Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.388
Filter
1.
Biomolecules ; 14(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38785919

ABSTRACT

Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.


Subject(s)
Asthma , Glycoproteins , Humans , Asthma/metabolism , Asthma/genetics , Glycosylation , Glycoproteins/metabolism , Glycoproteins/genetics , Hexosaminidases/metabolism , Hexosaminidases/genetics , Biomarkers/metabolism , Animals , Polysaccharides/metabolism
2.
Biochem Biophys Res Commun ; 715: 149957, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38688057

ABSTRACT

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.


Subject(s)
Catalytic Domain , Clostridioides difficile , Endopeptidases , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Crystallography, X-Ray , Endopeptidases/chemistry , Endopeptidases/metabolism , Endopeptidases/genetics , Models, Molecular , Hexosaminidases/chemistry , Hexosaminidases/genetics , Hexosaminidases/metabolism , Mutagenesis , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutagenesis, Site-Directed , Protein Domains
3.
Mol Genet Metab ; 142(1): 108454, 2024 May.
Article in English | MEDLINE | ID: mdl-38603816

ABSTRACT

BACKGROUND: Cystine-depleting therapy in nephropathic cystinosis is currently monitored via the white blood cell cystine assay, although its application and usefulness are limited by practical and technical issues. Therefore, alternative biomarkers that are widely available, more economical and less technically demanding, while reliably reflecting long-term adherence to cysteamine treatment, are desirable. Recently, we proposed chitotriosidase enzyme activity as a potential novel biomarker for the therapeutic monitoring of cysteamine treatment in cystinosis. In this study, we aimed to validate our previous findings and to confirm the value of chitotriosidase in the management of cystinosis therapy. MATERIALS & METHODS: A retrospective study was conducted on 12 patients treated at the National Institutes of Health Clinical Center and followed up for at least 2 years. Plasma chitotriosidase enzyme activity was correlated with corresponding clinical and biochemical data. RESULTS: Plasma chitotriosidase enzyme activity significantly correlated with WBC cystine levels, cysteamine total daily dosage and a Composite compliance score. Moreover, plasma chitotriosidase was a significant independent predictor for WBC cystine levels, and cut-off values were established in both non-kidney transplanted and kidney transplanted cystinosis patients to distinguish patients with a good versus poor compliance with cysteamine treatment. Our observations are consistent with those of our previous study and validate our findings. CONCLUSIONS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients. SYNOPSIS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients.


Subject(s)
Cysteamine , Cystine , Cystinosis , Hexosaminidases , Humans , Cysteamine/therapeutic use , Male , Female , Cystinosis/drug therapy , Cystinosis/blood , Retrospective Studies , Hexosaminidases/blood , Adolescent , Cystine/blood , Child , Adult , Biomarkers/blood , Young Adult , Drug Monitoring/methods , Cystine Depleting Agents/therapeutic use , Child, Preschool , Kidney Transplantation
4.
Neurol Sci ; 45(6): 2489-2503, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38194198

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the degeneration of motor neurons, and there is currently a lack of reliable diagnostic biomarkers. This meta-analysis aimed to evaluate CHIT1, CHI3L1, and CHI3L2 levels in the cerebrospinal fluid (CSF) or blood and their diagnostic potential in ALS patients. A systematic, comprehensive search was performed of peer-reviewed English-language articles published before April 1, 2023, in PubMed, Scopus, Embase, Cochrane Library, and Web of Science. After a thorough screening, 13 primary articles were included, and their chitinases-related data were extracted for systematic review and meta-analysis. In ALS patients, the CSF CHIT1 levels were significantly elevated compared to controls with healthy control (HC) (SMD, 1.92; 95% CI, 0.78 - 3.06; P < 0.001). CHIT1 levels were elevated in the CSF of ALS patients compared to other neurodegenerative diseases (ONDS) control (SMD, 0.74; 95% CI, 0.22 - 1.27; P < 0.001) and exhibited an even more substantial increase when compared to ALS-mimicking diseases (AMDS) (SMD, 1.15; 95% CI, 0.35 - 1.94, P < 0.001). Similarly, the CSF CHI3L1 levels were significantly higher in ALS patients compared to HC (SMD, 3.16; 95% CI, 1.26 - 5.06, P < 0.001). CHI3L1 levels were elevated in the CSF of ALS patients compared to ONDS (SMD, 0.75; 95% CI, 0.32 - 1.19; P = 0.017) and exhibited a more pronounced increase when compared to AMDS (SMD, 1.92; 95% CI, 0.41 - 3.42; P < 0.001). The levels of CSF chitinases in the ALS patients showed a significant increase, supporting the role of CSF chitinases as diagnostic biomarkers for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , Chitinases , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/blood , Humans , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Chitinases/cerebrospinal fluid , Chitinases/blood , Prognosis , Hexosaminidases/cerebrospinal fluid , Hexosaminidases/blood , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/blood
5.
Environ Microbiol ; 26(1): e16571, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38178319

ABSTRACT

Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-ß-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-ß-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-ß-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.


Subject(s)
Burkholderia pseudomallei , Chitosan , Melioidosis , Oligosaccharides , Humans , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/metabolism , Soil , Biofilms , Chitin/metabolism , Hexosaminidases/genetics , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/metabolism , Melioidosis/microbiology
6.
Int J Biol Macromol ; 260(Pt 2): 129656, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253144

ABSTRACT

Herein, we attempted to confine copper nanoclusters (CuNCs) with alumina (Al2O3) as the matrix (Al2O3@CuNCs), which effectively circumvented the drawbacks of CuNCs (such as weak photoluminescence and low quantum yield). Al2O3@CuNCs demonstrated sensitive response to p-nitrophenol, the catalytic product of N-acetyl-ß-D-glucosaminidase (NAG) on account of the inner filter effect and dynamic quenching effect. In light of this, a novel assay was created to identify NAG, a critical indicator of diabetic nephropathy. Additionally, a portable and instrument-free sensing platform mainly consisting of a smartphone, a cuvette, a cuvette holder, a dark box and a 365 nm UV lamp was developed for the quantitative detection of NAG. The as-prepared material was also utilized in anti-counterfeiting and information encryption based on their excellent optical properties and sensitive response to the catalyzed product of NAG. This work advanced potential applications of CuNCs composites in the areas of portable, multi-mode biosensing, anti-counterfeiting and information encryption.


Subject(s)
Copper , Hexosaminidases , Microspheres
7.
Int J Biol Macromol ; 259(Pt 1): 129063, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159710

ABSTRACT

In order to better utilize chitinolytic enzymes to produce high-value N-acetyl-D-glucosamine (GlcNAc) from chitinous waste, there is an urgent need to explore bi-functional chitinases with exceptional properties of temperature, pH and metal tolerance. In this study, we cloned and characterized a novel bi-functional cold-adaptive chitinase called CaChi18A from a newly isolated strain, Chitinilyticum aquatile CSC-1, in Bama longevity village of Guangxi Province, China. The activity of CaChi18A at 50 °C was 4.07 U/mg. However, it exhibited significant catalytic activity even at 5 °C. Its truncated variant CaChi18A_ΔChBDs, containing only catalytic domain, demonstrated significant activity levels, exceeding 40 %, over a temperature range of 5-60 °C and a pH range of 3 to 10. It was noteworthy that it displayed tolerance towards most metal ions at a final concentration of 0.1 mM, including Fe3+ and Cu2+ ions, retaining 122.52 ± 0.17 % and 116.42 ± 1.52 % activity, respectively. Additionally, it exhibited favorable tolerance towards organic solvents with the exception of formic acid. Interestedly, CaChi18A and CaChi18A_ΔChBDs had a low Km value towards colloidal chitin (CC), 0.94 mg mL-1 and 2.13 mg mL-1, respectively. Both enzymes exhibited chitobiosidase and N-acetyl-D-glucosaminidase activities, producing GlcNAc as the primary product when hydrolyzing CC. The high activities across a broader temperature and pH range, strong environmental adaptability, and hydrolytic properties of CaChi18A_ΔChBDs suggested that it could be a promising candidate for GlcNAc production.


Subject(s)
Betaproteobacteria , Chitinases , Chitinases/chemistry , China , Hexosaminidases , Chitin/chemistry , Ions
8.
Ter Arkh ; 95(7): 543-547, 2023 Sep 29.
Article in Russian | MEDLINE | ID: mdl-38159003

ABSTRACT

AIM: To assess the relationship between plasma chitotiosidase (CHIT) level and mortality in hospitalized patients with COVID-19. MATERIALS AND METHODS: 347 hospitalized patients with COVID-19 were enrolled in our single-center cohort prospective observational study. On the first day of hospitalization the patients were assessed by the level of CHIT in the venosus blood to addition to default laboratory examinations. The primary endpoint was all-cause death. The survival after hospital discharge were assessed via phone calls on 90 and 180 days since inclusion to the study (NCT04752085). RESULTS: Our study included 347 patients. The first symptoms appeared in 7 days [5; 7] before hospitalization; 283 (84.3%) patients had less than 50% of the involvement of the lung tissue to the inflammation process (CT 0-2); 36 (10.4%) patients had died since the start of our investigation; 30 (83.3%) of them died during hospitalization, others -no later than 60 days; 68 (19%) people didn't answer during phone call. The survivor's activity of the enzyme in the deceased was significantly lower in compare to deceased patients (90.5 [40.2; 178.0] nmol/h/mL vs 180.0 [77.2; 393.2] nmol/h/mL; p=0.001). Survivor of the patients with a higher level of the activity of the CHIT (more than 171 nmol/h/mL) was statically significantly lower. CONCLUSION: Rising of the CHIT's activity more than 171 nmol/h/mL might be an early independent predictor of the bad prognosis of the patients, who were hospitalized with COVID-19 infection.


Subject(s)
COVID-19 , Humans , Hexosaminidases , Hospitalization , SARS-CoV-2 , Prospective Studies
9.
Bioorg Chem ; 140: 106819, 2023 11.
Article in English | MEDLINE | ID: mdl-37666109

ABSTRACT

A new class of compounds inhibiting de-O-glycosylation of proteins has been identified. Highly substituted diaminocyclopentanes are impressively selective reversible non-transition state O-ß-N-acetyl-d-glucosaminidase (O-GlcNAcase) inhibitors. The ease of preparative access and remarkable biological activities provide highly viable leads for the development of anti-tau-phosphorylation agents with a view to eventually ameliorating Alzheimer's disease.


Subject(s)
Alzheimer Disease , beta-N-Acetylhexosaminidases , Humans , Hexosaminidases , Glycosylation
10.
Braz J Microbiol ; 54(3): 1533-1545, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37610567

ABSTRACT

N-Acetyl-glucosaminidases (GlcNAcases) are exoenzymes found in a wide range of living organisms, which have gained great attention in the treatment of disorders related to diabetes, Alzheimer's, Tay-Sachs', and Sandhoff's diseases; the control of phytopathogens; and the synthesis of bioactive GlcNAc-containing products. Aiming at future industrial applications, in this study, GlcNAcase production by marine Aeromonas caviae CHZ306 was enhanced first in shake flasks in terms of medium composition and then in bench-scale stirred-tank bioreactor in terms of physicochemical conditions. Stoichiometric balance between the bioavailability of carbon and nitrogen in the formulated culture medium, as well as the use of additional carbon and nitrogen sources, played a central role in improving the bioprocess, considerably increasing the enzyme productivity. The optimal cultivation medium was composed of colloidal α-chitin, corn steep liquor, peptone A, and mineral salts, in a 5.2 C:N ratio. Optimization of pH, temperature, colloidal α-chitin concentration, and kLa conditions further increased GlcNAcase productivity. Under optimized conditions in bioreactor (i.e., 34 °C, pH 8 and kLa 55.2 h-1), GlcNAcase activity achieved 173.4 U.L-1 after 12 h of cultivation, and productivity no less than 14.45 U.L-1.h-1 corresponding to a 370-fold enhancement compared to basal conditions.


Subject(s)
Aeromonas caviae , Aeromonas caviae/genetics , Bioreactors , Carbon , Chitin , Hexosaminidases , Nitrogen
11.
Biochemistry ; 62(16): 2358-2362, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37498728

ABSTRACT

Engineering glycoside hydrolases is a major route to obtaining catalysts forming glycosidic bonds. Glycosynthases, thioglycoligases, and transglycosylases represent the main strategies, each having advantages and drawbacks. Here, we show that an engineered enzyme from the GH84 family, the acid-base mutant TtOGA-D120N, is an efficient O-, N-, and S-glycoligase, able to use Ssp3, Osp3, Nsp2, and Nsp nucleophiles. Moreover, TtOGA-D120N catalyzes the formation and release of N-acetyl-d-glucosamine 1,2-oxazoline, the intermediate of hexosaminidases displaying substrate-assisted catalysis. This release of an activated intermediate allows cascade synthesis by combination with transglycosylases or glycosynthases, here exemplified by synthesis of the human milk oligosaccharide lacto-N-triose II.


Subject(s)
Hexosaminidases , beta-N-Acetylhexosaminidases , Humans , Glycosylation , beta-N-Acetylhexosaminidases/chemistry , beta-N-Acetylhexosaminidases/metabolism , Glycosyltransferases , Glycoside Hydrolases/metabolism
12.
Chemistry ; 29(44): e202300982, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37217457

ABSTRACT

Glycoside hydrolases (GHs) are a class of enzymes with emerging roles in a range of disease. Selective GH inhibitors are sought to better understand their functions and assess the therapeutic potential of modulating their activities. Iminosugars are a promising class of GH inhibitors but typically lack the selectivity required to accurately perturb biological systems. Here, we describe a concise synthesis of iminosugar inhibitors of N-acetyl-α-galactosaminidase (α-NAGAL), the GH responsible for cleaving terminal α-N-acetylgalactosamine residues from glycoproteins and other glycoconjugates. Starting from non-carbohydrate precursors, this modular synthesis supported the identification of a potent (490 nM) and α-NAGAL selective (∼200-fold) guanidino-containing derivative DGJNGuan. To illustrate the cellular activity of this new inhibitor, we developed a quantitative fluorescence image-based method to measure levels of the Tn-antigen, a cellular glycoprotein substrate of α-NAGAL. Using this assay, we show that DGJNGuan exhibits excellent inhibition of α-NAGAL within cells using patient derived fibroblasts (EC50 =150 nM). Moreover, in vitro and in cell assays to assess levels of lysosomal ß-hexosaminidase substrate ganglioside GM2 show that DGJNGuan is selective whereas DGJNAc exhibits off-target inhibition both in vitro and within cells. DGJNGuan is a readily produced and selective tool compound that should prove useful for investigating the physiological roles of α-NAGAL.


Subject(s)
Hexosaminidases , beta-N-Acetylhexosaminidases , Humans , alpha-N-Acetylgalactosaminidase/chemistry , Lysosomes , Glycoconjugates , Glycoproteins
13.
Biomolecules ; 13(3)2023 02 24.
Article in English | MEDLINE | ID: mdl-36979371

ABSTRACT

Chitotriosidase is an enzyme produced and secreted in large amounts by activated macrophages, especially macrophages loaded with phagocytozed glycosphingolipid in Gaucher disease. Macrophages phagocytose decayed blood cells that contain a lot of sphingolipid-rich cell membranes. In Gaucher disease, due to a deficit in beta-glucocerebrosidase activity, the phagocytozed substrate glucocerebroside cannot undergo further catabolism. In such a situation, macrophages secrete chitotriosidase in proportion to the degree of overload. Gaucher disease (GD) is a recessively inherited disorder resulting in storage of glucosylceramide (GlcCer) in lysosomes of tissue macrophages. It is directly caused by the deficiency of beta-glucocerebrosidase (GBA) activity. Chitotriosidase has been measured systematically each year in the same group of 49 patients with type 1 and 3 GD for over 20 years. Our analysis showed that chitotriosidase is very sensitive biomarker to enzyme replacement therapy (ERT). The response to treatment introduction is of an almost immediate nature, lowering pathologically high chitotriosidase levels by a factor of 2 in a time scale of 8 months, on average. Long term enzyme replacement therapy (ERT) brings chitotriosidase activity close to reference values. Finally, reducing the dose of ERT quickly boosts chitotriosidase activity, but restoring the initial dose of treatment brings chitotriosidase level of activity back onto the decreasing time trajectory.


Subject(s)
Gaucher Disease , Humans , Gaucher Disease/drug therapy , Gaucher Disease/metabolism , Glucosylceramidase , Longitudinal Studies , Hexosaminidases/metabolism , Hexosaminidases/therapeutic use , Glucosylceramides/metabolism , Glucosylceramides/therapeutic use
14.
J Biol Chem ; 299(4): 103053, 2023 04.
Article in English | MEDLINE | ID: mdl-36813232

ABSTRACT

Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 ß-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.


Subject(s)
Caenorhabditis elegans , beta-N-Acetylhexosaminidases , Animals , Acetylgalactosamine/metabolism , beta-N-Acetylhexosaminidases/metabolism , Caenorhabditis elegans/metabolism , Glycosylation , Hexosaminidases/metabolism , Methanol , Polysaccharides/metabolism
15.
Article in English | MEDLINE | ID: mdl-36834108

ABSTRACT

Dietary supplementation of gamma-linolenic acid (GLA) in the form of a commercial drug neoglandin (containing GLA and vitamin E), in people following alcohol abuse allows bypassing of the ineffective delta-6-desaturase system involved in the transformation of linoleic acid into GLA. Determination of the activity of N-acetyl-ß-D-hexosaminidase (HEX) in the serum and urine reflects neoglandin action on the catabolism of glycoconjugates and the functioning of liver and kidneys in people following alcohol abuse. MATERIAL AND METHODS: The serum and urine were collected from men with alcohol dependence, treated (n = 31, age 33.16 ± 9.72 years) and not treated (n = 50, age 35.46 ± 11.37 years) with neoglandin. HEX activity were assayed in the supernatants by the colorimetric method, with the p-nitrophenyl derivative of sugar as substrate. RESULTS: Our study on alcoholic men not treated with neoglandin indicates a significantly higher concentration of the serum and urinary HEX activity (nKat/L) on day 1 compared to days 7, 10, 14 and 30 (p < 0.001). For days 14 and 30 (p < 0.01), the urinary HEX activity was expressed in µKat/kgCr. No significant differences were observed in the activity of serum (nKat/L) and urinary (nKat/L and µKat/kgCr) HEX in alcoholics during treatment with neoglandin compared to day 1 of neoglandin treatment. We found significantly different (p < 0.05) concentration of HEX activity (nKat/L) in serum of alcohol-dependent men treated with neoglandin compared to those not taking neoglandin on days 7, 10, 14 and 30 of treatment. The urinary concentration of HEX activity (nKat/L) on days 1, 4, 10 and 30 and HEX activity in µKat/kgCr on days 1, 4 and 7 it was significantly higher (p < 0.05) during the treatment of alcohol-dependence without the use of neoglandin as compared to alcoholics treated with neoglandin. We found a positive correlation between the amount of alcohol consumed and the urinary activity of HEX in the early phase after alcohol withdrawal and a lack of correlation between the HEX activity in serum and urine of alcohol-dependent men not treated with neoglandin. CONCLUSIONS: Neoglandin supplementation in alcoholic men significantly slows down the catabolism of glycoconjugates, thus reducing the effects of ethanol poisoning that are harmful to the kidneys. Neoglandin reduces the harmful effects of ethanol poisoning more on the kidneys than on the liver. The activity of HEX in the serum may be used in monitoring the treatment of alcoholism and whether alcohol reuse occurred during the therapy. In the early stages of alcohol withdrawal, urinary HEX activity can be used as a marker of the amount of alcohol consumed during previous alcohol abuse.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Male , Humans , Young Adult , Adult , Middle Aged , Hexosaminidases , beta-N-Acetylhexosaminidases/urine , Ethanol
16.
Infect Immun ; 91(2): e0050022, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36715551

ABSTRACT

The peptidoglycan of Staphylococcus aureus is a critical cell envelope constituent and virulence factor that subverts host immune defenses and provides protection against environmental stressors. Peptidoglycan chains of the S. aureus cell wall are processed to characteristically short lengths by the glucosaminidase SagB. It is well established that peptidoglycan is an important pathogen-associated molecular pattern (PAMP) that is recognized by the host innate immune system and promotes production of proinflammatory cytokines, including interleukin-1ß (IL-1ß). However, how bacterial processing of peptidoglycan drives IL-1ß production is comparatively unexplored. Here, we tested the involvement of staphylococcal glucosaminidases in shaping innate immune responses and identified SagB as a mediator of IL-1ß production. A ΔsagB mutant fails to promote IL-1ß production by macrophages and dendritic cells, and processing of peptidoglycan by SagB is essential for this response. SagB-dependent IL-1ß production by macrophages is independent of canonical pattern recognition receptor engagement and NLRP3 inflammasome-mediated caspase activity. Instead, treatment of macrophages with heat-killed cells from a ΔsagB mutant leads to reduced caspase-independent cleavage of pro-IL-1ß, resulting in accumulation of the pro form in the macrophage cytosol. Furthermore, SagB is required for virulence in systemic infection and promotes IL-1ß production in a skin and soft tissue infection model. Taken together, our results suggest that the length of S. aureus cell wall glycan chains can drive IL-1ß production by innate immune cells through a previously undescribed mechanism related to IL-1ß maturation.


Subject(s)
Peptidoglycan , Staphylococcus aureus , Hexosaminidases , Inflammasomes , Interleukin-1beta , Caspases , Cell Wall , NLR Family, Pyrin Domain-Containing 3 Protein , Caspase 1
17.
Chemistry ; 29(6): e202202991, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36256497

ABSTRACT

Soluble fragments of peptidoglycan called muropeptides are released from the cell wall of bacteria as part of their metabolism or as a result of biological stresses. These compounds trigger immune responses in mammals and plants. In bacteria, they play a major role in the induction of antibiotic resistance. The development of efficient methods to produce muropeptides is, therefore, desirable both to address their mechanism of action and to design new antibacterial and immunostimulant agents. Herein, we engineered the peptidoglycan recycling pathway of Escherichia coli to produce N-acetyl-ß-D-glucosaminyl-(1→4)-1,6-anhydro-N-acetyl-ß-D-muramic acid (GlcNAc-anhMurNAc), a common precursor of Gram-negative and Gram-positive muropeptides. Inactivation of the hexosaminidase nagZ gene allowed the efficient production of this key disaccharide, providing access to Gram-positive muropeptides through subsequent chemical peptide conjugation. E. coli strains deficient in both NagZ hexosaminidase and amidase activities further enabled the in vivo production of Gram-negative muropeptides containing meso-diaminopimelic acid, a rarely available amino acid.


Subject(s)
Escherichia coli , Peptidoglycan , Escherichia coli/metabolism , Peptidoglycan/metabolism , Bacteria/metabolism , Cell Wall/metabolism , Hexosaminidases
18.
Front Endocrinol (Lausanne) ; 13: 960835, 2022.
Article in English | MEDLINE | ID: mdl-36237185

ABSTRACT

Objective: To investigate the effects and mechanism of hyperinsulinemia on the metabolic switch to ß-hydroxybutyrate (BHB) absorption and utilization under a starvation or hypoxic environment in proximal tubular epithelial cells. Methods: A high-fat diet-induced hyperinsulinemia model in ZDF rats was used to test the expression of key enzymes/proteins of ketone body metabolism in the kidney. Notably, 12-week-old renal tubule SMCT1 specific knockout mice (SMCT1 flox/floxCre+) and control mice (SMCT1 flox/floxCre-) were used to confirm the roles of SMCT1 in kidney protection under starvation. The changes of key enzymes/proteins of energy metabolism, mitochondrial function, and albumin endocytosis in HK2 cells under low glucose/hypoxic environments with or without 50 ng/mL insulin were studied. Silent information regulation 2 homolog 3 (SIRT3) was overexpressed to evaluate the effect of hyperinsulinemia on the metabolic switch to BHB absorption and utilization through the SIRT3/SMCT1 pathway in HK2 cells. Results: In ZDF rats, the expression of HMGCS2 increased, the SMCT1 expression decreased, while SCOT remained unchanged. In renal tubule SMCT1 gene-specific knockout mice, starvation for 48 h induced an increase in the levels of urine retinol-binding protein, N-acetyl-ß-glucosaminidase, and transferrin, which reflected tubular damages. In HK2 cells under an environment of starvation and hypoxia, the levels of key enzymes related to fatty acid oxidation and ketone body metabolism were increased, whereas glucose glycolysis did not change. The addition of 2 mmol/l BHB improved ATP production, mitochondrial biosynthesis, and endocytic albumin function, while cell apoptosis was reduced in HK2 cells. The addition of 50 ng/ml insulin resulted in the decreased expression of SMCT1 along with an impaired mitochondrial function, decreased ATP production, and increased apoptosis. The overexpression of SIRT3 or SMCT1 reversed these alterations induced by a high level of insulin both in low-glucose and hypoxic environments. Conclusions: The increased absorption and utilization of BHB is part of the metabolic flexibility of renal tubular epithelial cells under starvation and hypoxic environments, which exhibits a protective effect on renal tubular epithelial cells by improving the mitochondrial function and cell survival. Moreover, hyperinsulinemia inhibits the absorption of BHB through the inhibition of the SIRT3/SMCT1 pathway.


Subject(s)
Hyperinsulinism , Sirtuin 3 , Starvation , 3-Hydroxybutyric Acid , Adenosine Triphosphate , Albumins/metabolism , Animals , Epithelial Cells/metabolism , Glucose/metabolism , Hexosaminidases/metabolism , Insulin/metabolism , Ketone Bodies , Mice , Mice, Knockout , Rats , Retinol-Binding Proteins , Sirtuin 3/metabolism , Transferrins
19.
Comput Math Methods Med ; 2022: 8211389, 2022.
Article in English | MEDLINE | ID: mdl-36213585

ABSTRACT

Objective: A case-control study was conducted to determine the effectiveness of laparoscopic surgery and traditional open surgery on stone clearance, laboratory indexes, and life quality in patients with renal calculi. Methods: During March 2017 to March 2022, 272 patients with complex renal calculi (CRC) cured in our hospital were assigned into control group (n = 136) and research group (n = 136) arbitrarily. The former accepted traditional open surgery, while the latter accepted laparoscopic surgery. The operation time, intraoperative blood loss, hospital stay, and time of getting out of bed were compared. The degree of postoperative incision pain was assessed by visual analogue scale (VAS). The life quality was assessed by the Comprehensive Assessment Questionnaire-74 (GQOL-74). The indexes of renal function and urine metabolism were measured. Then, the postoperative stone clearance rate and complications were calculated. Results: Operation time, blood loss intraoperatively, time out of bed, and hospitalization were all remarkably reduced in the research group, and the difference was statistically significant (P < 0.05). The complete stone clearance rates in study and control cohorts were 75.73% and 63.24%, respectively. The VAS scores were lessened after the operation. Compared with the two groups, the VAS scores of the research group were remarkably lower at 1 to 2 weeks and 1 and 3 months after the operation, and the difference was statistically significant (P < 0.05). One week after operation, the levels of ß 2-microglobulin (ß 2-MG), N-acetyl-ß-glucosaminidase (NAG), and renal injury molecule-1 (kidney injury molecule-1, Kim-1) in the research group were remarkably lower. The levels of urinary ß 2-MG, NAG, and KIM-1 in the research group were remarkably lower, and the difference was statistically significant (P < 0.05). One week after operation, the levels of urinary oxalic acid, uric acid, and urinary calcium lessened averagely. The levels of urinary oxalic acid, uric acid, and urinary calcium in the research group were lower, and the difference was statistically significant (P < 0.05). The quality-of-life scores were compared. One week after the operation, the scores of physical function, psychological function, social function, and material function were all augmented, and the difference was statistically significant (P < 0.05). The incidence of complications was 9.56% and 2.21%, respectively. The incidence of complications in the research group was lower, and the difference was statistically significant (P < 0.05). Conclusion: Laparoscopic surgery is successful when treating CRC, which is superior to invasive surgery in postoperative complications, stone clearance rate, improvement of postoperative renal function, and life quality. It is one of the ideal treatment methods for CRC. However, the role of open surgery when treating CRC cannot be ignored. This needs to be further confirmed by large samples of randomized controlled trials.


Subject(s)
Kidney Calculi , Laparoscopy , Calcium , Case-Control Studies , Hexosaminidases , Humans , Kidney Calculi/surgery , Laparoscopy/adverse effects , Oxalic Acid , Quality of Life , Retrospective Studies , Treatment Outcome , Uric Acid , beta 2-Microglobulin
20.
Ann Clin Transl Neurol ; 9(11): 1807-1812, 2022 11.
Article in English | MEDLINE | ID: mdl-36271674

ABSTRACT

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) leads to rapidly progressive dementia and is caused by mutations in the gene CSF1R. Neurodegeneration is driven by dysfunction of microglia, the predominant cell type expressing CSF1R in the brain. We assessed chitotriosidase, an enzyme secreted by microglia, in serum and cerebrospinal fluid of patients with ALSP. Chitotriosidase activity was highly increased in cerebrospinal fluid of patients and correlated inversely with disease duration. Of interest, presymptomatic CSF1R mutation carriers did not show elevated chitotriosidase levels. This makes chitotriosidase a promising new biomarker of disease activity for this rare disease.


Subject(s)
Leukoencephalopathies , Adult , Humans , Leukoencephalopathies/genetics , Neuroglia , Hexosaminidases , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...