Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
Curr Genet ; 70(1): 17, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276214

ABSTRACT

Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.


Subject(s)
Fungi , Histidine Kinase , Phylogeny , Histidine Kinase/genetics , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Fungi/genetics , Fungi/enzymology , Fungi/classification , Genome, Fungal , Signal Transduction , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Evolution, Molecular , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Kinases/chemistry
2.
Curr Genet ; 70(1): 16, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276284

ABSTRACT

Histidine kinases (HKs) are important sensor proteins in fungi and play an essential role in environmental adaptation. However, the mechanisms by which fungi sense and respond to fungivores attack via HKs are not fully understood. In this study, we utilized Neurospora crassa to investigate the involvement of HKs in responding to fungivores attack. We found that the 11 HKs in N. crassa not only affected the growth and development, but also led to fluctuations in antioxidant production. Ten mutants in the genes encoding HKs (except ∆phy1) showed increased production of reactive oxygen species (ROS), especially upon Sinella curviseta attack. The ROS burst triggered changes in conidia and perithecial beaks formation, as well as accumulation of ß-glucan, ergothioneine, ergosterol, and carotenoids. ß-glucan was increased in ∆hk9, ∆os1, ∆hcp1, ∆nik2, ∆sln1, ∆phy1 and ∆phy2 mutants compared to the wild-type strain. In parallel, ergothioneine accumulation was improved in ∆phy1 and ∆hk16 mutants and further increased upon attack, except in ∆os1 and ∆hk16 mutants. Additionally, fungivores attack stimulated ergosterol and dehydroergosterol production in ∆hk9 and ∆os1 mutants. Furthermore, deletion of these genes altered carotenoid accumulation, with wild-type strain, ∆hk9, ∆os1, ∆hcp1, ∆sln1, ∆phy2, and ∆dcc1mutants showing an increase in carotenoids upon attack. Taken together, HKs are involved in regulating the production of conidia and antioxidants. Thus, HKs may act as sensors of fungivores attack and effectively improve the adaptive capacity of fungi to environmental stimuli.


Subject(s)
Histidine Kinase , Neurospora crassa , Reactive Oxygen Species , Neurospora crassa/genetics , Neurospora crassa/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Reactive Oxygen Species/metabolism , Spores, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Animals , Gene Expression Regulation, Fungal , Arthropods/genetics , Arthropods/microbiology , Mutation , Adaptation, Physiological/genetics , Ergosterol/metabolism , beta-Glucans/metabolism , Antioxidants/metabolism , Carotenoids/metabolism , Ergothioneine
3.
Curr Microbiol ; 81(10): 311, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153035

ABSTRACT

The two-component system GacS/A and the posttranscriptional control system Rsm constitute a genetic regulation pathway in Gammaproteobacteria; in some species of Pseudomonas, this pathway is part of a multikinase network (MKN) that regulates the activity of the Rsm system. In this network, the activity of GacS is controlled by other kinases. One of the most studied MKNs is the MKN-GacS of Pseudomonas aeruginosa, where GacS is controlled by the kinases RetS and LadS; RetS decreases the kinase activity of GacS, whereas LadS stimulates the activity of the central kinase GacS. Outside of the Pseudomonas genus, the network has been studied only in Azotobacter vinelandii. In this work, we report the study of the RetS kinase of A. vinelandii; as expected, the phenotypes affected in gacS mutants, such as production of alginates, polyhydroxybutyrate, and alkylresorcinols and swimming motility, were also affected in retS mutants. Interestingly, our data indicated that RetS in A. vinelandii acts as a positive regulator of GacA activity. Consistent with this finding, mutation in retS also negatively affected the expression of small regulatory RNAs belonging to the Rsm family. We also confirmed the interaction of RetS with GacS, as well as with the phosphotransfer protein HptB.


Subject(s)
Alginates , Azotobacter vinelandii , Bacterial Proteins , Gene Expression Regulation, Bacterial , Azotobacter vinelandii/genetics , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Alginates/metabolism , Resorcinols/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Polyesters/metabolism , Hydroxybutyrates/metabolism
4.
Nat Commun ; 15(1): 6853, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127720

ABSTRACT

Phytochromes (Phys) are a divergent cohort of bili-proteins that detect light through reversible interconversion between dark-adapted Pr and photoactivated Pfr states. While our understandings of downstream events are emerging, it remains unclear how Phys translate light into an interpretable conformational signal. Here, we present models of both states for a dimeric Phy with histidine kinase (HK) activity from the proteobacterium Pseudomonas syringae, which were built from high-resolution cryo-EM maps (2.8-3.4-Å) of the photosensory module (PSM) and its following signaling (S) helix together with lower resolution maps for the downstream output region augmented by RoseTTAFold and AlphaFold structural predictions. The head-to-head models reveal the PSM and its photointerconversion mechanism with strong clarity, while the HK region is interpretable but relatively mobile. Pr/Pfr comparisons show that bilin phototransformation alters PSM architecture culminating in a scissoring motion of the paired S-helices linking the PSMs to the HK bidomains that ends in reorientation of the paired catalytic ATPase modules relative to the phosphoacceptor histidines. This action apparently primes autophosphorylation enroute to phosphotransfer to the cognate DNA-binding response regulator AlgB which drives quorum-sensing behavior through transient association with the photoreceptor. Collectively, these models illustrate how light absorption conformationally translates into accelerated signaling by Phy-type kinases.


Subject(s)
Bacterial Proteins , Histidine Kinase , Phytochrome , Pseudomonas syringae , Signal Transduction , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Phytochrome/metabolism , Phytochrome/chemistry , Pseudomonas syringae/metabolism , Models, Molecular , Cryoelectron Microscopy , Protein Conformation , Protein Multimerization , Photoreceptors, Microbial/metabolism , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/genetics , Light
5.
DNA Cell Biol ; 43(9): 474-481, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39049814

ABSTRACT

The qseC gene is a two-component system that encodes a histidine protein kinase and is highly conserved among different Glaesserella parasuis strains. In this study, we used qRT-PCR and enzyme-linked immunosorbent assay to confirm that Toll-like receptor 4 (TLR4) plays a role in the expression of proinflammatory cytokines interleukin (IL)-1ß and IL-6 by stimulating RAW 264.7 macrophages with QseC. Furthermore, we revealed that blocking the p38 and NF-κB pathways that regulate signaling can significantly reduce the production of proinflammatory cytokines induced by QseC. In summary, our data suggest that QseC is a novel proinflammatory mediator that induces TLR4-dependent proinflammatory activity in RAW 264.7 macrophages through the p38 and NF-κB pathways.


Subject(s)
Cytokines , Macrophages , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Animals , Mice , NF-kappa B/metabolism , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , RAW 264.7 Cells , Cytokines/metabolism , Cytokines/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Histidine Kinase/metabolism , Histidine Kinase/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Haemophilus parasuis/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
6.
Biotechnol Adv ; 75: 108404, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39002783

ABSTRACT

Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.


Subject(s)
Biosensing Techniques , Biotechnology , Biosensing Techniques/methods , Biotechnology/methods , Signal Transduction , Histidine Kinase/genetics , Histidine Kinase/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
7.
Sci Rep ; 14(1): 17659, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39085378

ABSTRACT

Bacteria rely on two-component systems to sense environmental cues and regulate gene expression for adaptation. The PhoQ/PhoP system exemplifies this crucial role, playing a key part in sensing magnesium (Mg2+) levels, antimicrobial peptides, mild acidic pH, osmotic upshift, and long-chain unsaturated fatty acids, promoting virulence in certain bacterial species. However, the precise details of PhoQ activation remain elusive. To elucidate PhoQ's signaling mechanism at atomic resolution, we combined AlphaFold2 predictions with molecular modeling and carried out extensive Molecular Dynamics (MD) simulations. Our MD simulations revealed three distinct PhoQ conformations that were validated by experimental data. Notably, one conformation was characterized by Mg2+ bridging the acidic patch in the sensor domain to the membrane, potentially representing a repressed state. Furthermore, the high hydration observed in a putative intermediate state lends support to the hypothesis of water-mediated conformational changes during PhoQ signaling. Our findings not only revealed specific conformations within the PhoQ signaling pathway, but also hold significant promise for understanding the broader histidine kinase family due to their shared structural features. Our approach paves the way for a more comprehensive understanding of histidine kinase signaling mechanisms across various bacterial species and opens the door for developing novel therapeutics that target PhoQ modulation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Magnesium , Molecular Dynamics Simulation , Signal Transduction , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Magnesium/metabolism , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Protein Conformation
8.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063217

ABSTRACT

Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.


Subject(s)
Histidine , Humans , Phosphorylation , Histidine/metabolism , Histidine/analogs & derivatives , Animals , Phosphoric Monoester Hydrolases/metabolism , Protein Processing, Post-Translational , Protein Kinases/metabolism , Phosphoprotein Phosphatases/metabolism , Histidine Kinase/metabolism , Histidine Kinase/genetics
9.
Commun Biol ; 7(1): 814, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965424

ABSTRACT

In human pathogenic fungi, receiver domains from hybrid histidine kinases (hHK) have to recognize one HPt. To understand the recognition mechanism, we have assessed phosphorelay from receiver domains of five hHKs of group III, IV, V, VI, and XI to HPt from Chaetomium thermophilum and obtained the structures of Ct_HPt alone and in complex with the receiver domain of hHK group VI. Our data indicate that receiver domains phosphotransfer to Ct_HPt, show a low affinity for complex formation, and prevent a Leu-Thr switch to stabilize phosphoryl groups, also derived from the structures of the receiver domains of hHK group III and Candida albicans Sln1. Moreover, we have elucidated the envelope structure of C. albicans Ypd1 using small-angle X-ray scattering which reveals an extended flexible conformation of the long loop αD-αE which is not involved in phosphotransfer. Finally, we have analyzed the role of salt bridges in the structure of Ct_HPt alone.


Subject(s)
Chaetomium , Fungal Proteins , Histidine Kinase , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Chaetomium/metabolism , Chaetomium/genetics , Chaetomium/enzymology , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Candida albicans/metabolism , Candida albicans/enzymology , Phosphorylation , Models, Molecular , Scattering, Small Angle , Protein Conformation
10.
Int J Biol Macromol ; 275(Pt 1): 133635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964677

ABSTRACT

Two-component signaling systems (TCS) are the predominant means of microbes for sensing and responding to environmental stimuli. Typically, TCS is comprised of a sensor histidine kinase (HK) and a cognate response regulator (RR), which might have coevolved together. They usually involve the phosphoryl transfer signaling mechanism. However, there are also some orphan and atypical HK and RR homologs, and their evolutionary origins are still not very clear. They are not associated with cognate pairs or lack the conserved residues for phosphoryl transfer, but they could receive or respond to signals from other regulators. The objective of this study is to reveal the evolutionary history of these orphan and atypical HK and RR homologs. Structural, domain, sequence, and phylogenetic analyses indicated that their evolution process might undergo gene duplication, divergence, and domain shuffling. Meanwhile, lateral gene transfer might also be involved for their gene distribution. Evolution of orphan and atypical HK and RR homologs have increased their signaling diversity, which could be helpful for microbial adaption in complex environments.


Subject(s)
Evolution, Molecular , Histidine Kinase , Phylogeny , Signal Transduction , Histidine Kinase/genetics , Histidine Kinase/metabolism , Signal Transduction/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacteria/genetics , Bacteria/enzymology , Gene Transfer, Horizontal
11.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-39066494

ABSTRACT

The two-component regulatory system CenK-CenR has recently emerged as a regulator of cell envelope and cell division processes in the alpha-proteobacteria. In Sinorhizobium meliloti, CenK-CenR regulates the expression of SrlA, a thioredoxin-domain protein of unknown function. Deletion of srlA causes sensitivity to salt and oxidizing agents on solid growth medium. In this work, we report that the response regulator CenR, but not the histidine kinase CenK, is essential for cell viability in S. meliloti. We also demonstrate that phosphorylation of the target residue D55 is not required for viability, suggesting that the unphosphorylated transcription factor sufficiently regulates expression of one or more essential genes in the genome. Using transcription assays and phenotype testing we examine CenK-CenR-dependent activation of the srlA promoter and demonstrate its absolute dependence on phosphoryl-CenR for activity and that the CenR substitution D55E acts as a phosphomimetic that partially restores activity at the srlA promoter in the absence of phosphorylation by CenK. Finally, we report a mutational analysis of the CenR binding site in the srlA promoter required for transcriptional activation.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Sinorhizobium meliloti , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phosphorylation , Transcription Factors/genetics , Transcription Factors/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism
12.
Microbiol Spectr ; 12(8): e0014624, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38917423

ABSTRACT

The discovery of antimicrobials with novel mechanisms of action is crucial to tackle the foreseen global health crisis due to antimicrobial resistance. Bacterial two-component signaling systems (TCSs) are attractive targets for the discovery of novel antibacterial agents. TCS-encoding genes are found in all bacterial genomes and typically consist of a sensor histidine kinase (HK) and a response regulator. Due to the conserved Bergerat fold in the ATP-binding domain of the TCS HK and the human chaperone Hsp90, there has been much interest in repurposing inhibitors of Hsp90 as antibacterial compounds. In this study, we explore the chemical space of the known Hsp90 inhibitor scaffold 3,4-diphenylpyrazole (DPP), building on previous literature to further understand their potential for HK inhibition. Six DPP analogs inhibited HK autophosphorylation in vitro and had good antimicrobial activity against Gram-positive bacteria. However, mechanistic studies showed that their antimicrobial activity was related to damage of bacterial membranes. In addition, DPP analogs were cytotoxic to human embryonic kidney cell lines and induced the cell arrest phenotype shown for other Hsp90 inhibitors. We conclude that these DPP structures can be further optimized as specific disruptors of bacterial membranes providing binding to Hsp90 and cytotoxicity are lowered. Moreover, the X-ray crystal structure of resorcinol, a substructure of the DPP derivatives, bound to the HK CheA represents a promising starting point for the fragment-based design of novel HK inhibitors. IMPORTANCE: The discovery of novel antimicrobials is of paramount importance in tackling the imminent global health crisis of antimicrobial resistance. The discovery of novel antimicrobials with novel mechanisms of actions, e.g., targeting bacterial two-component signaling systems, is crucial to bypass existing resistance mechanisms and stimulate pharmaceutical innovations. Here, we explore the possible repurposing of compounds developed in cancer research as inhibitors of two-component systems and investigate their off-target effects such as bacterial membrane disruption and toxicity. These results highlight compounds that are promising for further development of novel bacterial membrane disruptors and two-component system inhibitors.


Subject(s)
Anti-Bacterial Agents , Drug Repositioning , HSP90 Heat-Shock Proteins , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Cell Membrane/drug effects , Cell Membrane/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry , Histidine Kinase/antagonists & inhibitors , Histidine Kinase/metabolism , Histidine Kinase/genetics , Histidine Kinase/chemistry , Gram-Positive Bacteria/drug effects , Signal Transduction/drug effects , HEK293 Cells
13.
J Antimicrob Chemother ; 79(8): 1820-1830, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38853496

ABSTRACT

BACKGROUND: The upsurge of antimicrobial resistance demands innovative strategies to fight bacterial infections. With traditional antibiotics becoming less effective, anti-virulence agents or pathoblockers, arise as an alternative approach that seeks to disarm pathogens without affecting their viability, thereby reducing selective pressure for the emergence of resistance mechanisms. OBJECTIVES: To elucidate the mechanism of action of compound N'-(thiophen-2-ylmethylene)benzohydrazide (A16B1), a potent synthetic hydrazone inhibitor against the Salmonella PhoP/PhoQ system, essential for virulence. MATERIALS AND METHODS: The measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes was used to evaluate the specificity of A16B1 to the PhoP regulon. Autokinase activity assays with either the native or truncated versions of PhoQ were used to dissect the A16B1 mechanism of action. The effect of A16B1 on Salmonella intramacrophage replication was assessed using the gentamicin protection assay. The checkerboard assay approach was used to analyse potentiation effects of colistin with the hydrazone. The Galleria mellonella infection model was chosen to evaluate A16B1 as an in vivo therapy against Salmonella. RESULTS: A16B1 repressed the Salmonella PhoP/PhoQ system activity, specifically targeting PhoQ within the second transmembrane region. A16B1 demonstrates synergy with the antimicrobial peptide colistin, reduces the intramacrophage proliferation of Salmonella without being cytotoxic and enhances the survival of G. mellonella larvae systemically infected with Salmonella. CONCLUSIONS: A16B1 selectively inhibits the activity of the Salmonella PhoP/PhoQ system through a novel inhibitory mechanism, representing a promising synthetic hydrazone compound with the potential to function as a Salmonella pathoblocker. This offers innovative prospects for combating Salmonella infections while mitigating the risk of antimicrobial resistance emergence.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Salmonella Infections , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Moths/microbiology , Disease Models, Animal , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Colistin/pharmacology , Microbial Sensitivity Tests , Hydrazones/pharmacology , Hydrazones/therapeutic use , Drug Synergism , Virulence/drug effects , Histidine Kinase/antagonists & inhibitors , Histidine Kinase/genetics , Allosteric Regulation/drug effects
14.
mBio ; 15(7): e0122024, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38842315

ABSTRACT

Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE: Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Phosphorylation , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Binding , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Bacteroides/genetics , Bacteroides/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Histidine Kinase/metabolism , Histidine Kinase/genetics , Histidine Kinase/chemistry , Protein Domains , Signal Transduction
15.
mBio ; 15(7): e0118424, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38832777

ABSTRACT

Group III hybrid histidine kinases are fungal-specific proteins and part of the multistep phosphorelay, representing the initial part of the high osmolarity glycerol (HOG) pathway. TcsC, the corresponding kinase in Aspergillus fumigatus, was expected to be a cytosolic protein but is targeted to the nucleus. Activation of TcsC by the antifungal fludioxonil has lethal consequences for the fungus. The agent triggers a fast and TcsC-dependent activation of SakA and later on a redistribution of TcsC to the cytoplasm. High osmolarity also activates TcsC, which then exits the nucleus or concentrates in spot-like, intra-nuclear structures. The sequence corresponding to the N-terminal 208 amino acids of TcsC lacks detectable domains. Its loss renders TcsC cytosolic and non-responsive to hyperosmotic stress, but it has no impact on the antifungal activity of fludioxonil. A point mutation in one of the three putative nuclear localization sequences, which are present in the N-terminus, prevents the nuclear localization of TcsC, but not its ability to respond to hyperosmotic stress. Hence, this striking intracellular localization is no prerequisite for the role of TcsC in the adaptive response to hyperosmotic stress, instead, TcsC proteins that are present in the nuclei seem to modulate the cell wall composition of hyphae, which takes place in the absence of stress. The results of the present study underline that the spatiotemporal dynamics of the individual components of the multistep phosphorelay is a crucial feature of this unique signaling hub. IMPORTANCE: Signaling pathways enable pathogens, such as Aspergillus fumigatus, to respond to a changing environment. The TcsC protein is the major sensor of the high osmolarity glycerol (HOG) pathway of A. fumigatus and it is also the target of certain antifungals. Insights in its function are therefore relevant for the pathogenicity and new therapeutic treatment options. TcsC was expected to be cytoplasmic, but we detected it in the nucleus and showed that it translocates to the cytoplasm upon activation. We have identified the motif that guides TcsC to the nucleus. An exchange of a single amino acid in this motif prevents a nuclear localization, but this nuclear targeting is no prerequisite for the TcsC-mediated stress response. Loss of the N-terminal 208 amino acids prevents the nuclear localization and renders TcsC unable to respond to hyperosmotic stress demonstrating that this part of the protein is of crucial importance.


Subject(s)
Aspergillus fumigatus , Cell Nucleus , Dioxoles , Fungal Proteins , Histidine Kinase , Pyrroles , Aspergillus fumigatus/genetics , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/drug effects , Histidine Kinase/metabolism , Histidine Kinase/genetics , Histidine Kinase/chemistry , Cell Nucleus/metabolism , Pyrroles/pharmacology , Pyrroles/metabolism , Dioxoles/pharmacology , Dioxoles/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Osmotic Pressure , Cytoplasm/metabolism , Protein Transport , Gene Expression Regulation, Fungal , Osmolar Concentration , Signal Transduction
16.
Nat Commun ; 15(1): 4876, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858359

ABSTRACT

Bacteria must constantly probe their environment for rapid adaptation, a crucial need most frequently served by two-component systems (TCS). As one component, sensor histidine kinases (SHK) control the phosphorylation of the second component, the response regulator (RR). Downstream responses hinge on RR phosphorylation and can be highly stringent, acute, and sensitive because SHKs commonly exert both kinase and phosphatase activity. With a bacteriophytochrome TCS as a paradigm, we here interrogate how this catalytic duality underlies signal responses. Derivative systems exhibit tenfold higher red-light sensitivity, owing to an altered kinase-phosphatase balance. Modifications of the linker intervening the SHK sensor and catalytic entities likewise tilt this balance and provide TCSs with inverted output that increases under red light. These TCSs expand synthetic biology and showcase how deliberate perturbations of the kinase-phosphatase duality unlock altered signal-response regimes. Arguably, these aspects equally pertain to the engineering and the natural evolution of TCSs.


Subject(s)
Bacterial Proteins , Histidine Kinase , Phosphoric Monoester Hydrolases , Signal Transduction , Histidine Kinase/metabolism , Histidine Kinase/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics
17.
Nat Commun ; 15(1): 4293, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858360

ABSTRACT

Membrane proteins are critical to biological processes and central to life sciences and modern medicine. However, membrane proteins are notoriously challenging to study, mainly owing to difficulties dictated by their highly hydrophobic nature. Previously, we reported QTY code, which is a simple method for designing water-soluble membrane proteins. Here, we apply QTY code to a transmembrane receptor, histidine kinase CpxA, to render it completely water-soluble. The designed CpxAQTY exhibits expected biophysical properties and highly preserved native molecular function, including the activities of (i) autokinase, (ii) phosphotransferase, (iii) phosphatase, and (iv) signaling receptor, involving a water-solubilized transmembrane domain. We probe the principles underlying the balance of structural stability and activity in the water-solubilized transmembrane domain. Computational approaches suggest that an extensive and dynamic hydrogen-bond network introduced by QTY code and its flexibility may play an important role. Our successful functional preservation further substantiates the robustness and comprehensiveness of QTY code.


Subject(s)
Histidine Kinase , Membrane Proteins , Solubility , Water , Water/chemistry , Water/metabolism , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Protein Engineering , Protein Domains
18.
Microbiol Spectr ; 12(6): e0392523, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38717171

ABSTRACT

Membrane fluidity and thickness have emerged as crucial factors for the activity of and resistance to several antimicrobials. However, the lack of tools to study membrane fluidity and, in particular, thickness in living bacteria limits our understanding of this interplay. The Bacillus subtilis histidine kinase/phosphatase DesK is a molecular sensor that directly detects membrane thickness. It controls activity of DesR, which regulates expression of the lipid desaturase Des, known for its role in cold adaptation and daptomycin susceptibility. We hypothesized that this property could be exploited to develop biosensors and reporters for antibiotic-induced changes in membrane fluidity and thickness. To test this, we designed three assays based on the des system: activation of the Pdes promoter as reporter for membrane thickening, localization of DesK-GFP(green-fluorescent protein) as proxy for rigidified membrane domains, and antibiotic sensitivity of des, desK, and desR deletion mutants as readout for the importance of membrane rigidification/thickening under the tested condition. While we could not confirm the suitability of the des system as reporter for antibiotic-induced changes in membrane thickness, we did observe that des expression is only activated by mild temperature shocks, likely due to partitioning of the sensor DesK into fluid membrane domains upon phase separation, precluding effective thickness sensing under harsh cold shock and antibiotic stress conditions. Similarly, we did not observe any sensitivity of the deletion mutants to either temperature or antibiotic stress, raising the question to what extent the des system contributes to fluidity adaptation under these conditions. IMPORTANCE: The B. subtilis des system is a prime model for direct molecular membrane thickness sensor and, as such, has been well studied in vitro. Our study shows that our understanding of its function in vivo and its importance under temperature and antibiotic stress is still very limited. Specifically, our results suggest that (i) the des system senses very subtle membrane fluidity changes that escape detection by established fluidity reporters like laurdan; (ii) membrane thickness sensing by DesK is impaired by phase separation due to partitioning of the protein into the fluid phase; and (iii) fluidity adaptations by Des are too subtle to elicit growth defects under rigidifying conditions, raising the question of how much the des system contributes to adaptation of overall membrane fluidity.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cell Membrane , Membrane Fluidity , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/enzymology , Membrane Fluidity/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cell Membrane/metabolism , Cell Membrane/drug effects , Anti-Bacterial Agents/pharmacology , Histidine Kinase/metabolism , Histidine Kinase/genetics , Gene Expression Regulation, Bacterial , Phase Separation
19.
mBio ; 15(6): e0061624, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38771052

ABSTRACT

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.


Subject(s)
Macrophages , Phagocytosis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/metabolism , Macrophages/microbiology , Macrophages/immunology , Mice , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Pseudomonas Infections/microbiology , Pseudomonas Infections/immunology , Fimbriae Proteins/metabolism , Fimbriae Proteins/genetics , Gene Expression Regulation, Bacterial , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Histidine Kinase/metabolism , Histidine Kinase/genetics , Humans , RAW 264.7 Cells
20.
Microbiol Res ; 285: 127772, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797110

ABSTRACT

Ralstonia solanacearum is a devastating phytopathogen infecting a broad range of economically important crops. Phosphate (Pi) homeostasis and assimilation play a critical role in the environmental adaptation and pathogenicity of many bacteria. However, the Pi assimilation regulatory mechanism of R. solanacearum remains unknown. This study revealed that R. solanacearum pstSCAB-phoU-phoBR operon expression is sensitive to extracellular Pi concentration, with higher expression under Pi-limiting conditions. The PhoB-PhoR fine-tunes the Pi-responsive expression of the Pho regulon genes, demonstrating its pivotal role in Pi assimilation. By contrast, neither PhoB, PhoR, PhoU, nor PstS was found to be essential for virulence on tomato plants. Surprisingly, the PhoB regulon is activated in a Pi-abundant rich medium. Results showed that histidine kinase VsrB, which is known for the exopolysaccharide production regulation, partially mediates PhoB activation in the Pi-abundant rich medium. The 271 histidine of VsrB is vital for this activation. This cross-activation mechanism between the VsrB and PhoB-PhoR systems suggests the carbohydrate-Pi metabolism coordination in R. solanacearum. Overall, this research provides new insights into the complex regulatory interplay between Pi metabolism and growth in R. solanacearum.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Phosphates , Plant Diseases , Ralstonia solanacearum , Solanum lycopersicum , Ralstonia solanacearum/metabolism , Ralstonia solanacearum/genetics , Phosphates/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Solanum lycopersicum/microbiology , Virulence , Plant Diseases/microbiology , Regulon , Histidine Kinase/metabolism , Histidine Kinase/genetics , Operon , Culture Media/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL