Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Epigenetics ; 19(1): 2400423, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39255363

ABSTRACT

A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.


Subject(s)
Fatty Acids , Histone Deacetylase Inhibitors , Molecular Docking Simulation , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Fatty Acids/metabolism , Bees , Cell Line, Tumor , Animals , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/chemistry , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/antagonists & inhibitors , HCT116 Cells
2.
Br J Pharmacol ; 181(20): 4028-4049, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38936407

ABSTRACT

BACKGROUND AND PURPOSE: Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aß oligomer (AßO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice. Cognitive function was evaluated by behavioural assays using a mouse model of intracerebroventricular infusion of AßO. KEY RESULTS: LASSBio-1911 modulates reactivity and synaptogenic potential of cultured astrocytes and improves synaptic markers in cultured neurons and in mice. It prevents AßO-triggered astrocytic reactivity in mice and enhances the neuroprotective potential of astrocytes. LASSBio-1911 improves behavioural performance and rescues synaptic and memory function in AßO-infused mice. CONCLUSION AND IMPLICATIONS: These results contribute to unveiling the mechanisms underlying astrocyte role in AD and provide the rationale for using astrocytes as targets to new drugs for AD.


Subject(s)
Amyloid beta-Peptides , Astrocytes , Cognitive Dysfunction , Histone Deacetylase Inhibitors , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Histone Deacetylase Inhibitors/pharmacology , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/chemically induced , Male , Mice, Inbred C57BL , Cells, Cultured , Synapses/drug effects , Synapses/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage
3.
Anticancer Agents Med Chem ; 24(15): 1109-1125, 2024.
Article in English | MEDLINE | ID: mdl-38835122

ABSTRACT

AIMS: Validating the docking procedure and maintaining the structural water molecules at HDAC8 catalytic site. BACKGROUND: Molecular docking simulations play a significant role in Computer-Aided Drug Design, contributing to the development of new molecules. To ensure the reliability of these simulations, a validation process called "self-docking or re-docking" is employed, focusing on the binding mode of a ligand co-crystallized with the protein of interest. OBJECTIVE: In this study, several molecular docking studies were conducted using five X-ray structures of HDAC8-ligand complexes from the PDB. METHODS: Ligands initially complexed with HDAC8 were removed and re-docked onto the free protein, revealing a poor reproduction of the expected binding mode. In response to this, we observed that most HDAC8-ligand complexes contained one to two water molecules in the catalytic site, which were crucial for maintaining the cocrystallized ligand. RESULTS: These water molecules enhance the binding mode of the co-crystallized ligand by stabilizing the proteinligand complex through hydrogen bond interactions between ligand and water molecules. Notably, these interactions are lost if water molecules are removed, as is often done in classical docking methodologies. Considering this, molecular docking simulations were repeated, both with and without one or two conserved water molecules near Zn+2 in the catalytic cavity. Simulations indicated that replicating the native binding pose of co-crystallized ligands on free HDAC8 without these water molecules was challenging, showing greater coordinate displacements (RMSD) compared to those including conserved water molecules from crystals. CONCLUSION: The study highlighted the importance of conserved water molecules within the active site, as their presence significantly influenced the successful reproduction of the ligands' native binding modes. The results suggest an optimal molecular docking procedure for validating methods suitable for filtering new HDAC8 inhibitors for future experimental assays.


Subject(s)
Antineoplastic Agents , Drug Design , Histone Deacetylase Inhibitors , Histone Deacetylases , Molecular Docking Simulation , Repressor Proteins , Water , Histone Deacetylases/metabolism , Histone Deacetylases/chemistry , Water/chemistry , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ligands , Repressor Proteins/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Molecular Structure , Structure-Activity Relationship , Binding Sites/drug effects , Crystallography, X-Ray
4.
Can J Microbiol ; 70(7): 252-261, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38855942

ABSTRACT

Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by Mycobacterium aurum. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in M. aurum infected MDMs, as well as the production of defb4, IL-1ß, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1ß, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.


Subject(s)
Cytokines , Drug Repositioning , Histone Deacetylase Inhibitors , Immunity, Innate , Mycobacterium Infections, Nontuberculous , Immunity, Innate/drug effects , Humans , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Histone Deacetylase Inhibitors/pharmacology , Cytokines/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/microbiology , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/immunology , Mycobacterium/immunology , Mycobacterium/drug effects
5.
Exp Cell Res ; 440(1): 114126, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38857838

ABSTRACT

Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.


Subject(s)
Cell Division , Microtubules , Symbiosis , Microtubules/metabolism , Microtubules/ultrastructure , Microtubules/drug effects , Trypanosomatina/genetics , Trypanosomatina/metabolism , Trypanosomatina/ultrastructure , Trypanosomatina/physiology , Hydroxamic Acids/pharmacology , Tubulin/metabolism , Tubulin/genetics , Bacteria/metabolism , Bacteria/genetics , Acetylation , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure
6.
Toxicol In Vitro ; 99: 105884, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945376

ABSTRACT

Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths globally. Systemic therapy is the only treatment option for HCC at an advanced stage, with limited therapeutic response. In this study, we evaluated the antitumor potential of four N-acylhydrazone (NAH) derivatives, namely LASSBio-1909, 1911, 1935, and 1936, on HCC cell lines. We have previously demonstrated that the aforementioned NAH derivatives selectively inhibit histone deacetylase 6 (HDAC6) in lung cancer cells, but their effects on HCC cells have not been explored. Thus, the present study aimed to evaluate the effects of NAH derivatives on the proliferative behavior of HCC cells. LASSBio-1911 was the most cytotoxic compound against HCC cells, however its effects were minimal on normal cells. Our results showed that LASSBio-1911 inhibited HDAC6 in HCC cells leading to cell cycle arrest and decreased cell proliferation. There was also an increase in the frequency of cells in mitosis onset, which was associated with disturbing mitotic spindle formation. These events were accompanied by elevated levels of CDKN1A mRNA, accumulation of CCNB1 protein, and sustained ERK1 phosphorylation. Furthermore, LASSBio-1911 induced DNA damage, resulting in senescence and/or apoptosis. Our findings indicate that selective inhibition of HDAC6 may provide an effective therapeutic strategy for the treatment of advanced HCC, including tumor subtypes with integrated viral genome. Further, in vivo studies are required to validate the antitumor effect of LASSBio-1911 on liver cancer.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Cellular Senescence , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Hydrazones , Liver Neoplasms , Histone Deacetylase 6/antagonists & inhibitors , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Cell Proliferation/drug effects , Hydrazones/pharmacology , Cellular Senescence/drug effects , Histone Deacetylase Inhibitors/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin B1/metabolism , Cyclin B1/genetics
7.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 40-47, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814236

ABSTRACT

Periodontal ligament stem cells (PDLSCs) show plasticity towards the adipogenic lineage; however, little has been done on the participation of epigenetic mechanisms. Histone acetylation is a dynamic process, though balanced by histone acetyltransferases (HATs) and histone deacetylases (HDACs) activities. This process can be halted by HDACs inhibitors, such as trichostatin A (TSA) and valproic acid (VPA). This study aimed to determine the role of HDACs class I in adipogenic differentiation of PDL cells. PDLSCs were treated with TSA at concentrations of 100, 200, and 250 nM, or VPA at 1, 4 and 8 mM. Cell viability was assessed using MTT assays. Gene expression of pluripotency markers (NANOG, OCT4, SOX2), HAT genes (p300, GCN5), and HDACs genes (HDAC1-3) was analyzed by RT-qPCR. Adipogenic differentiation was evaluated via oil red O staining, and acetylation of histone H3 lysine 9 (H3K9ac) was examined by Western blot. VPA treatment resulted in a 60% reduction in cell proliferation, compared to a 50% when using TSA. Cell viability was not affected by either inhibitor. Furthermore, both TSA and VPA induced adipogenic differentiation, through an increase in the deposition of lipid droplets and in GCN5 and p300 expression were observed. Western blot analysis showed that TSA increased H3K9ac levels on adipogenic differentiation of PDLSCs. These findings highlight the potential of HDAC inhibitors as a tool for modulating H3K9 acetylation status and thus influencing adipogenic differentiation of PDLCs.


Subject(s)
Adipogenesis , Cell Differentiation , Cell Survival , Histone Deacetylase Inhibitors , Periodontal Ligament , Valproic Acid , Humans , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Histone Deacetylase Inhibitors/pharmacology , Adipogenesis/drug effects , Adipogenesis/genetics , Valproic Acid/pharmacology , Cell Differentiation/drug effects , Cell Survival/drug effects , Acetylation/drug effects , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Hydroxamic Acids/pharmacology , Cells, Cultured , Histones/metabolism , Cell Proliferation/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism
8.
PLoS One ; 19(5): e0298032, 2024.
Article in English | MEDLINE | ID: mdl-38820384

ABSTRACT

The FA/BRCA pathway safeguards DNA replication by repairing interstrand crosslinks (ICL) and maintaining replication fork stability. Chromatin structure, which is in part regulated by histones posttranslational modifications (PTMs), has a role in maintaining genomic integrity through stabilization of the DNA replication fork and promotion of DNA repair. An appropriate balance of PTMs, especially acetylation of histones H4 in nascent chromatin, is required to preserve a stable DNA replication fork. To evaluate the acetylation status of histone H4 at the replication fork of FANCA deficient cells, we compared histone acetylation status at the DNA replication fork of isogenic FANCA deficient and FANCA proficient cell lines by using accelerated native immunoprecipitation of nascent DNA (aniPOND) and in situ protein interactions in the replication fork (SIRF) assays. We found basal hypoacetylation of multiple residues of histone H4 in FA replication forks, together with increased levels of Histone Deacetylase 1 (HDAC1). Interestingly, high-dose short-term treatment with mitomycin C (MMC) had no effect over H4 acetylation abundance at the replication fork. However, chemical inhibition of histone deacetylases (HDAC) with Suberoylanilide hydroxamic acid (SAHA) induced acetylation of the FANCA deficient DNA replication forks to levels comparable to their isogenic control counterparts. This forced permanence of acetylation impacted FA cells homeostasis by inducing DNA damage and promoting G2 cell cycle arrest. Altogether, this caused reduced RAD51 foci formation and increased markers of replication stress, including phospho-RPA-S33. Hypoacetylation of the FANCA deficient replication fork, is part of the cellular phenotype, the perturbation of this feature by agents that prevent deacetylation, such as SAHA, have a deleterious effect over the delicate equilibrium they have reached to perdure despite a defective FA/BRCA pathway.


Subject(s)
DNA Damage , DNA Replication , Fanconi Anemia Complementation Group A Protein , Histones , Histones/metabolism , Humans , DNA Replication/drug effects , Acetylation/drug effects , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group A Protein/genetics , Mitomycin/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Vorinostat/pharmacology , Hydroxamic Acids/pharmacology
9.
Eur J Med Chem ; 263: 115935, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37989057

ABSTRACT

A series of hybrid inhibitors, combining pharmacophores of known kinase inhibitors bearing anilino-purines (ruxolitinib, ibrutinib) and benzohydroxamate HDAC inhibitors (nexturastat A), were generated in the present study. The compounds have been synthesized and tested against solid and hematological tumor cell lines. Compounds 4d-f were the most promising in cytotoxicity assays (IC50 ≤ 50 nM) vs. hematological cells and displayed moderate activity in solid tumor models (EC50 = 9.3-21.7 µM). Compound 4d potently inhibited multiple kinase targets of interest for anticancer effects, including JAK2, JAK3, HDAC1, and HDAC6. Molecular dynamics simulations showed that 4d has stable interactions with HDAC and members of the JAK family, with differences in the hinge binding energy conferring selectivity for JAK3 and JAK2 over JAK1. The kinase inhibition profile of compounds 4d-f allows selective cytotoxicity, with minimal effects on non-tumorigenic cells. Moreover, these compounds have favorable pharmacokinetic profiles, with high stability in human liver microsomes (e.g., see t1/2: >120 min for 4f), low intrinsic clearance, and lack of significant inhibition of four major CYP450 isoforms.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Janus Kinases , Purines/pharmacology , Cell Line, Tumor , Cell Proliferation
10.
Mem Inst Oswaldo Cruz ; 118: e230143, 2023.
Article in English | MEDLINE | ID: mdl-38126492

ABSTRACT

BACKGROUND: Tuberculosis (TB) is a major public health problem, which has been aggravated by the alarming growth of drug-resistant tuberculosis. Therefore, the development of a safer and more effective treatment is needed. OBJECTIVES: The aim of this work was repositioning and evaluate histone deacetylases (HDAC) inhibitors- based drugs with potential antimycobacterial activity. METHODS: Using an in silico pharmacological repositioning strategy, three molecules that bind to the catalytic site of histone deacetylase were selected. Pneumocytes type II and macrophages were infected with Mycobacterium tuberculosis and treated with pre-selected HDAC inhibitors (HDACi). Subsequently, the ability of each of these molecules to directly promote the elimination of M. tuberculosis was evaluated by colony-forming unit (CFU)/mL. We assessed the expression of antimicrobial peptides and respiratory burst using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). FINDINGS: Aminoacetanilide (ACE), N-Boc-1,2-phenylenediamine (N-BOC), 1,3-Diphenylurea (DFU), reduce bacillary loads in macrophages and increase the production of ß-defensin-2, LL-37, superoxide dismutase (SOD) 3 and inducible nitric oxide synthase (iNOS). While only the use of ACE in type II pneumocytes decreases the bacterial load through increasing LL-37 expression. Furthermore, the use of ACE and rifampicin inhibited the survival of intracellular multi-drug resistance M. tuberculosis. MAIN CONCLUSIONS: Our data support the usefulness of in silico approaches for drug repositioning to provide a potential adjunctive therapy for TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Rifampin/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Histone Deacetylases
11.
Eur J Med Chem ; 261: 115833, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37797564

ABSTRACT

Pan-HDAC inhibitors exhibit significant inhibitory activity against multiple myeloma, however, their clinical applications have been hampered by substantial toxic side effects. In contrast, selective HDAC6 inhibitors have demonstrated effectiveness in treating multiple myeloma. Compounds belonging to the class of 1H-benzo[d]imidazole hydroxamic acids have been identified as novel HDAC6 inhibitors, with the benzimidazole group serving as a specific linker for these inhibitors. Notably, compound 30 has exhibited outstanding HDAC6 inhibitory activity (IC50 = 4.63 nM) and superior antiproliferative effects against human multiple myeloma cells, specifically RPMI-8226. Moreover, it has been shown to induce cell cycle arrest in the G2 phase and promote apoptosis through the mitochondrial pathway. In a myeloma RPMI-8226 xenograft model, compound 30 has demonstrated significant in vivo antitumor efficacy (T/C = 34.8%) when administered as a standalone drug, with no observable cytotoxicity. These findings underscore the immense potential of compound 30 as a promising therapeutic agent for the treatment of multiple myeloma.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Multiple Myeloma/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Histone Deacetylase 6 , Cell Proliferation , Imidazoles/pharmacology , Imidazoles/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Cell Line, Tumor
12.
Blood Adv ; 7(20): 6339-6350, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37530631

ABSTRACT

Lymphomas are not infrequently associated with the Epstein-Barr virus (EBV), and EBV positivity is linked to worse outcomes in several subtypes. Nanatinostat is a class-I selective oral histone deacetylase inhibitor that induces the expression of lytic EBV BGLF4 protein kinase in EBV+ tumor cells, activating ganciclovir via phosphorylation, resulting in tumor cell apoptosis. This phase 1b/2 study investigated the combination of nanatinostat with valganciclovir in patients aged ≥18 years with EBV+ lymphomas relapsed/refractory to ≥1 prior systemic therapy with no viable curative treatment options. In the phase 1b part, 25 patients were enrolled into 5 dose escalation cohorts to determine the recommended phase 2 dose (RP2D) for phase 2 expansion. Phase 2 patients (n = 30) received RP2D (nanatinostat 20 mg daily, 4 days per week with valganciclovir 900 mg orally daily) for 28-day cycles. The primary end points were safety, RP2D determination (phase 1b), and overall response rate (ORR; phase 2). Overall, 55 patients were enrolled (B-non-Hodgkin lymphoma [B-NHL], [n = 10]; angioimmunoblastic T-cell lymphoma-NHL, [n = 21]; classical Hodgkin lymphoma, [n = 11]; and immunodeficiency-associated lymphoproliferative disorders, [n = 13]). The ORR was 40% in 43 evaluable patients (complete response rate [CRR], 19% [n = 8]) with a median duration of response of 10.4 months. For angioimmunoblastic T-cell lymphoma-NHL (n = 15; all refractory to the last prior therapy), the ORR/CRR ratio was 60%/27%. The most common adverse events were nausea (38% any grade) and cytopenia (grade 3/4 neutropenia [29%], thrombocytopenia [20%], and anemia [20%]). This novel oral regimen provided encouraging efficacy across several EBV+ lymphoma subtypes and warrants further evaluation; a confirmatory phase 2 study (NCT05011058) is underway. This phase 1b/2 study is registered at www.clinicaltrials.gov as #NCT03397706.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Non-Hodgkin , Lymphoma, T-Cell , Lymphoma , Thrombocytopenia , Humans , Adolescent , Adult , Valganciclovir/therapeutic use , Herpesvirus 4, Human , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Neoplasm Recurrence, Local , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma/drug therapy , Thrombocytopenia/pathology
13.
Chem Biol Drug Des ; 102(6): 1367-1386, 2023 12.
Article in English | MEDLINE | ID: mdl-37641461

ABSTRACT

Phthalimides are valuable for synthesis and biological properties. New acetamides 3(a-c) and 4(a-c) were synthesized and characterized as precursors for novel N-aminophalimides 5(a-c) and 6(a-c). Structures of 4a, 5(a-b), and 6(a-b) were confirmed by single crystal X-ray. Docking studies identified compounds with favorable Gibbs free energy values for binding to histone deacetylase 8 (HDAC8), an enzyme targeted for anticancer drug development. These compounds bound to both the orthosteric and allosteric pockets of HDAC8, similar to Trichostatin A (TSA), an HDAC8 inhibitor. 6(a-c) contain hydroxyacetamide moiety as a zinc-binding group, a phthalimide moiety as a capping group, and aminoacetamide moiety as a linker group, which are important for ligand-receptor binding. ΔG values indicated that compounds 5b, 6b, and 6c had higher affinity for HDAC8 in the allosteric pocket compared to TSA. In vitro evaluation of inhibitory activities on HDAC8 revealed that compounds 3(a-c) and 5(a-c) showed similar inhibitory effects (IC50 ) ranging from 0.445 to 0.751 µM. Compounds 6(a-c) showed better affinity, with 6a (IC50 = 28 nM) and 6b (IC50 = 0.18 µM) showing potent inhibitory effects slightly lower than TSA (IC50 = 26 nM). These findings suggest that the studied compounds hold promise as potential candidates for further biological investigations.


Subject(s)
Histone Deacetylase Inhibitors , Hydroxamic Acids , Amino Acids , Histone Deacetylase Inhibitors/chemistry , Hydroxamic Acids/chemistry , Models, Theoretical , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
14.
Future Med Chem ; 15(3): 291-311, 2023 02.
Article in English | MEDLINE | ID: mdl-36892013

ABSTRACT

The silent information regulator (sirtuin) is a family of enzymes involved in epigenetic processes with lysine deacetylase activity, having as substrates histones and other proteins. They participate in a wide range of cellular and pathologic processes, such as gene expression, cell division and motility, oxidative-induced stress management, metabolic control and carcinogenesis, among others, thus presenting as interesting therapeutic targets. In this article, the authors describe the inhibitory mechanisms and binding modes of the human sirtuin 2 (hSIRT2) inhibitors, which had their complexes with the enzyme structurally characterized. The results help pave the way for the rational designing of new hSIRT2 inhibitors and the development of novel therapeutic agents targeting this epigenetic enzyme.


Subject(s)
Histone Deacetylase Inhibitors , Sirtuin 2 , Humans , Histone Deacetylase Inhibitors/chemistry , Histones/metabolism
15.
Chem Biol Interact ; 375: 110429, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36870467

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that affects several elderly people per years. AD is a pathology of multifactorial etiology, resulting from multiple environmental and genetic determinants. However, there is no effective pharmacological alternative for the treatment of this illness. In this sense, the purpose of current study was to characterize the mechanisms by which Aß1-42 injection via intracerebroventricular induces neurobehavioral changes in a time-course curve. In addition, suberoylanilide hydroxamic acid (SAHA) inhibitor of histone deacetylase (HDAC) was used to investigate the involvement of epigenetic modifications Aß1-42-caused in aged female mice. In general manner, Aß1-42 injection induced a major neurochemical disturbance in hippocampus and prefrontal cortex of animals and a serious impairment of memory. Overall, SAHA treatment attenuated neurobehavioral changes caused by Aß1-42 injection in aged female mice. The subchronic effects presented of SAHA were through modulation of HDAC activity, regulation of brain-derived neurotrophic factor (BDNF) levels and expression of BDNF mRNA, accompanied by unlocking cAMP/PKA/pCREB pathway in hippocampus and prefrontal cortex of animals.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Female , Mice , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Neurodegenerative Diseases/drug therapy , Vorinostat
16.
Genes (Basel) ; 14(2)2023 01 29.
Article in English | MEDLINE | ID: mdl-36833274

ABSTRACT

Since Late-onset Alzheimer's disease (LOAD) derives from a combination of genetic variants and environmental factors, epigenetic modifications have been predicted to play a role in the etiopathology of LOAD. Along with DNA methylation, histone modifications have been proposed as the main epigenetic modifications that contribute to the pathologic mechanisms of LOAD; however, little is known about how these mechanisms contribute to the disease's onset or progression. In this review, we highlighted the main histone modifications and their functional role, including histone acetylation, histone methylation, and histone phosphorylation, as well as changes in such histone modifications that occur in the aging process and mainly in Alzheimer's disease (AD). Furthermore, we pointed out the main epigenetic drugs tested for AD treatment, such as those based on histone deacetylase (HDAC) inhibitors. Finally, we remarked on the perspectives around the use of such epigenetics drugs for treating AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Histones/genetics , Histone Code , DNA Methylation , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology
17.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1211-1222, 2023 06.
Article in English | MEDLINE | ID: mdl-36694011

ABSTRACT

Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Triple negative breast cancer (TNBC) is the most aggressive form of BC being with the worst prognosis and the worst survival rates. There is no specific pharmacological target for the treatment of TNBC; conventional therapy includes the use of non-specific chemotherapy that generally has a poor prognosis. Therefore, the search of effective therapies against to TNBC continues at both preclinical and clinical level. In this sense, the exploration of different pharmacological targets is a continue task that pave the way to epigenetic modulation using novel small molecules. Lately, the inhibition of histone deacetylases (HDACs) has been explored to treat different BC, including TNBC. HDACs remove the acetyl groups from the ɛ-amino lysine resides on histone and non-histone proteins. In particular, the inhibition of HDAC6 has been suggested to be useful for the treatment of TNBC due to it is overexpressed in TNBC. Therefore, in this work, an HDAC6 selective inhibitor, the (S)-4-butyl-N-(1-(hydroxyamino)-3-(naphthalen-1-yl)-1-oxopropan-2-yl) benzamide (YSL-109), was assayed on TNBC cell line (MDA-MB231) showing an antiproliferative activity (IC50 = 50.34 ± 1.11 µM), whereas on fibroblast, it was lesser toxic. After corroborating the in vitro antiproliferative activity of YSL-109 in TNBC, the toxicological profile was explored using combined approach with in silico tools and experimental assays. YSL-109 shows moderate mutagenic activity on TA-98 strain at 30 and 100 µM in the Ames test, whereas YSL-109 did not show in vivo genotoxicity and its oral acute toxicity (LD50) in CD-1 female mice was higher than 2000 mg/kg, which is in agreement with our in silico predictions. According to these results, YSL-109 represents an interesting compound to be explored for the treatment of TNBC under preclinical in vivo models.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Female , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Histone Deacetylase Inhibitors , Cell Line, Tumor , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
18.
Neuromolecular Med ; 25(1): 64-74, 2023 03.
Article in English | MEDLINE | ID: mdl-35716340

ABSTRACT

Medulloblastoma (MB) is a malignant brain tumor that afflicts mostly children and adolescents and presents four distinct molecular subgroups, known as WNT, SHH, Group 3, and Group 4. ZEB1 is a transcription factor that promotes the expression of mesenchymal markers while restraining expression of epithelial and polarity genes. Because of ZEB1 involvement in cerebellum development, here we investigated the role of ZEB1 in MB. We found increased expression of ZEB1 in MB tumor samples compared to normal cerebellar tissue. Expression was higher in the SHH subgroup when compared to all other MB molecular subgroups. High ZEB1 expression was associated with poor prognosis in Group 3 and Group 4, whereas in patients with WNT tumors poorer prognosis were related to lower ZEB1 expression. There was a moderate correlation between ZEB1 and MYC expression in Group 3 and Group 4 MB. Treatment with the immunomodulator and histone deacetylase (HDAC) inhibitor fingolimod (FTY720) reduced ZEB1 expression specifically in D283 cells, which are representative of Group 3 and Group 4 MB. These findings reveal novel subgroup-specific associations of ZEB1 expression with survival in patients with MB and suggest that ZEB1 expression can be reduced by pharmacological agents that target HDAC activity.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Child , Adolescent , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Cerebellum , Histone Deacetylase Inhibitors/therapeutic use , Fingolimod Hydrochloride/therapeutic use , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
19.
Acta Cir Bras ; 37(5): e370503, 2022.
Article in English | MEDLINE | ID: mdl-35894303

ABSTRACT

PURPOSE: To investigate the effect of givinostat treatment in acetic acid-induced ulcerative colitis model in rats. METHODS: Thirty male Wistar albino rats were used. Rats were randomly divided into three equal groups, and colitis was induced on 20 rats by rectal administration of %4 solutions of acetic acid. Twenty rats with colitis were randomly divided into two groups. %0.9 NaCl (saline) solution was administered intraperitoneally to the first group of rats (saline group, n=10) at the dose of 1 mL/kg/day. Givinostat was administered intraperitoneally to the second group rats (Givinostat group, n=10) at the dose of 5 mg/kg/day. Samples were collected for biochemical analysis. Colon was removed for histopathological and biochemical examinations. RESULTS: Plasma tumor necrosis factor-α (TNF-α), pentraxin-3 (PTX-3), and malondialdehyde levels were significantly decreased in the givinostat group compared to the saline group (p<0.05, p<0.001, and p<0.001 respectively; p<0.001, p<0.001, and p<0.001, respectively). Colon TNF-α and prostaglandin F2 alpha (PGF-2) levels were significantly decreased (p<0.05, and p<0.001, respectively). The givinostat group had a significantly lower histologic score than saline group (p<0.001, and p<0.001, respectively). CONCLUSIONS: Givinostat, a good protector and regenerator of tissue and an anti-inflammatory agent, may be involved in the treatment of colitis in the future.


Subject(s)
Colitis, Ulcerative , Colitis , Acetic Acid/adverse effects , Animals , Carbamates , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colon/pathology , Histone Deacetylase Inhibitors , Male , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/analysis
20.
Future Med Chem ; 14(10): 745-766, 2022 05.
Article in English | MEDLINE | ID: mdl-35543381

ABSTRACT

Cancer is the second most common cause of death worldwide. It can easily acquire resistance to treatments, demanding new therapeutic strategies, such as simultaneous inhibition of kinase and HDAC enzymes with hybrid inhibitors. Different approaches to this have varied according to their targets, with a few common trends, such as the usage of heterocycle scaffolds for kinase interaction, especially pyrimidine and quinazolines, and hydroxamic acids and benzamides for HDAC inhibition. Besides the hybrid compounds developed focusing on the inhibition tyrosine kinase and receptor tyrosine kinase, many advances have occurred in the development of serine-threonine kinase/HDAC and lipid kinase/HDAC novel compounds. Here, the latest strategies employed in this research area will be reviewed, alongside trends in inhibitor design, and observed gaps will be punctuated.


Subject(s)
Antineoplastic Agents , Histone Deacetylase Inhibitors , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Protein-Tyrosine Kinases , Quinazolines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL