Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
1.
Microbiologyopen ; 13(3): e1415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38780167

ABSTRACT

The standard method of receptor activation involves the binding of signals or signal-loaded solute binding proteins (SBPs) to sensor domains. Many sensor histidine kinases (SHKs), which are activated by SBP binding, are encoded adjacent to their corresponding sbp gene. We examined three SBPs of Pseudomonas aeruginosa PAO1, encoded near the genes for the AgtS (PA0600) and AruS (PA4982) SHKs, to determine how common this arrangement is. Ligand screening and microcalorimetric studies revealed that the SBPs PA0602 and PA4985 preferentially bind to GABA (KD = 2.3 and 0.58 µM, respectively), followed by 5-aminovalerate (KD = 30 and 1.6 µM, respectively) and ethanoldiamine (KD = 2.3 and 0.58 µM, respectively). In contrast, AgtB (PA0604) exclusively recognizes 5-aminovaleric acid (KD = 2.9 µM). However, microcalorimetric titrations did not show any binding between the AgtS sensor domain and AgtB or PA0602, regardless of the presence of ligands. Similarly, bacterial two-hybrid assays did not demonstrate an interaction between PA4985 and the AruS sensor domain. Therefore, sbp and shk genes located nearby are not always functionally linked. We previously identified PA0222 as a GABA-specific SBP. The presence of three SBPs for GABA may be linked to GABA's role as a trigger for P. aeruginosa virulence.


Subject(s)
Bacterial Proteins , Protein Binding , Pseudomonas aeruginosa , gamma-Aminobutyric Acid , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , gamma-Aminobutyric Acid/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acids, Neutral/metabolism , Histidine Kinase/metabolism , Histidine Kinase/genetics , Calorimetry
2.
Microbiol Spectr ; 12(6): e0392523, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38717171

ABSTRACT

Membrane fluidity and thickness have emerged as crucial factors for the activity of and resistance to several antimicrobials. However, the lack of tools to study membrane fluidity and, in particular, thickness in living bacteria limits our understanding of this interplay. The Bacillus subtilis histidine kinase/phosphatase DesK is a molecular sensor that directly detects membrane thickness. It controls activity of DesR, which regulates expression of the lipid desaturase Des, known for its role in cold adaptation and daptomycin susceptibility. We hypothesized that this property could be exploited to develop biosensors and reporters for antibiotic-induced changes in membrane fluidity and thickness. To test this, we designed three assays based on the des system: activation of the Pdes promoter as reporter for membrane thickening, localization of DesK-GFP(green-fluorescent protein) as proxy for rigidified membrane domains, and antibiotic sensitivity of des, desK, and desR deletion mutants as readout for the importance of membrane rigidification/thickening under the tested condition. While we could not confirm the suitability of the des system as reporter for antibiotic-induced changes in membrane thickness, we did observe that des expression is only activated by mild temperature shocks, likely due to partitioning of the sensor DesK into fluid membrane domains upon phase separation, precluding effective thickness sensing under harsh cold shock and antibiotic stress conditions. Similarly, we did not observe any sensitivity of the deletion mutants to either temperature or antibiotic stress, raising the question to what extent the des system contributes to fluidity adaptation under these conditions. IMPORTANCE: The B. subtilis des system is a prime model for direct molecular membrane thickness sensor and, as such, has been well studied in vitro. Our study shows that our understanding of its function in vivo and its importance under temperature and antibiotic stress is still very limited. Specifically, our results suggest that (i) the des system senses very subtle membrane fluidity changes that escape detection by established fluidity reporters like laurdan; (ii) membrane thickness sensing by DesK is impaired by phase separation due to partitioning of the protein into the fluid phase; and (iii) fluidity adaptations by Des are too subtle to elicit growth defects under rigidifying conditions, raising the question of how much the des system contributes to adaptation of overall membrane fluidity.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cell Membrane , Membrane Fluidity , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/enzymology , Membrane Fluidity/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cell Membrane/metabolism , Cell Membrane/drug effects , Anti-Bacterial Agents/pharmacology , Histidine Kinase/metabolism , Histidine Kinase/genetics , Gene Expression Regulation, Bacterial , Phase Separation
3.
Commun Biol ; 7(1): 610, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773269

ABSTRACT

The processes of nutrient uptake and signal sensing are crucial for microbial survival and adaptation. Membrane-embedded proteins involved in these functions (transporters and receptors) are commonly regarded as unrelated in terms of sequence, structure, mechanism of action and evolutionary history. Here, we analyze the protein structural universe using recently developed artificial intelligence-based structure prediction tools, and find an unexpected link between prominent groups of microbial transporters and receptors. The so-called S-components of Energy-Coupling Factor (ECF) transporters, and the membrane domains of sensor histidine kinases of the 5TMR cluster share a structural fold. The discovery of their relatedness manifests a widespread case of prokaryotic "transceptors" (related proteins with transport or receptor function), showcases how artificial intelligence-based structure predictions reveal unchartered evolutionary connections between proteins, and provides new avenues for engineering transport and signaling functions in bacteria.


Subject(s)
Bacterial Proteins , Membrane Transport Proteins , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Models, Molecular , Bacteria/metabolism , Bacteria/genetics , Signal Transduction , Protein Folding , Artificial Intelligence
4.
Nat Commun ; 15(1): 3223, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622146

ABSTRACT

Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.


Subject(s)
Escherichia coli Proteins , Histidine Kinase/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Protein Serine-Threonine Kinases , Protein Kinases/genetics , Protein Kinases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphorylation , Potassium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
5.
Toxins (Basel) ; 16(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668620

ABSTRACT

The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.


Subject(s)
Bacterial Proteins , Clostridium perfringens , Enterotoxins , Histidine Kinase , Spores, Bacterial , Clostridium perfringens/genetics , Clostridium perfringens/enzymology , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Enterotoxins/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Gene Expression Regulation, Bacterial , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Mice
6.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598410

ABSTRACT

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Botrytis , Dioxoles , Drug Resistance, Fungal , Fungal Proteins , Fungicides, Industrial , Histidine Kinase , Hydantoins , Pyrroles , Botrytis/genetics , Botrytis/drug effects , Botrytis/enzymology , Dioxoles/pharmacology , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydantoins/pharmacology , Pyrroles/pharmacology , Pyrroles/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Plant Diseases/microbiology , Molecular Docking Simulation , Mutation , Mutagenesis, Site-Directed
7.
J Proteome Res ; 23(5): 1666-1678, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38644792

ABSTRACT

Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.


Subject(s)
Bacterial Proteins , Bordetella pertussis , Histidine Kinase , Bordetella pertussis/pathogenicity , Bordetella pertussis/genetics , Histidine Kinase/metabolism , Histidine Kinase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Gene Expression Regulation, Bacterial , Macrophages/microbiology , Humans , Proteome , Virulence Factors, Bordetella/genetics , Virulence Factors, Bordetella/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Microbial Viability
8.
J Biol Chem ; 300(5): 107265, 2024 May.
Article in English | MEDLINE | ID: mdl-38582452

ABSTRACT

Histidine kinases are key bacterial sensors that recognize diverse environmental stimuli. While mechanisms of phosphorylation and phosphotransfer by cytoplasmic kinase domains are relatively well-characterized, the ways in which extracytoplasmic sensor domains regulate activation remain mysterious. The Cpx envelope stress response is a conserved Gram-negative two-component system which is controlled by the sensor kinase CpxA. We report the structure of the Escherichia coli CpxA sensor domain (CpxA-SD) as a globular Per-ARNT-Sim (PAS)-like fold highly similar to that of Vibrio parahaemolyticus CpxA as determined by X-ray crystallography. Because sensor kinase dimerization is important for signaling, we used AlphaFold2 to model CpxA-SD in the context of its connected transmembrane domains, which yielded a novel dimer of PAS domains possessing a distinct dimer organization compared to previously characterized sensor domains. Gain of function cpxA∗ alleles map to the dimer interface, and mutation of other residues in this region also leads to constitutive activation. CpxA activation can be suppressed by mutations that restore inter-monomer interactions, suggesting that inhibitory interactions between CpxA-SD monomers are the major point of control for CpxA activation and signaling. Searching through hundreds of structural homologs revealed the sensor domain of Pseudomonas aeruginosa sensor kinase PfeS as the only PAS structure in the same novel dimer orientation as CpxA, suggesting that our dimer orientation may be utilized by other extracytoplasmic PAS domains. Overall, our findings provide insight into the diversity of the organization of PAS sensory domains and how they regulate sensor kinase activation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Histidine Kinase , Protein Domains , Protein Multimerization , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Models, Molecular , Signal Transduction , Vibrio parahaemolyticus/enzymology , Vibrio parahaemolyticus/genetics
9.
Nucleic Acids Res ; 52(7): 3856-3869, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38477346

ABSTRACT

The genetic diversities of subpopulations drive the evolution of pathogens and affect their ability to infect hosts and cause diseases. However, most studies to date have focused on the identification and characterization of adaptive mutations in single colonies, which do not accurately reflect the phenotypes of an entire population. Here, to identify the composition of variant subpopulations within a pathogen population, we developed a streamlined approach that combines high-throughput sequencing of the entire population cells with genotyping of single colonies. Using this method, we reconstructed a detailed quorum-sensing (QS) evolutionary trajectory in Pseudomonas aeruginosa. Our results revealed a new adaptive mutation in the gacS gene, which codes for a histidine kinase sensor of a two-component system (TCS), during QS evolution. This mutation reduced QS activity, allowing the variant to sweep throughout the whole population, while still being vulnerable to invasion by the emerging QS master regulator LasR-null mutants. By tracking the evolutionary trajectory, we found that mutations in gacS facilitated QS-rewiring in the LasR-null mutant. This rapid QS revertant caused by inactive GacS was found to be associated with the promotion of ribosome biogenesis and accompanied by a trade-off of reduced bacterial virulence on host cells. In conclusion, our findings highlight the crucial role of the global regulator GacS in modulating the progression of QS evolution and the virulence of the pathogen population.


Subject(s)
Bacterial Proteins , Evolution, Molecular , Mutation , Pseudomonas aeruginosa , Quorum Sensing , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , High-Throughput Nucleotide Sequencing , Humans , Gene Expression Regulation, Bacterial , Histidine Kinase/genetics , Histidine Kinase/metabolism
10.
J Biol Chem ; 300(4): 107148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462162

ABSTRACT

Bathy phytochromes are a subclass of bacterial biliprotein photoreceptors that carry a biliverdin IXα chromophore. In contrast to prototypical phytochromes that adopt a red-light-absorbing Pr ground state, the far-red light-absorbing Pfr-form is the thermally stable ground state of bathy phytochromes. Although the photobiology of bacterial phytochromes has been extensively studied since their discovery in the late 1990s, our understanding of the signal transduction process to the connected transmitter domains, which are often histidine kinases, remains insufficient. Initiated by the analysis of the bathy phytochrome PaBphP from Pseudomonas aeruginosa, we performed a systematic analysis of five different bathy phytochromes with the aim to derive a general statement on the correlation of photostate and autokinase output. While all proteins adopt different Pr/Pfr-fractions in response to red, blue, and far-red light, only darkness leads to a pure or highly enriched Pfr-form, directly correlated with the lowest level of autokinase activity. Using this information, we developed a method to quantitatively correlate the autokinase activity of phytochrome samples with well-defined stationary Pr/Pfr-fractions. We demonstrate that the off-state of the phytochromes is the Pfr-form and that different Pr/Pfr-fractions enable the organisms to fine-tune their kinase output in response to a certain light environment. Furthermore, the output response is regulated by the rate of dark reversion, which differs significantly from 5 s to 50 min half-life. Overall, our study indicates that bathy phytochromes function as sensors of light and darkness, rather than red and far-red light, as originally postulated.


Subject(s)
Bacterial Proteins , Darkness , Phytochrome , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Histidine Kinase/metabolism , Histidine Kinase/genetics , Light , Photoreceptors, Microbial/metabolism , Phytochrome/metabolism , Phytochrome/chemistry , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Enzyme Activation
11.
mBio ; 15(4): e0224823, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38477571

ABSTRACT

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Subject(s)
Bacillus , Histidine , Histidine Kinase/genetics , Histidine Kinase/metabolism , Histidine/metabolism , Phosphorylation , Transcription Factors/metabolism , Bacillus/metabolism , Clostridium/genetics , Clostridium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Spores, Bacterial/metabolism , Bacillus subtilis/genetics , Gene Expression Regulation, Bacterial
12.
J Biol Chem ; 300(3): 105764, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367670

ABSTRACT

In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.


Subject(s)
Bacterial Proteins , Electron Transport Complex IV , Mycobacterium smegmatis , Sigma Factor , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Electron Transport , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Expression Regulation, Bacterial , Histidine Kinase/genetics , Histidine Kinase/metabolism , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/genetics , Phosphoric Monoester Hydrolases/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism
13.
J Agric Food Chem ; 72(8): 4237-4245, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38374637

ABSTRACT

Sclerotinia sclerotiorum is the causal agent of sclerotinia stem rot in over 400 plant species. In a previous study, the group III histidine kinase gene of S. sclerotiorum (Shk1) revealed its involvement in iprodione and fludioxonil sensitivity and osmotic stress. To further investigate the fungicide sensitivity associated with the high-osmolarity glycerol (HOG) pathway, we functionally characterized SsHog1, which is the downstream kinase of Shk1. To generate knockout mutants, split marker transformation combined with a newly developed repeated protoplasting method and CRISPR/Cas9 ribonucleoprotein (RNP) delivery approach were used. The pure SsHog1 and Shk1 knockout mutants showed reduced sensitivity to fungicides and increased sensitivity to osmotic stress. In addition, the SsHog1 knockout mutants demonstrated reduced virulence compared to Shk1 knockout mutants and wild-type. Our results indicate that the repeated protoplasting method and RNP approach can generate genetically pure homokaryotic mutants and SsHog1 is involved in osmotic adaptation, fungicide sensitivity, and virulence in S. sclerotiorum.


Subject(s)
Ascomycota , CRISPR-Cas Systems , Gene Knockout Techniques , Histidine Kinase/genetics , Ascomycota/metabolism
14.
J Bacteriol ; 206(1): e0027623, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38169296

ABSTRACT

Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated with regulating many virulence factors P. aeruginosa secretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system, las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as part of its pathogenicity. P. aeruginosa infections are associated with nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in the P. aeruginosa lifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.


Subject(s)
Biofilms , Pyocyanine , Histidine Kinase/genetics , Histidine Kinase/metabolism , Quorum Sensing , Virulence Factors/metabolism , Bacteria/metabolism , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology
15.
Pestic Biochem Physiol ; 198: 105750, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225093

ABSTRACT

Gray mold, caused by the fungus Botrytis cinerea, is one of the most important plant diseases worldwide that is prone to developing resistance to fungicides. Currently, the phenylpyrrole fungicide fludioxonil exhibits excellent efficacy in the control of gray mold in China. In this study, we detected the fludioxonil resistance of gray mold disease in Shouguang City of Shandong Province, where we first found fludioxonil-resistant isolates of B. cinerea in 2014. A total of 87 single spore isolates of B. cinerea were obtained from cucumbers in greenhouse, and 3 of which could grow on PDA plates amended with 50 µg/mL fludioxonil that was defined as high-level resistance, with a resistance frequency of 3.4%. Furthermore, the 3 fludioxonil-resistant isolates also showed high-level resistance to the dicarboximide fungicides iprodione and procymidone. Sequencing comparison revealed that all the 3 fludioxonil-resistant isolates had a point mutation at codon 1158, GAC (Asp) â†’ AAC (Asn) in the histidine kinase Bos1, which was proved to be the reason for fludioxonil resistance. In addition, the fludioxonil-resistant isolates possessed an impaired biological fitness compared to the sensitive isolates based on the results of mycelial growth, conidiation, virulence, and osmotic stress tolerance determination. Taken together, our results indicate that the high-level resistance to fludioxonil caused by the Bos1 point mutation (D1158N) has emerged in the field gray mold disease, and the resistance risk is relatively high, and fludioxonil should be used sparingly.


Subject(s)
Branchio-Oto-Renal Syndrome , Dioxoles , Fungicides, Industrial , Pyrroles , Fungicides, Industrial/pharmacology , Histidine Kinase/genetics , Point Mutation , Drug Resistance, Fungal/genetics , Fungi , Plant Diseases/genetics , Plant Diseases/microbiology , Botrytis
16.
Biochimie ; 218: 76-84, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37567357

ABSTRACT

The PAS (Per-ARNT-Sim) domain is a sensory protein regulatory module found in archaea, prokaryotes, and eukaryotes. Histidine and serine/threonine protein kinases, chemo- and photoreceptors, circadian rhythm regulators, ion channels, phosphodiesterases, and other cellular response regulators are among these proteins. Hik33 is a multifunctional sensory histidine kinase that is implicated in cyanobacterial responses to cold, salt, hyperosmotic, and oxidative stressors. The functional roles of individual Hik33 domains in signal transduction were investigated in this study. Synechocystis Hik33 deletion variants were developed, in which either both or a portion of the transmembrane domains and/or the PAS domain were deleted. Cold stress was applied to the mutant strains either under illumination or in the dark. The findings show that the transmembrane domains govern temperature responses, whereas PAS domain may be involved in regulation of downstream gene expression in light-dependent manner.


Subject(s)
Synechocystis , Histidine Kinase/genetics , Histidine Kinase/metabolism , Synechocystis/genetics , Synechocystis/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Light , Gene Expression Regulation, Bacterial
17.
Biosci Biotechnol Biochem ; 88(3): 294-304, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38059852

ABSTRACT

We have previously isolated the Gram-positive chitin-degrading bacterium Paenibacillus sp. str. FPU-7. This bacterium traps chitin disaccharide (GlcNAc)2 on its cell surface using two homologous solute-binding proteins, NagB1 and NagB2. Bacteria use histidine kinase (HK) of the two-component regulatory system as an extracellular environment sensor. In this study, we found that nagS, which encodes a HK, is located next to the nagB1 gene. Biochemical experiments revealed that the NagS sensor domain (NagS30-294) interacts with the NagB1-(GlcNAc)2 complex. However, proof of NagS30-294 interacting with NagB1 without (GlcNAc)2 is currently unavailable. In contrast to NagB1, no complex formation was observed between NagS30-294 and NagB2, even in the presence of (GlcNAc)2. The NagS30-294 crystal structure at 1.8 Å resolution suggested that the canonical tandem-Per-Arnt-Sim fold recognizes the NagB1-(GlcNAc)2 complex. This study provides insight into the recognition of chitin oligosaccharides by bacteria.


Subject(s)
Carrier Proteins , Paenibacillus , Histidine Kinase/genetics , Histidine Kinase/metabolism , Oligosaccharides/chemistry , Chitin/metabolism
18.
Protein Sci ; 33(1): e4846, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010737

ABSTRACT

In this study, we present a conformational landscape of 5000 AlphaFold2 models of the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) domain, a short helical bundle that transduces signals from sensors to effectors in two-component signaling proteins such as sensory histidine kinases and chemoreceptors. The landscape reveals the conformational variability of the HAMP domain, including rotations, shifts, displacements, and tilts of helices, many combinations of which have not been observed in experimental structures. HAMP domains belonging to a single family tend to occupy a defined region of the landscape, even when their sequence similarity is low, suggesting that individual HAMP families have evolved to operate in a specific conformational range. The functional importance of this structural conservation is illustrated by poly-HAMP arrays, in which HAMP domains from families with opposite conformational preferences alternate, consistent with the rotational model of signal transduction. The only poly-HAMP arrays that violate this rule are predicted to be of recent evolutionary origin and structurally unstable. Finally, we identify a family of HAMP domains that are likely to be dynamic due to the presence of a conserved pi-helical bulge. All code associated with this work, including a tool for rapid sequence-based prediction of the rotational state in HAMP domains, is deposited at https://github.com/labstructbioinf/HAMPpred.


Subject(s)
Bacterial Proteins , Histidine , Bacterial Proteins/chemistry , Molecular Conformation , Signal Transduction , Histidine Kinase/genetics , Histidine Kinase/metabolism
19.
Microbiol Spectr ; 12(1): e0346423, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38038435

ABSTRACT

IMPORTANCE: We found that in contrast to the best-studied model organisms, such as Escherichia coli and Bacillus subtilis, most bacterial and archaeal species have a CheA protein with a different domain composition. We report variations in CheA architecture, such as domain duplication and acquisition as well as class-specific domain composition. Our results will be of interest to those working on signal transduction in bacteria and archaea and lay the foundation for experimental studies.


Subject(s)
Archaea , Escherichia coli Proteins , Histidine Kinase/genetics , Histidine Kinase/metabolism , Archaea/genetics , Archaea/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chemotaxis , Bacteria/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphorylation
20.
Pest Manag Sci ; 80(2): 463-472, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37743431

ABSTRACT

BACKGROUD: Two-component histidine kinase (HK) phosphorelay signaling systems play important roles in differentiation, virulence, secondary metabolite production and response to environmental signals. Allyl isothiocyanate (A-ITC) is a hydrolysis product of glucosinolates with excellent antifungal activity. Our previous study indicated that the mycelial growth of Cochliobolus heterostrophus was significantly hindered by A-ITC. However, the function of HK in regulating A-ITC sensitivity was not clear in C. heterostrophus, the causal agent of Southern corn leaf blight. RESULTS: In this study, the role of HKs was investigated in C. heterostrophus. Deletion of the HK coding gene ChNIK1 resulted in dramatically increased sensitivity of C. heterostrophus to A-ITC. In addition, ΔChnik1 mutant exhibited significantly decreased conidiation and increased sensitivity to NaCl, KCl, tebuconazole and azoxystrobin, but deletion of the other five HK genes did not affect the A-ITC sensitivity of C. heterostrophus. ChSLN1, ChNIK4, ChNIK8 and ChMAK2 are essential for conidiation and response to H2 O2 and sodium dodecyl sulfate. However, deletion of NIKs had on effect on significant virulence. CONCLUSION: Our findings demonstrate that the HKs play different roles in A-ITC sensitivity in C. heterostrophus. © 2023 Society of Chemical Industry.


Subject(s)
Ascomycota , Bipolaris , Histidine , Histidine Kinase/genetics , Ascomycota/genetics , Isothiocyanates , Zea mays/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...