Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.930
Filter
2.
Xenotransplantation ; 31(3): e12851, 2024.
Article in English | MEDLINE | ID: mdl-38747130

ABSTRACT

BACKGROUND: The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS: A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS: Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION: Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.


Subject(s)
Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Swine , Humans , Viruses/isolation & purification , Laboratories , Germany , Virus Diseases/diagnosis , Heart Transplantation , Heterografts/virology
3.
Exp Dermatol ; 33(5): e15109, 2024 May.
Article in English | MEDLINE | ID: mdl-38794812

ABSTRACT

Cornulin (CRNN) and repetin (RPTN) belong to the fused-type S100 protein family. Although these proteins have been reported to be expressed in the granular layer of the epidermis and have been suggested to be associated with barrier formation in the epidermis, their exact function remains unclear. This study examined the effects of ultraviolet B (UVB) irradiation on CRNN and RPTN expression in human skin xenotransplantation. The CRNN expression increased in the granular layer of UVB-irradiated skin 2 days after UVB irradiation compared to that in sham-irradiated skin. Interestingly, CRNN signals were observed not only in the cytoplasm, but also in the peripheral regions of granular keratinocytes. In contrast, RPTN was rarely expressed in sham-irradiated skin; however, RPTN signals were markedly increased in the granular layer of the UVB-irradiated skin. In addition, activation of ERK1/2 and STAT3 was observed in UVB-irradiated skin. Accordingly, the present study demonstrated that CRNN and RPTN are novel proteins whose expression can be increased by UVB irradiation. The activation of ERK1/2 and STAT3 may be associated with the regeneration of a UVB-damaged epidermis, and CRNN and RPTN may be induced to repair any dysfunction in the epidermal barrier during this regeneration process.


Subject(s)
STAT3 Transcription Factor , Ultraviolet Rays , Humans , STAT3 Transcription Factor/metabolism , Transplantation, Heterologous , Keratinocytes/metabolism , Keratinocytes/radiation effects , Animals , Skin/metabolism , Skin/radiation effects , Epidermis/metabolism , Epidermis/radiation effects , Skin Transplantation , Cornified Envelope Proline-Rich Proteins/metabolism , Cornified Envelope Proline-Rich Proteins/genetics , Heterografts , S100 Proteins/metabolism , S100 Proteins/genetics , Mice
4.
Clin Exp Dent Res ; 10(3): e875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798121

ABSTRACT

BACKGROUND: The bone regeneration therapy is often used in patients with inadequate bone support for implants, particularly following tooth extractions. Xenografts derived from animal tissues are effective bone reconstructive options that resist resorption and pose a low risk of transmitting disease. Therefore, these implants may be a good option for enhancing and stabilizing maxillary sinuses. The purpose of this study was to compare two xenografts, Bone+B® and InterOss®, for the reconstruction of rabbit calvaria defects. METHODS AND MATERIALS: The study involved seven male New Zealand white rabbits. In the surgical procedure, 21 spots were created on both sides of the midline calvarium by creating three 8-millimeter defects. A control group was used, as well as two treatment groups utilizing Bone+B® Grafts and InterOss® Grafts. After 3 months, the rabbits were euthanized, followed by pathological evaluation. Analysis of these samples focused on bone formation, xenograft remaining material, and inflammation levels, using Adobe Photoshop CS 8.0 and SPSS version 24. RESULTS: With the application of Bone+B® graft, bone formation ranged from 32% to 45%, with a mean of 37.80% (±5.63), and the remaining material ranged from 28% to 37%, with a mean of 32.60% (±3.65). Using InterOss® grafts, bone formation was 61% to 75%, the mean was 65.83% (±4.75), and the remaining material was 9% to 18%, with a mean of 13.17% (±3.06). The bone formation in the control group ranged from 10% to 25%, with a mean of 17.17% (±6.11). InterOss® had lower inflammation levels than other groups, but the difference was not statistically significant (p > .05). CONCLUSION: InterOss® bone powder is the best option for maxillofacial surgery and bone reconstruction. This is due to more bone formation, less remaining material, and a lower inflammation level. Compared to the control group, Bone+B® improves healing and bone quality, thus making it an alternative to InterOss®.


Subject(s)
Bone Regeneration , Bone Substitutes , Bone Transplantation , Heterografts , Skull , Animals , Rabbits , Skull/surgery , Skull/pathology , Male , Bone Transplantation/methods , Bone Substitutes/pharmacology , Osteogenesis
6.
Nat Med ; 30(5): 1448-1460, 2024 May.
Article in English | MEDLINE | ID: mdl-38760586

ABSTRACT

In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.


Subject(s)
Heart Transplantation , Heterografts , Transplantation, Heterologous , Humans , Animals , Swine , Male , Female , Graft Rejection/immunology , Graft Rejection/genetics , Proteomics , Metabolomics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Transcriptome , Gene Expression Profiling , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lipidomics , Reperfusion Injury/immunology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Multiomics
7.
Xenotransplantation ; 31(3): e12862, 2024.
Article in English | MEDLINE | ID: mdl-38761019

ABSTRACT

Prolonged survival in preclinical renal xenotransplantation demonstrates that early antibody mediated rejection (AMR) can be overcome. It is now critical to evaluate and understand the pathobiology of late graft failure and devise new means to improve post xenograft outcomes. In renal allotransplantation the most common cause of late renal graft failure is transplant glomerulopathy-largely due to anti-donor MHC antibodies, particularly anti-HLA DQ antibodies. We evaluated the pig renal xenograft pathology of four long-surviving (>300 days) rhesus monkeys. We also evaluated the terminal serum for the presence of anti-SLA class I and specifically anti-SLA DQ antibodies. All four recipients had transplant glomerulopathy and expressed anti-SLA DQ antibodies. In one recipient tested for anti-SLA I antibodies, the recipient had antibodies specifically reacting with two of three SLA I alleles tested. These results suggest that similar to allotransplantation, anti-MHC antibodies, particularly anti-SLA DQ, may be a barrier to improved long-term xenograft outcomes.


Subject(s)
Graft Rejection , Heterografts , Histocompatibility Antigens Class I , Kidney Transplantation , Macaca mulatta , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Graft Rejection/immunology , Kidney Transplantation/methods , Histocompatibility Antigens Class I/immunology , Swine , Heterografts/immunology , Histocompatibility Antigens Class II/immunology , Graft Survival/immunology , Isoantibodies/immunology , Humans
8.
Int J Periodontics Restorative Dent ; 44(3): 1-12, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787714

ABSTRACT

Sinus floor augmentation is one of the most common approaches to obtain sufficient bone availability for placing implants in cases with severe bone atrophy in the posterior maxilla. Several bone substitutes are indicated for sinus augmentation, but they may achieve different clinical outcomes. This study aims to compare bovine bone mineral (BBM) with freeze-dried bone allograft (FDBA) in a two-stage lateral window sinus grafting approach. Twenty patients received a lateral window sinus elevation with either FDBA or BBM. Postoperative graft height was measured with CBCT. Implants were placed 6 months later, at which time biopsy samples were taken for histologic analysis and new CBCT scans were performed to measure graft height. The mean height reduction at 6 months was 20.27% ± 4.94% for FDBA samples and 5.36% ± 2.41% for BBM samples. The histologic analysis revealed a mean ratio of newly formed bone of 43.70% ± 5.29% for the FDBA group and 38.11% ± 4.03% for the BBM group. The FDBA group also showed a higher amount of residual biomaterial (17.25% ± 10.10%) and connective tissue (14.63% ± 4.38%) compared to the BBM group (15.53% ± 5.42% and 13.11% ± 4.42%, respectively). The differences between groups were statistically significant for the height reduction and newly formed bone (P ≤ .05) but not for the amounts of residual biomaterial and nonmineralized connective tissue (P ≥ .05). Six months after performing a lateral window sinus elevation, the percentage of newly formed bone was significantly higher when using FDBA than when using BBM, although the graft height reduction was also significantly higher for the FDBA group.


Subject(s)
Allografts , Bone Transplantation , Cone-Beam Computed Tomography , Sinus Floor Augmentation , Humans , Sinus Floor Augmentation/methods , Animals , Cattle , Female , Male , Middle Aged , Bone Transplantation/methods , Cone-Beam Computed Tomography/methods , Heterografts/transplantation , Adult , Bone Substitutes/therapeutic use , Maxilla/surgery , Maxilla/diagnostic imaging
9.
Xenotransplantation ; 31(3): e12861, 2024.
Article in English | MEDLINE | ID: mdl-38818852

ABSTRACT

BACKGROUND: Preoperative size matching is essential for both allogeneic and xenogeneic heart transplantation. In preclinical pig-to-baboon xenotransplantation experiments, porcine donor organs are usually matched to recipients by using indirect parameters, such as age and total body weight. For clinical use of xenotransplantation, a more precise method of size measurement would be desirable to guarantee a "perfect match." Here, we investigated the use of transthoracic echocardiography (TTE) and described a new method to estimate organ size prior to xenotransplantation. METHODS: Hearts from n = 17 genetically modified piglets were analyzed by TTE and total heart weight (THW) was measured prior to xenotransplantation into baboons between March 2018 and April 2022. Left ventricular (LV) mass was calculated according to the previously published method by Devereux et al. and a newly adapted formula. Hearts from n = 5 sibling piglets served as controls for the determination of relative LV and right ventricular (RV) mass. After explantation, THW and LV and RV mass were measured. RESULTS: THW correlated significantly with donor age and total body weight. The strongest correlation was found between THW and LV mass calculated by TTE. Compared to necropsy data of the control piglets, the Devereux formula underestimated both absolute and relative LV mass, whereas the adapted formula yielded better results. Combining the adapted formula and the relative LV mass data, THW can be predicted with TTE. CONCLUSIONS: We demonstrate reliable LV mass estimation by TTE for size matching prior to xenotransplantation. An adapted formula provides more accurate results of LV mass estimation than the generally used Devereux formula in the xenotransplantation setting. TTE measurement of LV mass is superior for the prediction of porcine heart sizes compared to conventional parameters such as age and total body weight.


Subject(s)
Echocardiography , Heart Transplantation , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Heart Transplantation/methods , Echocardiography/methods , Swine , Organ Size , Papio , Heterografts , Animals, Genetically Modified , Heart/anatomy & histology
10.
Nat Commun ; 15(1): 4653, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821942

ABSTRACT

Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Genetic Heterogeneity , Lung Neoplasms , Mice, Inbred NOD , Mice, SCID , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Animals , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Female , Exome Sequencing , Genomics/methods , Male , Xenograft Model Antitumor Assays , Heterografts , Disease Models, Animal , Aged , Middle Aged
11.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587398

ABSTRACT

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Despite the development of new treatment plans in recent years, the prognosis for osteosarcoma patients has not significantly improved. Therefore, it is crucial to establish a robust preclinical model with high fidelity. The patient-derived xenograft (PDX) model faithfully preserves the genetic, epigenetic, and heterogeneous characteristics of human malignancies for each patient. Consequently, PDX models are considered authentic in vivo models for studying various cancers in transformation studies. This article presents a comprehensive protocol for creating and maintaining a PDX mouse model that accurately mirrors the morphological features of human osteosarcoma. This involves the immediate transplantation of freshly resected human osteosarcoma tissue into immunocompromised mice, followed by successive passaging. The described model serves as a platform for studying the growth, drug resistance, relapse, and metastasis of osteosarcoma. Additionally, it aids in screening the target therapeutics and establishing personalized treatment schemes.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adolescent , Child , Humans , Animals , Mice , Heterografts , Xenograft Model Antitumor Assays , Neoplasm Recurrence, Local , Osteosarcoma/genetics , Osteosarcoma/pathology , Disease Models, Animal , Bone Neoplasms/genetics , Bone Neoplasms/pathology
12.
BMC Cancer ; 24(1): 485, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632504

ABSTRACT

BACKGROUND: Patients-derived xenograft (PDX) model have been widely used for tumor biological and pathological studies. However, the metabolic similarity of PDX tumor to the primary cancer (PC) is still unknown. METHODS: In present study, we established PDX model by engrafting primary tumor of pancreatic ductal adenocarcinoma (PDAC), and then compared the tumor metabolomics of PC, the first generation of PDX tumor (PDXG1), and the third generation of PDX tumor (PDXG3) by using 1H NMR spectroscopy. Then, we assessed the differences in response to chemotherapy between PDXG1 and PDXG3 and corresponding metabolomic differences in drug-resistant tumor tissues. To evaluate the metabolomic similarity of PDX to PC, we also compared the metabolomic difference of cell-derived xenograft (CDX) vs. PC and PDX vs. PC. RESULTS: After engraftment, PDXG1 tumor had a low level of lactate, pyruvate, citrate and multiple amino acids (AAs) compared with PC. Metabolite sets enrichment and metabolic pathway analyses implied that glycolysis metabolisms were suppressed in PDXG1 tumor, and tricarboxylic acid cycle (TCA)-associated anaplerosis pathways, such as amino acids metabolisms, were enhanced. Then, after multiple passages of PDX, the altered glycolysis and TCA-associated anaplerosis pathways were partially recovered. Although no significant difference was observed in the response of PDXG1 and PDXG3 to chemotherapy, the difference in glycolysis and amino acids metabolism between PDXG1 and PDXG3 could still be maintained. In addition, the metabolomic difference between PC and CDX models were much larger than that of PDX model and PC, indicating that PDX model still retain more metabolic characteristics of primary tumor which is more suitable for tumor-associated metabolism research. CONCLUSIONS: Compared with primary tumor, PDX models have obvious difference in metabolomic level. These findings can help us design in vivo tumor metabolomics research legitimately and analyze the underlying mechanism of tumor metabolic biology thoughtfully.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Heterografts , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Amino Acids , Xenograft Model Antitumor Assays
13.
Nat Commun ; 15(1): 3140, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605083

ABSTRACT

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. Here, we transplant a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and study the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells are uncommon in the porcine kidney cortex early after xenotransplantation and consist of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages express genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft is detectable. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression may be able to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.


Subject(s)
Gene Editing , Kidney , Animals , Swine , Humans , Animals, Genetically Modified , Heterografts , Transplantation, Heterologous , Graft Rejection/genetics
14.
Cell Transplant ; 33: 9636897241242624, 2024.
Article in English | MEDLINE | ID: mdl-38600801

ABSTRACT

Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.


Subject(s)
Cardiotoxins , Muscular Dystrophy, Facioscapulohumeral , Adult , Humans , Male , Mice , Female , Animals , Heterografts , Transplantation, Heterologous , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/pathology
15.
Genome Med ; 16(1): 51, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566128

ABSTRACT

BACKGROUND: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , Microglia/metabolism , Ecosystem , Heterografts , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Phenotype , Disease Models, Animal , Dendritic Cells/metabolism , Tumor Microenvironment/genetics
16.
J Oral Implantol ; 50(1): 18-23, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38579115

ABSTRACT

Bone augmentation is often required before the installation of dental implants. Here, we report a case for a patient who previously received bone augmentation at the upper right jaw using a xenogenic graft, followed by successful implant installation. Seven years later, the patient presented with mucosal fenestration with bone exposure at the area and gave a history of a recent diagnosis of cutaneous lichen planus. Several attempts were made to manage the situation, and finally, we resorted to connective tissue graft placement at the site. A piece of bone was sent for histologic evaluation, where the results indicated the presence of un-resorbed graft material surrounded by inflammatory cells, with no evidence of bone formation in the area. The case presents histologic evidence for the lack of new bone formation using xenograft over the evaluation period. The case also shows lichen planus, a possible cause for oral complication for patients undergoing augmentation and implant installation.


Subject(s)
Alveolar Ridge Augmentation , Dental Implants , Humans , Dental Implantation, Endosseous/methods , Heterografts , Alveolar Ridge Augmentation/methods , Osteogenesis , Bone Transplantation/methods
17.
Nat Commun ; 15(1): 3361, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637524

ABSTRACT

Xenotransplantation represents a possible solution to the organ shortage crisis and is an imminent clinical reality with long-term xenograft survival in pig-to-nonhuman primate (NHP) heart and kidney large animal models, and short-term success in recent human decedent and clinical studies. However, concerns remain about safe clinical translation of these results, given the inconsistency in published survival as well as key differences between preclinical procurement and immunosuppression and clinical standards-of-care. Notably, no studies of solid organ pig-to-NHP transplantation have achieved xenograft survival longer than one month without CD40/CD154 costimulatory blockade, which is not currently an FDA-approved immunosuppression strategy. We now present consistent survival in consecutive cases of pig-to-NHP kidney xenotransplantation, including long-term survival after >3 hours of xenograft cold preservation time as well as long-term survival using FDA-approved immunosuppression. These data provide critical supporting evidence for the safety and feasibility of clinical kidney xenotransplantation. Moreover, long-term survival without CD40/CD154 costimulatory blockade may provide important insights for immunosuppression regimens to be considered for first-in-human clinical trials.


Subject(s)
Graft Survival , Kidney , Animals , Humans , Swine , Transplantation, Heterologous/methods , Heterografts , Immunosuppression Therapy/methods , CD40 Ligand , CD40 Antigens , Graft Rejection
18.
Front Immunol ; 15: 1365172, 2024.
Article in English | MEDLINE | ID: mdl-38562932

ABSTRACT

CAR T cell therapies face challenges in combating solid tumors due to their single-target approach, which becomes ineffective if the targeted antigen is absent or lost. Universal CAR T cells (UniCAR Ts) provide a promising solution by utilizing molecular tags (linkers), such as biotin conjugated to monoclonal antibodies, enabling them to target a variety of tumor antigens. Recently, we showed that conventional CAR T cells could penetrate the extracellular matrix (ECM) of ADCC-resistant tumors, which forms a barrier to therapeutic antibodies. This finding led us to investigate whether UniCAR T cells, targeted by soluble antibody-derived linkers, could similarly tackle ADCC-resistant tumors where ECM restricts antibody penetration. We engineered UniCAR T cells by incorporating a biotin-binding monomeric streptavidin 2 (mSA2) domain for targeting HER2 via biotinylated trastuzumab (BT). The activation and cytotoxicity of UniCAR T cells in the presence or absence of BT were evaluated in conventional immunoassays. A 3D spheroid coculture was set up to test the capability of UniCAR Ts to access ECM-masked HER2+ cells. For in vivo analysis, we utilized a HER2+ xenograft model in which intravenously administered UniCAR T cells were supplemented with intraperitoneal BT treatments. In vitro, BT-guided UniCAR T cells showed effective activation and distinct anti-tumor response. Upon target recognition, IFNγ secretion correlated with BT concentration. In the presence of BT, UniCAR T cells effectively penetrated HER2+ spheroids and induced cell death in their core regions. In vivo, upon intravenous administration of UniCAR Ts, circulating BT linkers immediately engaged the mSA2 domain and directed effector cells to the HER2+ tumors. However, these co-treated mice died early, possibly due to the lung infiltration of UniCAR T cells that could recognize both native biotin and HER2. Our results suggest that UniCAR T cells guided with soluble linkers present a viable alternative to conventional CAR T cells, especially for patients resistant to antibody therapy and those with solid tumors exhibiting high antigenic variability. Critical to their success, however, is the choice of an appropriate binding domain for the CAR and the corresponding soluble linker, ensuring both efficacy and safety in therapeutic applications.


Subject(s)
Biotin , Receptor, ErbB-2 , Humans , Mice , Animals , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Trastuzumab/metabolism , Biotin/metabolism , Heterografts , Cell Line, Tumor , T-Lymphocytes , Antibody-Dependent Cell Cytotoxicity
19.
Methods Mol Biol ; 2806: 31-40, 2024.
Article in English | MEDLINE | ID: mdl-38676794

ABSTRACT

Patient-derived xenograft (PDX) modeling is a valuable tool for the study of leukemia pathogenesis, progression, and therapy response. Engraftment of human leukemia cells occurs following injection into the tail vein (or retro-orbital vein) of preconditioned immunocompromised mice. Injected mice are maintained in a sterile and supportive housing environment until leukemia engraftment is observed, at which time studies such as drug treatments or leukemia sampling can occur. Here, we outline a method for generating PDXs from Acute Myeloid Leukemia (AML) patient samples using tail vein injection; however it can also be readily applied to T- and B- Acute Lymphoblastic Leukemia (ALL) samples.


Subject(s)
Disease Models, Animal , Animals , Humans , Mice , Xenograft Model Antitumor Assays/methods , Leukemia, Myeloid, Acute/pathology , Heterografts , Leukemia/pathology
20.
Methods Mol Biol ; 2806: 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38676791

ABSTRACT

Patient-derived xenografts (PDXs) represent a critical advancement in preclinical cancer research, wherein human tumor samples are implanted into animal models for evaluation of therapeutic responses. PDXs have emerged as indispensable tools in translational cancer research, facilitating investigation into tumor microenvironments and personalized medicine. This chapter elucidates the historical evolution of PDXs, from early attempts in the eighteenth century to contemporary immunocompromised host models that enhance engraftment success.


Subject(s)
Immunocompromised Host , Translational Research, Biomedical , Humans , Animals , Translational Research, Biomedical/methods , Disease Models, Animal , Mice , Xenograft Model Antitumor Assays/methods , Neoplasms/immunology , Neoplasms/pathology , Heterografts , History, 20th Century , Precision Medicine/methods , Tumor Microenvironment/immunology , History, 21st Century
SELECTION OF CITATIONS
SEARCH DETAIL
...