Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
1.
Chem Biol Drug Des ; 103(5): e14556, 2024 May.
Article in English | MEDLINE | ID: mdl-38772881

ABSTRACT

Histone deacetylase 6 (HDAC6), as the key regulatory enzyme, plays an important role in the development of the nervous system. More and more studies indicate that HDAC6 has become a promising therapeutic target for CNS diseases. Herein we designed and synthesized a series of novel HDAC6 inhibitors with benzothiadiazinyl systems as cap groups and evaluated their activity in vitro and in vivo. Among them, compound 3 exhibited superior selective inhibitory activity against HDAC6 (IC50 = 5.1 nM, about 30-fold selectivity over HDAC1). The results of docking showed that compound 3 can interact well with the key amino acid residues of HDAC6. Compound 3 showed lower cytotoxicity (20 µM to SH-SY5Y cells, inhibition rate = 25.75%) and better neuroprotective activity against L-glutamate-induced SH-SY5Y cell injury model in vitro. Meanwhile, compound 3 exhibited weak cardiotoxicity (10 µM hERG inhibition rate = 17.35%) and possess good druggability properties. Especially, compound 3 could significantly reduce cerebral infarction from 49.87% to 32.18%, and similar with butylphthalide in MCAO model, indicating potential clinical application prospects for alleviating ischemic stroke-induced brain infarction.


Subject(s)
Drug Design , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Molecular Docking Simulation , Neuroprotective Agents , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Animals , Structure-Activity Relationship , Cell Line, Tumor , Male , Mice , Binding Sites , Rats
2.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719753

ABSTRACT

We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.


Subject(s)
Adenylyl Cyclases , Cell Proliferation , Cilia , Hedgehog Proteins , Histone Deacetylase 6 , Signal Transduction , Animals , Mice , Acetylation , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Cell Proliferation/genetics , Cilia/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Mice, Knockout , Stem Cells/metabolism , Stem Cells/cytology
3.
Eur J Med Chem ; 272: 116447, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38714044

ABSTRACT

Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.


Subject(s)
Antineoplastic Agents , Decitabine , Drug Screening Assays, Antitumor , Drug Synergism , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Decitabine/pharmacology , Decitabine/chemistry , Structure-Activity Relationship , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Peptoids/chemistry , Peptoids/pharmacology , Peptoids/chemical synthesis , Aminopyridines , Benzamides
4.
Clin Exp Pharmacol Physiol ; 51(6): e13866, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719209

ABSTRACT

Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Macrophages , Reactive Oxygen Species , Staphylococcus aureus , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects , Mice , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Pneumonia, Staphylococcal/drug therapy , Pneumonia, Staphylococcal/microbiology , Pneumonia, Staphylococcal/metabolism , Indoles/pharmacology , Mice, Inbred C57BL , Phagocytosis/drug effects , Lung/drug effects , Lung/microbiology , Lung/metabolism , Lung/pathology
5.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 231-236, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678601

ABSTRACT

Epidural fibrosis (EF) is a chronic, progressive and severe disease. Histone deacetylase 6 (HDAC6) regulates biological signals and cell activities by deacetylating lysine residues and participates in TGF-ß-induced epithelial-mesenchymal transition (EMT). Nevertheless, the effect and mechanism of HDAC6 in EF remain unclear. To investigate the effect and mechanism of HDAC6 inhibition on repressing epidural fibrosis. HDAC6 expression and α-smooth muscle actin (α-SMA) in normal human tissue and human EF tissue were assessed by quantitative real-time PCR (qRT-PCR) and western blotting. Human fibroblasts were treated with TGF-ß ± HDAC6 inhibitors (Tubastatin) and fibrotic markers including collagen I, collagen III, α-SMA and fibronectin were assessed using western blotting. Then TGFß1 receptor (TGFß1-R), PI3K and Akt were analyzed using qRT-PCR and western blotting. Rats were undergone laminectomy± Tubastatin (intraperitoneally injection; daily for 7 days) and epidural scar extracellular matrix (ECM) expression was gauged using immunoblots. Increasing HDAC6 expression was associated with α-SMA enrichment. Tubastatin remarkably restrained TGF-ß-induced level of collagen and ECM deposition in human fibroblasts, and the discovery was accompanied by decreased PI3K and Akt phosphorylation. Moreover, Tubastatin also inhibited TGF-ß-mediated HIF-1α and VEGF expression. In the epidural fibrosis model, we found that Tubastatin weakened scar hyperplasia and collagen deposition, and effectively inhibited the process of epidural fibrosis. These results indicated that Tubastatin inhibited HDAC6 expression and decreased TGF-ß/ PI3K/ Akt pathway that promotes collagen and ECM deposition and VEGF release, leading reduction of myofibroblast activation. Hence, Tubastatin ameliorated epidural fibrosis development.


Subject(s)
Fibroblasts , Fibrosis , Histone Deacetylase 6 , Hydroxamic Acids , Signal Transduction , Animals , Humans , Male , Rats , Actins/metabolism , Epidural Space/pathology , Epidural Space/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibrosis/drug therapy , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transforming Growth Factor beta/drug effects , Transforming Growth Factor beta/metabolism
6.
Arch Biochem Biophys ; 756: 110009, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642631

ABSTRACT

BACKGROUND: Histone deacetylase 6 (HDAC6) inhibitor CAY10603 has been identified as a potential therapeutic agent for the treatment of diabetic kidney disease (DKD). The objective of this study was to investigate the therapeutic effects of CAY10603 in mice with acute kidney injury (AKI) and chronic kidney diseases (CKD). METHODS: Renal immunohistology was performed to assess the expression levels of HDAC6 in both human and mouse kidney samples. C57BL/6J mice were intraperitoneal injected with lipopolysaccharide (LPS) to induce AKI; CD-1 mice were fed with adenine diet to induce adenine-nephropathy as CKD model. Serum creatinine, blood urea nitrogen and uric acid were measured to reflect renal function; renal histology was applied to assess kidney damage. Western blot and immunohistology were used to analyze the unfolded protein response (UPR) level. RESULTS: HDAC6 was significantly upregulated in renal tubular epithelial cells (RTECs) of both AKI and CKD patients as well as mice. In the murine models of AKI induced by LPS and adenine-induced nephropathy, CAY10603 exhibited notable protective effects, including improvement in biochemical indices and pathological changes. In vivo and in vitro studies revealed that CAY10603 effectively suppressed the activation of activating transcription factor 6 (ATF6) branch of UPR triggered by thapsigargin (Tg), a commonly employed endoplasmic reticulum (ER) stressor. Consistent with these findings, CAY10603 also displayed substantial inhibition of ATF6 activation in RTECs from both murine models of LPS-induced AKI and adenine-induced nephropathy. CONCLUSIONS: Collectively, these results suggest that CAY10603 holds promise as a potential therapeutic agent for both acute and chronic kidney injury.


Subject(s)
Activating Transcription Factor 6 , Acute Kidney Injury , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Mice, Inbred C57BL , Renal Insufficiency, Chronic , Unfolded Protein Response , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Humans , Activating Transcription Factor 6/metabolism , Mice , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/chemically induced , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Male , Unfolded Protein Response/drug effects , Lipopolysaccharides
7.
Theranostics ; 14(6): 2345-2366, 2024.
Article in English | MEDLINE | ID: mdl-38646645

ABSTRACT

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Subject(s)
Histone Deacetylase 6 , Mice, Transgenic , Nerve Growth Factor , Ovarian Follicle , Ubiquitination , Animals , Female , Humans , Mice , Acetylation , Granulosa Cells/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Nerve Growth Factor/metabolism , Ovarian Follicle/metabolism
8.
Biochem Biophys Res Commun ; 710: 149872, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38593621

ABSTRACT

Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.


Subject(s)
Histone Deacetylases , Tubulin , Tubulin/metabolism , Histone Deacetylases/metabolism , Histone Deacetylase 6/metabolism , Biphenyl Compounds , Hydrazines , Histone Deacetylase Inhibitors/pharmacology , Acetylation
9.
Cells ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38534334

ABSTRACT

Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.


Subject(s)
Endothelial Cells , Growth Differentiation Factor 2 , Humans , Histone Deacetylase 6/metabolism , Growth Differentiation Factor 2/metabolism , Endoglin/metabolism , Phosphorylation , Endothelial Cells/metabolism , Angiogenesis , Proteomics , Transcription Factors/metabolism
10.
Int Immunopharmacol ; 132: 111921, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38547770

ABSTRACT

Interleukin-1-beta (IL-1ß) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1ß would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1ß and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1ß and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1ß were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1ß, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1ß levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1ß and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1ß through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1ß in OSCC.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Hydroxamic Acids , Indoles , Interleukin-1beta , Mouth Neoplasms , Tumor Microenvironment , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Interleukin-1beta/metabolism , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Disease Progression , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Male , Tubulin/metabolism , Lipopolysaccharides
11.
Comput Biol Chem ; 110: 108051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520883

ABSTRACT

Amidst the Zn2+-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated with an array of diseases, especially cancer and neuronal disorders like Rett's Syndrome, Alzheimer's disease, Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-selective nature has restricted their use in different disease conditions. In this situation, the development of selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors, subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by the aryl hydroxamate linker-ZBG functions.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Molecular Dynamics Simulation , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Humans , Molecular Structure , Quantitative Structure-Activity Relationship , Quinazolines/chemistry , Quinazolines/pharmacology , Machine Learning
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527593

ABSTRACT

BACKGROUND: Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS: Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1ß were detected by western blotting. Serum IL-1ß, IL-6 and S100ß were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1ß were detected by western blotting and the content of IL-1ß in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS: Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1ß due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS: Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.


Subject(s)
HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Hippocampus , Histone Deacetylase 6 , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Pyroptosis/drug effects , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Mice , Male , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/metabolism , Hippocampus/pathology , HSP70 Heat-Shock Proteins/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/pathology , Hydroxamic Acids/pharmacology , Aging/metabolism , Aging/pathology , Disease Models, Animal
13.
Tissue Cell ; 87: 102325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394972

ABSTRACT

To explore the role of Ras-association domain family 1 A (RASSF1A) in TGFß2-induced changes of lens epithelial cells (LECs) behavior. The human LEC line SRA01/04 cells were treated with TGFß2 in the presence or absence of RASSF1A and histone deacetylase 6 (HDAC6). qRT-PCR and western blot were performed to analysis mRNA and proteins expression. Cell proliferation was evaluated using MTT assay and colony formation assay. Transwell and scratch-wound healing assays were conducted to detected cell migration ability. RASSF1A was downregulated in TGFß2-induced SRA01/04 cells. RASSF1A overexpression inhibited the cell viability, colony formation and migration abilities of SRA01/04 cells induced by TGFß2. Overexpression of RASSF1A suppressed TGFß2-induced EMT of SRA01/04 cells, which was manifested as inhibition of EMT-related proteins α-SMA, Vimentin, Snail and Fn expression. Moreover, RASSF1A down-regulated the expression of HDAC6. Importantly, HDAC6 reversed the effects of RASSF1A on SRA01/04 cells. These findings indicate that RASSF1A prevented TGFß2-induced proliferation, migration, and EMT of LECs by regulating HDAC6 expression, suggesting that RASSF1A holds promise as a potential target for cataracts treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/pharmacology , Epithelial-Mesenchymal Transition/genetics , Cell Movement , Epithelial Cells/metabolism
14.
Respir Res ; 25(1): 66, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317159

ABSTRACT

BACKGROUND: Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity for HDAC6 in COPD. METHODS: Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, immunohistochemical staining, and western blot. The human lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of CAY10603. RESULTS: HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. CAY10603 significantly attenuated the release of TGF-ß1 induced by CSE. CAY10603 significantly increased the E-cadherin levels in TGF-ß1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-ß1 induced cell migration. CONCLUSIONS: These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating epithelial barrier dysfunction and reversing EMT via the TGF-ß1/Smad2/3 signalling pathway.


Subject(s)
Carbamates , Cigarette Smoking , Oxazoles , Pulmonary Disease, Chronic Obstructive , Animals , Humans , Mice , Airway Remodeling , Cadherins/metabolism , Cigarette Smoking/adverse effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Histone Deacetylase 6/metabolism , Occludin , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Tobacco Products , Transforming Growth Factor beta1/metabolism
15.
FASEB J ; 38(4): e23477, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38334424

ABSTRACT

Liver transplantation (LT) is the only effective method to treat end-stage liver disease. Hepatic ischemia-reperfusion injury (IRI) continues to limit the prognosis of patients receiving LT. Histone deacetylase 6 (HDAC6) is a unique HDAC member involved in inflammation and apoptosis. However, its role and mechanism in hepatic IRI have not yet been reported. We examined HDAC6 levels in liver tissue from LT patients, mice challenged with liver IRI, and hepatocytes subjected to hypoxia/reoxygenation (H/R). In addition, HDAC6 global-knockout (HDAC6-KO) mice, adeno-associated virus-mediated liver-specific HDAC6 overexpressing (HDAC6-LTG) mice, and their corresponding controls were used to construct hepatic IRI models. Hepatic histology, inflammatory responses, and apoptosis were detected to assess liver injury. The molecular mechanisms of HDAC6 in hepatic IRI were explored in vivo and in vitro. Moreover, the HDAC6-selective inhibitor tubastatin A was used to detect the therapeutic effect of HDAC6 on liver IRI. Together, our results showed that HDAC6 expression was significantly upregulated in liver tissue from LT patients, mice subjected to hepatic I/R surgery, and hepatocytes challenged by hypoxia/reoxygenation (H/R) treatment. Compared with control mice, HDAC6 deficiency mitigated liver IRI by inhibiting inflammatory responses and apoptosis, whereas HDAC6-LTG mice displayed the opposite phenotype. Further molecular experiments show that HDAC6 bound to and deacetylated AKT and HDAC6 deficiency improved liver IRI by activating PI3K/AKT/mTOR signaling. In conclusion, HDAC6 is a key mediator of hepatic IRI that functions to promote inflammation and apoptosis via PI3K/AKT/mTOR signaling. Targeting hepatic HDAC6 inhibition may be a promising approach to attenuate liver IRI.


Subject(s)
Proto-Oncogene Proteins c-akt , Reperfusion Injury , Animals , Humans , Mice , Apoptosis , Histone Deacetylase 6/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Ischemia/metabolism , Liver/metabolism , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
CNS Neurosci Ther ; 30(2): e14605, 2024 02.
Article in English | MEDLINE | ID: mdl-38334007

ABSTRACT

BACKGROUND: The infiltrative nature of human gliomas renders complete surgical removal of tumors futile. Thus, illuminating mechanisms of their infiltrative properties may improve therapies and outcomes of glioma patients. METHODS: Comprehensive bioinformatic analyses of PRSS family were undertaken. Transfection of HTRA1 siRNAs was used to suppress HTRA1 expression. CCK-8, EdU, and colony formation assay were employed to assess cell viability, and cell migration/invasion was detected by transwell, wound healing, and 3D tumor spheroid invasion assays. Immunoprecipitation was applied to study the mechanism that HTRA1 affected cell migration. In addition, in situ xenograft tumor model was employed to explore the role of HTRA1 in glioma growth in vivo. RESULTS: HTRA1 knockdown could lead to suppression of cell viability, migration and invasion, as well as increased apoptosis. Immunoprecipitation results indicates HTRA1 might facilitate combination between HDAC6 and α-tubulin to enhance cell migration by decreasing α-tubulin acetylation. Besides, HTRA1 knockdown inhibited the growth of xenografts derived from orthotopic implantation of GBM cells and prolonged the survival time of tumor-bearing mice. CONCLUSION: Our results indicate that HTRA1 promotes the proliferation and migration of GBM cells in vitro and in vivo, and thus may be a potential target for treatment in gliomas.


Subject(s)
Glioma , Tubulin , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioma/genetics , Histone Deacetylase 6/metabolism , Tubulin/metabolism
17.
Prostate ; 84(6): 605-619, 2024 May.
Article in English | MEDLINE | ID: mdl-38375594

ABSTRACT

BACKGROUND: Metastatic castration-resistant prostate cancer (CRPC), the most refractory prostate cancer, inevitably progresses and becomes unresponsive to hormone therapy, revealing a pressing unmet need for this disease. Novel agents targeting HDAC6 and microtubule dynamics can be a potential anti-CRPC strategy. METHODS: Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay and anchorage-dependent colony formation assay. Flow cytometric analysis of propidium iodide staining was used to determine cell-cycle progression. Cell-based tubulin polymerization assay and confocal immunofluorescence microscopic examination determine microtubule assembly/disassembly status. Protein expressions were determined using Western blot analysis. RESULTS: A total of 82 novel derivatives targeting HDAC6 were designed and synthesized, and Compound 25202 stood out, showing the highest efficacy in blocking HDAC6 (IC50, 3.5 nM in enzyme assay; IC50, 1.0 µM in antiproliferative assay in CRPC cells), superior to tubastatin A (IC50, 5.4 µM in antiproliferative assay). The selectivity and superiority of 25202 were validated by examining the acetylation of both α-tubulin and histone H3, detecting cell apoptosis and HDACs enzyme activity assessment. Notably, 25202 but not tubastatin A significantly decreased HDAC6 protein expression. 25202 prolonged mitotic arrest through the detection of cyclin B1 upregulation, Cdk1 activation, mitotic phosphoprotein levels, and Bcl-2 phosphorylation. Compound 25202 did not mimic docetaxel in inducing tubulin polymerization but disrupted microtubule organization. Compound 25202 also increased the phosphorylation of CDC20, BUB1, and BUBR1, indicating the activation of the spindle assembly checkpoint (SAC). Moreover, 25202 profoundly sensitized cisplatin-induced cell death through impairment of cisplatin-evoked DNA damage response and DNA repair in both ATR-Chk1 and ATM-Chk2 pathways. CONCLUSION: The data suggest that 25202 is a novel selective and potent HDAC6 inhibitor. Compound 25202 blocks HDAC6 activity and interferes microtubule dynamics, leading to SAC activation and mitotic arrest prolongation that eventually cause apoptosis of CRPC cells. Furthermore, 25202 sensitizes cisplatin-induced cell apoptosis through impeding DNA damage repair pathways.


Subject(s)
Cisplatin , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Cisplatin/pharmacology , Prostatic Neoplasms, Castration-Resistant/pathology , Tubulin/metabolism , M Phase Cell Cycle Checkpoints , Cell Line, Tumor , Apoptosis , Cell Proliferation , Microtubules/metabolism , Microtubules/pathology , Histone Deacetylase 6/metabolism
18.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199570

ABSTRACT

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Subject(s)
Inflammasomes , Leukocytes, Mononuclear , Animals , Humans , Mice , Cell Line , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Transport/physiology
19.
Mol Immunol ; 166: 1-15, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176167

ABSTRACT

Histone deacetylase 6 (HDAC6) has been shown to play an important role in allergic inflammation. This study hypothesized that novel downstream targets of HDAC6 would mediate allergic inflammation. Experiments employing HDAC6 knock out C57BL/6 mice showed that HDAC6 mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). Antigen stimulation increased expression of N-myc (MYCN) and CXCL3 in an HDAC6-dependent manner in the bone marrow-derived mast cells. MYCN and CXCL3 were necessary for both PCA and PSA. The role of early growth response 3 (EGR3) in the regulation of HDAC6 expression has been reported. ChIP assays showed EGR3 as a direct regulator of MYCN. miR-34a-5p was predicted to be a negative regulator of MYCN. Luciferase activity assays showed miR-34a-5p as a direct regulator of MYCN. miR-34a-5p mimic negatively regulated PCA and PSA. MYCN decreased miR-34a-5p expression in antigen-stimulated rat basophilic leukemia cells (RBL2H3). MYCN was shown to bind to the promoter sequence of CXCL3. In an IgE-independent manner, recombinant CXCL3 protein increased expression of HDAC6, MYCN, and ß-hexosaminidase activity in RBL2H3 cells. Mouse recombinant CXCL3 protein enhanced the angiogenic potential of the culture medium of RBL2H3. CXCL3 was necessary for the enhanced angiogenic potential of the culture medium of antigen-stimulated RBL2H3. The culture medium of RBL2H3 was able to induce M2 macrophage polarization in a CXCL3-dependent manner. Recombinant CXCL3 protein also increased the expression of markers of M2 macrophage. Thus, the identification of the novel role of HDAC6-MYCN-CXCL3 axis can help better understand the pathogenesis of anaphylaxis.


Subject(s)
Anaphylaxis , MicroRNAs , Rats , Mice , Animals , N-Myc Proto-Oncogene Protein/metabolism , Histone Deacetylase 6/metabolism , Mice, Inbred C57BL , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mast Cells/metabolism
20.
Cell Signal ; 116: 111057, 2024 04.
Article in English | MEDLINE | ID: mdl-38242268

ABSTRACT

Randall's plaque (RP) is derived from interstitial mineral deposition and is highly prevalent in renal calcium oxalate (CaOx) stone disease, which is predictive of recurrence. This study shows that histone deacetylase 6 (HDAC6) levels are suppressed in renal tubular epithelial cells in RP samples, in kidney tissues of hyperoxaluria rats, and in hyper-oxalate-treated or mineralized cultured renal tubular epithelial (MDCK) cells in vitro. Mineral deposition in MDCK cells was exacerbated by HDAC6 inhibition but alleviated by HDAC6 overexpression. Surprisingly, the expression of some osteogenic-associated proteins, were not increased along with the increasing of mineral deposition, and result of single-cell RNA sequencing of renal papillae samples revealed that epithelial cells possess lower calcific activity, suggesting that osteogenic-transdifferentiation may not have actually occurred in tubular epithelial cells despite mineral deposition. The initial mineral depositions facilitated by HDAC6 inhibitor were localized in extracellular dome rather than inside the cells, moreover, suppression of HDAC6 significantly increased the calcium content of co-cultured renal interstitial fibroblasts (NRK49F) and enhanced mineral deposition of indirectly co-cultured NRK49F cells, suggesting that HDAC6 may influence trans-MDCK monolayer secretion of mineral. Further experiments revealed that this regulatory role was partially alpha-tubulinLys40 acetylation dependent. Collectively, these results suggest that hyper-oxalate exposure led to HDAC6 suppression in renal tubular epithelial cells, which may contribute to interstitial mineral deposition by promoting alpha-tubulinLys40 acetylation. Therapeutic agents that influence HDAC6 activity may be beneficial in preventing RP and CaOx stone formation.


Subject(s)
Kidney Diseases , Tubulin , Animals , Rats , Acetylation , Calcium Oxalate , Epithelial Cells/metabolism , Histone Deacetylase 6/metabolism , Minerals , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...