Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.415
Filter
1.
Nat Commun ; 15(1): 3749, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702311

ABSTRACT

Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Histocompatibility Antigens Class II , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/genetics , Humans , Female , Mice , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Mice, Knockout
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732029

ABSTRACT

Neointimal hyperplasia is the main cause of vascular graft failure in the medium term. Vitamin D receptor activation modulates the biology of vascular smooth muscle cells and has been reported to protect from neointimal hyperplasia following endothelial injury. However, the molecular mechanisms are poorly understood. We have now explored the impact of the selective vitamin D receptor activator, paricalcitol, on neointimal hyperplasia, following guidewire-induced endothelial cell injury in rats, and we have assessed the impact of paricalcitol or vehicle on the expression of key cell stress factors. Guidewire-induced endothelial cell injury caused neointimal hyperplasia and luminal stenosis and upregulated the expression of the growth factor growth/differentiation factor-15 (GDF-15), the cytokine receptor CD74, NFκB-inducing kinase (NIK, an upstream regulator of the proinflammatory transcription factor NFκB) and the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Immunohistochemistry confirmed the increased expression of the cellular proteins CD74 and NIK. Paricalcitol (administered in doses of 750 ng/kg of body weight, every other day) had a non-significant impact on neointimal hyperplasia and luminal stenosis. However, it significantly decreased GDF-15, CD74, NIK and MCP-1/CCL2 mRNA expression, which in paricalcitol-injured arteries remained within the levels found in control vehicle sham arteries. In conclusion, paricalcitol had a dramatic effect, suppressing the stress response to guidewire-induced endothelial cell injury, despite a limited impact on neointimal hyperplasia and luminal stenosis. This observation identifies novel molecular targets of paricalcitol in the vascular system, whose differential expression cannot be justified as a consequence of improved tissue injury.


Subject(s)
Anti-Inflammatory Agents , Chemokine CCL2 , Ergocalciferols , Hyperplasia , Animals , Rats , Ergocalciferols/pharmacology , Male , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Anti-Inflammatory Agents/pharmacology , Neointima/metabolism , Neointima/pathology , Neointima/drug therapy , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Tunica Intima/pathology , Tunica Intima/drug effects , Tunica Intima/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Histocompatibility Antigens Class II
3.
Virology ; 595: 110083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696887

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Subject(s)
Down-Regulation , Histocompatibility Antigens Class I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , beta 2-Microglobulin , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Cell Line , CD8-Positive T-Lymphocytes/immunology , Mutation
4.
Biomed Pharmacother ; 175: 116782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776682

ABSTRACT

LAG3 is an inhibitory immune checkpoint expressed on activated T and NK cells. Blocking the interaction of LAG3 with its ligands MHC-II and FGL1 renders T cells improved cytotoxicity to cancer cells. Current study generated a panel of LAG3 monoclonal antibodies (mAbs) through immunization of mice followed by phage display. Some of them bound to the D1-D2 domain of LAG3, which is known for the engagement of its ligands FGL1 and MHC-II. Three outperformers, M208, M226, and M234, showed stronger blocking activity than Relatlimab in the FGL1 binding. Furthermore, M234 showed dual inhibition of FGL1 (IC50 of 20.6 nM) and MHC-II binding (IC50 of 6.2 nM) to LAG3. In vitro functional tests showed that M234 significantly stimulated IFN-γ secretion from activated PBMC cells. In vivo studies in a mouse model of hepatocellular carcinoma xenografts demonstrated that combining M234 IgG with GPC3-targeted bispecific antibodies significantly improved efficacy. In addition, GPC3-targeted CAR-T cells secreting IL-21-M234 scFv fusion protein exhibited enhanced activity in inhibiting tumor growth and greatly increased the survival rate of mice. Taken together, M234 has potential in cancer immunotherapy and warrants further clinical trial.


Subject(s)
Antibodies, Neutralizing , Antigens, CD , Immunotherapy , Lymphocyte Activation Gene 3 Protein , Animals , Humans , Mice , Antigens, CD/immunology , Antigens, CD/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/immunology , Ligands , Immunotherapy/methods , Cell Line, Tumor , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Xenograft Model Antitumor Assays , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Mice, Inbred BALB C , Protein Binding , Female , Antibodies, Monoclonal/pharmacology
5.
Nat Commun ; 15(1): 4418, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806459

ABSTRACT

The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Immunologic Memory , Interferon-gamma , STAT1 Transcription Factor , Animals , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , CD4-Positive T-Lymphocytes/immunology , Mice , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/deficiency , Mice, Inbred C57BL , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Signal Transduction , Mice, Knockout , Memory T Cells/immunology , Memory T Cells/metabolism , Interleukin-7 Receptor alpha Subunit/metabolism , Cell Proliferation , Adoptive Transfer
6.
Cell Rep Med ; 5(5): 101573, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776874

ABSTRACT

Epstein-Barr virus (EBV) is linked to various malignancies and autoimmune diseases, posing a significant global health challenge due to the lack of specific treatments or vaccines. Despite its crucial role in EBV infection in B cells, the mechanisms of the glycoprotein gp42 remain elusive. In this study, we construct an antibody phage library from 100 EBV-positive individuals, leading to the identification of two human monoclonal antibodies, 2B7 and 2C1. These antibodies effectively neutralize EBV infection in vitro and in vivo while preserving gp42's interaction with the human leukocyte antigen class II (HLA-II) receptor. Structural analysis unveils their distinct binding epitopes on gp42, different from the HLA-II binding site. Furthermore, both 2B7 and 2C1 demonstrate potent neutralization of EBV infection in HLA-II-positive epithelial cells, expanding our understanding of gp42's role. Overall, this study introduces two human anti-gp42 antibodies with potential implications for developing EBV vaccines targeting gp42 epitopes, addressing a critical gap in EBV research.


Subject(s)
Antibodies, Monoclonal , Epitopes , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Antibodies, Monoclonal/immunology , Epitopes/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Mice , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Viral Proteins/immunology , B-Lymphocytes/immunology
7.
Xenotransplantation ; 31(3): e12862, 2024.
Article in English | MEDLINE | ID: mdl-38761019

ABSTRACT

Prolonged survival in preclinical renal xenotransplantation demonstrates that early antibody mediated rejection (AMR) can be overcome. It is now critical to evaluate and understand the pathobiology of late graft failure and devise new means to improve post xenograft outcomes. In renal allotransplantation the most common cause of late renal graft failure is transplant glomerulopathy-largely due to anti-donor MHC antibodies, particularly anti-HLA DQ antibodies. We evaluated the pig renal xenograft pathology of four long-surviving (>300 days) rhesus monkeys. We also evaluated the terminal serum for the presence of anti-SLA class I and specifically anti-SLA DQ antibodies. All four recipients had transplant glomerulopathy and expressed anti-SLA DQ antibodies. In one recipient tested for anti-SLA I antibodies, the recipient had antibodies specifically reacting with two of three SLA I alleles tested. These results suggest that similar to allotransplantation, anti-MHC antibodies, particularly anti-SLA DQ, may be a barrier to improved long-term xenograft outcomes.


Subject(s)
Graft Rejection , Heterografts , Histocompatibility Antigens Class I , Kidney Transplantation , Macaca mulatta , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Graft Rejection/immunology , Kidney Transplantation/methods , Histocompatibility Antigens Class I/immunology , Swine , Heterografts/immunology , Histocompatibility Antigens Class II/immunology , Graft Survival/immunology , Isoantibodies/immunology , Humans
8.
PLoS One ; 19(4): e0301175, 2024.
Article in English | MEDLINE | ID: mdl-38574067

ABSTRACT

BACKGROUND: Canonical α/ß T-cell receptors (TCRs) bind to human leukocyte antigen (HLA) displaying antigenic peptides to elicit T cell-mediated cytotoxicity. TCR-engineered T-cell immunotherapies targeting cancer-specific peptide-HLA complexes (pHLA) are generating exciting clinical responses, but owing to HLA restriction they are only able to target a subset of antigen-positive patients. More recently, evidence has been published indicating that naturally occurring α/ß TCRs can target cell surface proteins other than pHLA, which would address the challenges of HLA restriction. In this proof-of-concept study, we sought to identify and engineer so-called HLA-independent TCRs (HiTs) against the tumor-associated antigen mesothelin. METHODS: Using phage display, we identified a HiT that bound well to mesothelin, which when expressed in primary T cells, caused activation and cytotoxicity. We subsequently engineered this HiT to modulate the T-cell response to varying levels of mesothelin on the cell surface. RESULTS: The isolated HiT shows cytotoxic activity and demonstrates killing of both mesothelin-expressing cell lines and patient-derived xenograft models. Additionally, we demonstrated that HiT-transduced T cells do not require CD4 or CD8 co-receptors and, unlike a TCR fusion construct, are not inhibited by soluble mesothelin. Finally, we showed that HiT-transduced T cells are highly efficacious in vivo, completely eradicating xenografted human solid tumors. CONCLUSION: HiTs can be isolated from fully human TCR-displaying phage libraries against cell surface-expressed antigens. HiTs are able to fully activate primary T cells both in vivo and in vitro. HiTs may enable the efficacy seen with pHLA-targeting TCRs in solid tumors to be translated to cell surface antigens.


Subject(s)
Mesothelin , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Antigens, Neoplasm/metabolism , Neoplasms/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , Peptides/metabolism , Histocompatibility Antigens/metabolism
9.
J Immunother Cancer ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38609101

ABSTRACT

BACKGROUND: Despite the current therapeutic treatments including surgery, chemotherapy, radiotherapy and more recently immunotherapy, the mortality rate of lung cancer stays high. Regarding lung cancer, epigenetic modifications altering cell cycle, angiogenesis and programmed cancer cell death are therapeutic targets to combine with immunotherapy to improve treatment success. In a recent study, we uncovered that a molecule called QAPHA ((E)-3-(5-((2-cyanoquinolin-4-yl)(methyl)amino)-2-methoxyphenyl)-N-hydroxyacrylamide) has a dual function as both a tubulin polymerization and HDAC inhibitors. Here, we investigate the impact of this novel dual inhibitor on the immune response to lung cancer. METHODS: To elucidate the mechanism of action of QAPHA, we conducted a chemical proteomics analysis. Using an in vivo mouse model of lung cancer (TC-1 tumor cells), we assessed the effects of QAPHA on tumor regression. Tumor infiltrating immune cells were characterized by flow cytometry. RESULTS: In this study, we first showed that QAPHA effectively inhibited histone deacetylase 6, leading to upregulation of HSP90, cytochrome C and caspases, as revealed by proteomic analysis. We confirmed that QAPHA induces immunogenic cell death (ICD) by expressing calreticulin at cell surface in vitro and demonstrated its efficacy as a vaccine in vivo. Remarkably, even at a low concentration (0.5 mg/kg), QAPHA achieved complete tumor regression in approximately 60% of mice treated intratumorally, establishing a long-lasting anticancer immune response. Additionally, QAPHA treatment promoted the infiltration of M1-polarized macrophages in treated mice, indicating the induction of a pro-inflammatory environment within the tumor. Very interestingly, our findings also revealed that QAPHA upregulated major histocompatibility complex class II (MHC-II) expression on TC-1 tumor cells both in vitro and in vivo, facilitating the recruitment of cytotoxic CD4+T cells (CD4+CTL) expressing CD4+, NKG2D+, CRTAM+, and Perforin+. Finally, we showed that tumor regression strongly correlates to MHC-II expression level on tumor cell and CD4+ CTL infiltrate. CONCLUSION: Collectively, our findings shed light on the discovery of a new multitarget inhibitor able to induce ICD and MHC-II upregulation in TC-1 tumor cell. These two processes participate in enhancing a specific CD4+ cytotoxic T cell-mediated antitumor response in vivo in our model of lung cancer. This breakthrough suggests the potential of QAPHA as a promising agent for cancer treatment.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Animals , Mice , Lung Neoplasms/drug therapy , Proteomics , Up-Regulation , Histocompatibility Antigens Class II , CD4-Positive T-Lymphocytes
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38600667

ABSTRACT

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding motifs. Based on the discovery, we make the preprocessing and coding closer to the natural biological process. Besides, due to the input being based on multiple types of features and the attention module focused on the BiGRU hidden layer, TripHLApan has learned more sequence level binding information. The application of transfer learning strategies ensures the accuracy of prediction results under special lengths (peptides in length 8) and model scalability with the data explosion. Compared with the current optimal models, TripHLApan exhibits strong predictive performance in various prediction environments with different positive and negative sample ratios. In addition, we validate the superiority and scalability of TripHLApan's predictive performance using additional latest data sets, ablation experiments and binding reconstitution ability in the samples of a melanoma patient. The results show that TripHLApan is a powerful tool for predicting the binding of HLA-I and HLA-II molecular peptides for the synthesis of tumor vaccines. TripHLApan is publicly available at https://github.com/CSUBioGroup/TripHLApan.git.


Subject(s)
Cancer Vaccines , Humans , Protein Binding , Peptides/chemistry , HLA Antigens/chemistry , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class I/chemistry , Machine Learning
12.
Nat Commun ; 15(1): 3637, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684665

ABSTRACT

In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.


Subject(s)
Antigen Presentation , Heart Injuries , Histocompatibility Antigens Class II , Regeneration , Zebrafish , Animals , Regeneration/immunology , Antigen Presentation/immunology , Heart Injuries/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/genetics , Mice , CD4-Positive T-Lymphocytes/immunology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Cell Proliferation , Immunity, Innate , Heart/physiopathology , Heart/physiology , Mutation , Adaptive Immunity , Animals, Genetically Modified
13.
J Exp Clin Cancer Res ; 43(1): 128, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685050

ABSTRACT

BACKGROUND: Brain metastasis is one of the main causes of recurrence and death in non-small cell lung cancer (NSCLC). Although radiotherapy is the main local therapy for brain metastasis, it is inevitable that some cancer cells become resistant to radiation. Microglia, as macrophages colonized in the brain, play an important role in the tumor microenvironment. Radiotherapy could activate microglia to polarize into both the M1 and M2 phenotypes. Therefore, searching for crosstalk molecules within the microenvironment that can specifically regulate the polarization of microglia is a potential strategy for improving radiation resistance. METHODS: We used databases to detect the expression of MIF in NSCLC and its relationship with prognosis. We analyzed the effects of targeted blockade of the MIF/CD74 axis on the polarization and function of microglia during radiotherapy using flow cytometry. The mouse model of brain metastasis was used to assess the effect of targeted blockade of MIF/CD74 axis on the growth of brain metastasis. RESULT: Our findings reveals that the macrophage migration inhibitory factor (MIF) was highly expressed in NSCLC and is associated with the prognosis of NSCLC. Mechanistically, we demonstrated CD74 inhibition reversed radiation-induced AKT phosphorylation in microglia and promoted the M1 polarization in combination of radiation. Additionally, blocking the MIF-CD74 interaction between NSCLC and microglia promoted microglia M1 polarization. Furthermore, radiation improved tumor hypoxia to decrease HIF-1α dependent MIF secretion by NSCLC. MIF inhibition enhanced radiosensitivity for brain metastasis via synergistically promoting microglia M1 polarization in vivo. CONCLUSIONS: Our study revealed that targeting the MIF-CD74 axis promoted microglia M1 polarization and synergized with radiotherapy for brain metastasis in NSCLC.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Histocompatibility Antigens Class II , Lung Neoplasms , Macrophage Migration-Inhibitory Factors , Microglia , Animals , Female , Humans , Mice , Antigens, Differentiation, B-Lymphocyte/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Histocompatibility Antigens Class II/metabolism , Intramolecular Oxidoreductases/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Microglia/metabolism , Microglia/pathology
14.
Front Immunol ; 15: 1349030, 2024.
Article in English | MEDLINE | ID: mdl-38590523

ABSTRACT

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Subject(s)
Parkinson Disease , Retroelements , Humans , Retroelements/genetics , Parkinson Disease/genetics , Dopamine , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , HLA Antigens/genetics , Genotype
15.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200221, 2024 May.
Article in English | MEDLINE | ID: mdl-38579189

ABSTRACT

BACKGROUND AND OBJECTIVES: Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a rare autoimmune neurologic disorder, the genetic etiology of which remains poorly understood. Our study aims to investigate the genetic basis of this disease in the Chinese Han population. METHODS: We performed a genome-wide association study and fine-mapping study within the major histocompatibility complex (MHC) region of 413 Chinese patients with anti-NMDAR encephalitis recruited from 6 large tertiary hospitals and 7,127 healthy controls. RESULTS: Our genome-wide association analysis identified a strong association at the IFIH1 locus on chromosome 2q24.2 (rs3747517, p = 1.06 × 10-8, OR = 1.55, 95% CI, 1.34-1.80), outside of the human leukocyte antigen (HLA) region. Furthermore, through a fine-mapping study of the MHC region, we discovered associations for 3 specific HLA class I and II alleles. Notably, HLA-DQB1*05:02 (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59) demonstrates the strongest association among classical HLA alleles, closely followed by HLA-A*11:01 (p = 4.36 × 10-7; OR, 1.52; 95% CI 1.29-1.79) and HLA-A*02:07 (p = 1.28 × 10-8; OR, 1.87; 95% CI 1.50-2.31). In addition, we uncovered 2 main HLA amino acid variation associated with anti-NMDAR encephalitis including HLA-DQß1-126H (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59), exhibiting a predisposing effect, and HLA-B-97R (p = 3.40 × 10-8; OR, 0.63; 95% CI 0.53-0.74), conferring a protective effect. Computational docking analysis suggested a close relationship between the NR1 subunit of NMDAR and DQB1*05:02. DISCUSSION: Our findings indicate that genetic variation in IFIH1, involved in the type I interferon signaling pathway and innate immunity, along with variations in the HLA class I and class II genes, has substantial implications for the susceptibility to anti-NMDAR encephalitis in the Chinese Han population.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , HLA-DQ beta-Chains , Interferon-Induced Helicase, IFIH1 , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/genetics , Genome-Wide Association Study , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , HLA-A Antigens/genetics , HLA-DQ beta-Chains/genetics , Interferon-Induced Helicase, IFIH1/genetics
16.
Aging (Albany NY) ; 16(8): 6809-6838, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663915

ABSTRACT

Macrophages, as essential components of the tumor immune microenvironment (TIME), could promote growth and invasion in many cancers. However, the role of macrophages in tumor microenvironment (TME) and immunotherapy in PCa is largely unexplored at present. Here, we investigated the roles of macrophage-related genes in molecular stratification, prognosis, TME, and immunotherapeutic response in PCa. Public databases provided single-cell RNA sequencing (scRNA-seq) and bulk RNAseq data. Using the Seurat R package, scRNA-seq data was processed and macrophage clusters were identified automatically and manually. Using the CellChat R package, intercellular communication analysis revealed that tumor-associated macrophages (TAMs) interact with other cells in the PCa TME primarily through MIF - (CD74+CXCR4) and MIF - (CD74+CD44) ligand-receptor pairs. We constructed coexpression networks of macrophages using the WGCNA to identify macrophage-related genes. Using the R package ConsensusClusterPlus, unsupervised hierarchical clustering analysis identified two distinct macrophage-associated subtypes, which have significantly different pathway activation status, TIME, and immunotherapeutic efficacy. Next, an 8-gene macrophage-related risk signature (MRS) was established through the LASSO Cox regression analysis with 10-fold cross-validation, and the performance of the MRS was validated in eight external PCa cohorts. The high-risk group had more active immune-related functions, more infiltrating immune cells, higher HLA and immune checkpoint gene expression, higher immune scores, and lower TIDE scores. Finally, the NCF4 gene has been identified as the hub gene in MRS using the "mgeneSim" function.


Subject(s)
Histocompatibility Antigens Class II , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors , Prostatic Neoplasms , Sequence Analysis, RNA , Single-Cell Analysis , Tumor Microenvironment , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Macrophages/metabolism , Macrophages/immunology , Gene Expression Regulation, Neoplastic , Prognosis , Immunotherapy , Gene Regulatory Networks , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 603-609, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660873

ABSTRACT

OBJECTIVE: To investigate the accuracy of next-generation sequencing technology (NGS) in detecting the polymorphisms of HLA-DRB1, DQB1, DQA1, DRB3, DRB4, DRB5, DPA1 and DPB1 alleles in randomly-selected unrelated healthy individuals from Shenzhen Han population, investigate the potential reason for HLA-DRB1 allele dropout in routine NGS, and establish an internal quality control system. METHODS: NGS-based HLA class II genotyping was performed on 1 012 samples using the MiSeqDxTM platform. The suspected missed alleles indicated by the quality control software and HLA-DRB1 homozygotes were confirmed by PCR-SSOP or PCR-SBT methods. RESULTS: A total of 139 alleles were detected, including HLA-DRB1(45), DRB3(7), DRB4(5), DRB5(7), DQA1(17), DQB1(21), DPA1(10) and DPB1(27). HLA-DRB1*09:01(17.09%),15:01(10.72%); DRB3*02:02(25.99%),03:01(10.18%); DRB4*01:03(36.46%); DRB5*01:01(15.42%); DQA1*01:02(20.01%),03:02(17.19%); DQB1*03:01(19.47%),03:03(17.98%), 05:02(11.66%), 06:01(10.67%); DPA1*02:02(54.45%), 01:03(31.18%) and DPB1*05:01(39.13%), 02:01(16.90%) alleles were the most common alleles in Shenzhen Han population (frequencies >10%). There was no statistical difference between the gene frequencies of HLA-DRB1 and DQB1 loci in our study. The HLA Common and Well-Documented Alleles in China (CWD2.4) (χ2=12.68, P >0.05). 94 cases of HLA-DRB1 homozygous samples detected by NGS were retested by PCR-SSOP or SBT method, and one case of allele dropout at HLA-DRB1 locus was found. SBT method confirmed that the allele of DRB1*04:03 was missed. The laboratory internal quality control system was established. Two cases of new alleles were detected and named by WHO Nomenclature Committee for Factors of the HLA System. CONCLUSION: The HLA genotyping results based on NGS showed a significantly lower ambiguity rate. The HLA class II alleles exhibit genetic polymorphism in the Han population of unrelated healthy individuals in Shenzhen. The independent method based on NGS in clinical histocompatibility testing has limitations and requires internal quality control strategies to avoid allele-dropout events.


Subject(s)
East Asian People , Genotype , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class II , Humans , Alleles , Gene Frequency , Polymorphism, Genetic , East Asian People/genetics , Histocompatibility Antigens Class II/genetics
18.
Pol Merkur Lekarski ; 52(2): 233-239, 2024.
Article in English | MEDLINE | ID: mdl-38642360

ABSTRACT

OBJECTIVE: Aim: To detect the role of CD74 expression in breast carcinoma as a predictive marker for identifying the biological behavior of malignancy in Iraqi women.. PATIENTS AND METHODS: Materials and Methods: The study used technique of immunohistochemistry for detection CD74 protein role in breast cancer, and its expression in breast cancer tissue samples. Samples were collected in Al-Najaf city in Iraq, from Al-Forat Al-Awsat Oncology Center. The study was achieved at the Laboratories of the Faculty of Science in the University of Kufa. Fifty samples of breast cancer tissue, and twenty controls benign tissue were included in the study. The study has investigated relationship between expression of biomarker with grade, age of patient and tumor size. RESULTS: Results: The study showed that the cytoplasmic expression of CD74 with more clear and intensive staining in the cytoplasm, and reported that CD74 positivity rate was 52%. A significant association between CD74 expression and grade and size of tumor, so CD74 can be considered as a biomarker for prediction of breast cancer in women. No association was found between CD74 expression and each of patients' age and node metastasis. CONCLUSION: Conclusions: The study represents an important step in our region because there are a few studies about this topic; more efforts are required to approve the function of this biomarker.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Breast Neoplasms , Histocompatibility Antigens Class II , Female , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Immunohistochemistry , Antigens, Differentiation, B-Lymphocyte/metabolism , Histocompatibility Antigens Class II/metabolism , Middle Eastern People
19.
J Cell Sci ; 137(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38682259

ABSTRACT

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Subject(s)
Histocompatibility Antigens Class II , Histone Deacetylase 2 , Nuclear Proteins , Promoter Regions, Genetic , SARS-CoV-2 , Trans-Activators , Humans , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Promoter Regions, Genetic/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/genetics , COVID-19/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology , HEK293 Cells , Down-Regulation/genetics , Antigen Presentation/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics
20.
Proc Natl Acad Sci U S A ; 121(19): e2403031121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687785

ABSTRACT

The loading of processed peptides on to major histocompatibility complex II (MHC-II) molecules for recognition by T cells is vital to cell-mediated adaptive immunity. As part of this process, MHC-II associates with the invariant chain (Ii) during biosynthesis in the endoplasmic reticulum to prevent premature peptide loading and to serve as a scaffold for subsequent proteolytic processing into MHC-II-CLIP. Cryo-electron microscopy structures of full-length Human Leukocyte Antigen-DR (HLA-DR) and HLA-DQ complexes associated with Ii, resolved at 3.0 to 3.1 Å, elucidate the trimeric assembly of the HLA/Ii complex and define atomic-level interactions between HLA, Ii transmembrane domains, loop domains, and class II-associated invariant chain peptides (CLIP). Together with previous structures of MHC-II peptide loading intermediates DO and DM, our findings complete the structural path governing class II antigen presentation.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Cryoelectron Microscopy , Histocompatibility Antigens Class II , Humans , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/chemistry , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , HLA-DR Antigens/chemistry , HLA-DR Antigens/metabolism , HLA-DR Antigens/immunology , Antigen Presentation , HLA-DQ Antigens/chemistry , HLA-DQ Antigens/metabolism , HLA-DQ Antigens/immunology , Models, Molecular , Endoplasmic Reticulum/metabolism , Protein Conformation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...