HSCs and mice. PKR-like ER kinase (PERK) is a key component of the ER stress-associated signaling pathway. We found that irisin treatment improved the stability of heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) via regulating the phosphorylation of PERK in mouse livers and isolated HSCs. Also, the knockdown of HNRNPA1 eliminated the hepatoprotective effects of irisin on hepatic fibrosis and ER stress. In summary, this study showed that irisin alleviated ER stress and hepatic fibrosis by inhibiting PERK-mediated HNRNPA1 destabilization, suggesting that irisin may represent a promising therapeutic strategy for patients with liver fibrosis.


Subject(s)
Fibronectins/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Liver Cirrhosis/metabolism , eIF-2 Kinase/metabolism , Animals , Carbon Tetrachloride , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum Stress , Heterogeneous Nuclear Ribonucleoprotein A1/deficiency , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Humans , Liver Cirrhosis/chemically induced , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , eIF-2 Kinase/genetics
2.
Biochem Biophys Res Commun ; 545: 69-74, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33545634

ABSTRACT

Peroxisomes play an essential role in cellular homeostasis by regulating lipid metabolism and the conversion of reactive oxygen species (ROS). Several peroxisomal proteins, known as peroxins (PEXs), control peroxisome biogenesis and degradation. Various mutations in the PEX genes are genetic causes for the development of inheritable peroxisomal-biogenesis disorders, such as Zellweger syndrome. Among the peroxins, PEX1 defects are the most common mutations in Zellweger syndrome. PEX1 is an AAA-ATPase that regulates the recycling of PEX5, which is essential for importing peroxisome matrix proteins. However, the post-transcriptional regulation of PEX1 is largely unknown. Here, we showed that heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) controls PEX1 expression. In addition, we found that depletion of HNRNPA1 induces autophagic degradation of peroxisome, which is blocked in ATG5-knockout cells. In addition, depletion of HNRNPA1 increased peroxisomal ROS levels. Inhibition of the generation of peroxisomal ROS by treatment with NAC significantly suppressed pexophagy in HNRNPA1-deficient cells. Taken together, our results suggest that depletion of HNRNPA1 increases peroxisomal ROS and pexophagy by downregulating PEX1 expression.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Macroautophagy/physiology , Membrane Proteins/metabolism , Peroxisomes/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Autophagy-Related Protein 5/antagonists & inhibitors , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Cells, Cultured , Down-Regulation , Gene Knockout Techniques , HCT116 Cells , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1/deficiency , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Humans , Macroautophagy/genetics , Membrane Proteins/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Zellweger Syndrome/genetics , Zellweger Syndrome/metabolism
3.
J Mol Cell Biol ; 12(4): 277-290, 2020 05 18.
Article in English | MEDLINE | ID: mdl-31169879

ABSTRACT

Impairment of glucose (Glu) uptake and storage by skeletal muscle is a prime risk factor for the development of metabolic diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a highly abundant RNA-binding protein that has been implicated in diverse cellular functions. The aim of this study was to investigate the function of hnRNP A1 on muscle tissue insulin sensitivity and systemic Glu homeostasis. Our results showed that conditional deletion of hnRNP A1 in the muscle gave rise to a severe insulin resistance phenotype in mice fed a high-fat diet (HFD). Conditional knockout mice fed a HFD showed exacerbated obesity, insulin resistance, and hepatic steatosis. In vitro interference of hnRNP A1 in C2C12 myotubes impaired insulin signal transduction and inhibited Glu uptake, whereas hnRNP A1 overexpression in C2C12 myotubes protected against insulin resistance induced by supraphysiological concentrations of insulin. The expression and stability of glycogen synthase (gys1) mRNA were also decreased in the absence of hnRNP A1. Mechanistically, hnRNP A1 interacted with gys1 and stabilized its mRNA, thereby promoting glycogen synthesis and maintaining the insulin sensitivity in muscle tissue. Taken together, our findings are the first to show that reduced expression of hnRNP A1 in skeletal muscle affects the metabolic properties and systemic insulin sensitivity by inhibiting glycogen synthesis.


Subject(s)
Diet, High-Fat , Fatty Liver/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/deficiency , Insulin Resistance , Muscle, Skeletal/metabolism , Animals , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Fatty Liver/pathology , Glycogen/biosynthesis , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Male , Mice, Knockout , Models, Biological , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , RNA Stability/genetics , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...