Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.276
Filter
1.
BMC Med Educ ; 24(1): 498, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704522

ABSTRACT

BACKGROUND: Mixed reality offers potential educational advantages in the delivery of clinical teaching. Holographic artefacts can be rendered within a shared learning environment using devices such as the Microsoft HoloLens 2. In addition to facilitating remote access to clinical events, mixed reality may provide a means of sharing mental models, including the vertical and horizontal integration of curricular elements at the bedside. This study aimed to evaluate the feasibility of delivering clinical tutorials using the Microsoft HoloLens 2 and the learning efficacy achieved. METHODS: Following receipt of institutional ethical approval, tutorials on preoperative anaesthetic history taking and upper airway examination were facilitated by a tutor who wore the HoloLens device. The tutor interacted face to face with a patient and two-way audio-visual interaction was facilitated using the HoloLens 2 and Microsoft Teams with groups of students who were located in a separate tutorial room. Holographic functions were employed by the tutor. The tutor completed the System Usability Scale, the tutor, technical facilitator, patients, and students provided quantitative and qualitative feedback, and three students participated in semi-structured feedback interviews. Students completed pre- and post-tutorial, and end-of-year examinations on the tutorial topics. RESULTS: Twelve patients and 78 students participated across 12 separate tutorials. Five students did not complete the examinations and were excluded from efficacy calculations. Student feedback contained 90 positive comments, including the technology's ability to broadcast the tutor's point-of-vision, and 62 negative comments, where students noted issues with the audio-visual quality, and concerns that the tutorial was not as beneficial as traditional in-person clinical tutorials. The technology and tutorial structure were viewed favourably by the tutor, facilitator and patients. Significant improvement was observed between students' pre- and post-tutorial MCQ scores (mean 59.2% Vs 84.7%, p < 0.001). CONCLUSIONS: This study demonstrates the feasibility of using the HoloLens 2 to facilitate remote bedside tutorials which incorporate holographic learning artefacts. Students' examination performance supports substantial learning of the tutorial topics. The tutorial structure was agreeable to students, patients and tutor. Our results support the feasibility of offering effective clinical teaching and learning opportunities using the HoloLens 2. However, the technical limitations and costs of the device are significant, and further research is required to assess the effectiveness of this tutorial format against in-person tutorials before wider roll out of this technology can be recommended as a result of this study.


Subject(s)
Students, Medical , Humans , Male , Female , Computer-Assisted Instruction/methods , Education, Medical, Undergraduate/methods , Feasibility Studies , Educational Measurement , Clinical Competence , Adult , Holography , Medical History Taking
2.
Medicine (Baltimore) ; 103(21): e38233, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788017

ABSTRACT

To explore the effect of holographic Guasha therapy on the Pittsburg Sleep Quality Index (PSQI) and Hamilton Anxiety Rating Scale (HAMA) in older adults with hypertension living in the community. This prospective study was conducted from July 2019 to December 2020. Older adults with hypertension (systolic pressure ≥ 140 mm Hg, diastolic pressure ≥ 90 mm Hg) were divided into the control and Guasha groups. The PSQI and HAMA were assessed before and after 4 weeks of intervention. 62 patients were enrolled, with 31/group (Guasha: 72.4 ±â€…6.9 years, 23.0 ±â€…3.1 kg/m2; control: 71.4 ±â€…6.3 years; 22.9 ±â€…2.9 kg/m2). The total PSQI score did not decrease in the control group after 4 weeks (from 14.8 ±â€…1.2 to 14.8 ±â€…1.8, P = .498) but decreased in the Guasha group (from 14.9 ±â€…1.1 to 6.8 ±â€…3.5, P < .001). All PSQI subscores decreased in the Guasha group after 4 weeks of Guasha intervention (all P < .05), except for the use of sleep medication, since the use of such drugs was an exclusion criterion. The HAMA index scores did not change in the control or Guasha group (both P > .05). Holographic Guasha appears to achieve better sleep outcomes than conventional treatment in improving the sleep quality of older adults with hypertension living in the community. The participants were not randomly assigned to the treatments, and the results should be confirmed in a formal trial.


Subject(s)
Holography , Hypertension , Sleep Quality , Humans , Aged , Hypertension/drug therapy , Male , Female , Prospective Studies , Holography/methods , Treatment Outcome
3.
Nat Commun ; 15(1): 4109, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750038

ABSTRACT

Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Lipid Bilayers/chemistry , Holography/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Microfluidics/methods , Microfluidics/instrumentation , Female , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cell Line, Tumor , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Biomarkers/analysis
4.
Eur Radiol Exp ; 8(1): 57, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724831

ABSTRACT

BACKGROUND: We compared computed tomography (CT) images and holograms (HG) to assess the number of arteries of the lung lobes undergoing lobectomy and assessed easiness in interpretation by radiologists and thoracic surgeons with both techniques. METHODS: Patients scheduled for lobectomy for lung cancer were prospectively included and underwent CT for staging. A patient-specific three-dimensional model was generated and visualized in an augmented reality setting. One radiologist and one thoracic surgeon evaluated CT images and holograms to count lobar arteries, having as reference standard the number of arteries recorded at surgery. The easiness of vessel identification was graded according to a Likert scale. Wilcoxon signed-rank test and κ statistics were used. RESULTS: Fifty-two patients were prospectively included. The two doctors detected the same number of arteries in 44/52 images (85%) and in 51/52 holograms (98%). The mean difference between the number of artery branches detected by surgery and CT images was 0.31 ± 0.98, whereas it was 0.09 ± 0.37 between surgery and HGs (p = 0.433). In particular, the mean difference in the number of arteries detected in the upper lobes was 0.67 ± 1.08 between surgery and CT images and 0.17 ± 0.46 between surgery and holograms (p = 0.029). Both radiologist and surgeon showed a higher agreement for holograms (κ = 0.99) than for CT (κ = 0.81) and found holograms easier to evaluate than CTs (p < 0.001). CONCLUSIONS: Augmented reality by holograms is an effective tool for preoperative vascular anatomy assessment of lungs, especially when evaluating the upper lobes, more prone to anatomical variations. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04227444 RELEVANCE STATEMENT: Preoperative evaluation of the lung lobe arteries through augmented reality may help the thoracic surgeons to carefully plan a lobectomy, thus contributing to optimize patients' outcomes. KEY POINTS: • Preoperative assessment of the lung arteries may help surgical planning. • Lung artery detection by augmented reality was more accurate than that by CT images, particularly for the upper lobes. • The assessment of the lung arterial vessels was easier by using holograms than CT images.


Subject(s)
Augmented Reality , Holography , Lung Neoplasms , Pulmonary Artery , Tomography, X-Ray Computed , Humans , Female , Male , Tomography, X-Ray Computed/methods , Aged , Prospective Studies , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Middle Aged , Holography/methods , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/anatomy & histology , Imaging, Three-Dimensional , Reference Standards , Lung/diagnostic imaging , Lung/blood supply , Lung/surgery
5.
Cells ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667312

ABSTRACT

The assessment of nanoparticle cytotoxicity is challenging due to the lack of customized and standardized guidelines for nanoparticle testing. Nanoparticles, with their unique properties, can interfere with biochemical test methods, so multiple tests are required to fully assess their cellular effects. For a more reliable and comprehensive assessment, it is therefore imperative to include methods in nanoparticle testing routines that are not affected by particles and allow for the efficient integration of additional molecular techniques into the workflow. Digital holographic microscopy (DHM), an interferometric variant of quantitative phase imaging (QPI), has been demonstrated as a promising method for the label-free assessment of the cytotoxic potential of nanoparticles. Due to minimal interactions with the sample, DHM allows for further downstream analyses. In this study, we investigated the capabilities of DHM in a multimodal approach to assess cytotoxicity by directly comparing DHM-detected effects on the same cell population with two downstream biochemical assays. Therefore, the dry mass increase in RAW 264.7 macrophages and NIH-3T3 fibroblast populations measured by quantitative DHM phase contrast after incubation with poly(alkyl cyanoacrylate) nanoparticles for 24 h was compared to the cytotoxic control digitonin, and cell culture medium control. Viability was then determined using a metabolic activity assay (WST-8). Moreover, to determine cell death, supernatants were analyzed for the release of the enzyme lactate dehydrogenase (LDH assay). In a comparative analysis, in which the average half-maximal effective concentration (EC50) of the nanocarriers on the cells was determined, DHM was more sensitive to the effect of the nanoparticles on the used cell lines compared to the biochemical assays.


Subject(s)
Nanoparticles , Animals , Mice , NIH 3T3 Cells , Nanoparticles/toxicity , Nanoparticles/chemistry , RAW 264.7 Cells , Cell Survival/drug effects , Holography/methods , Quantitative Phase Imaging
6.
PLoS One ; 19(4): e0301182, 2024.
Article in English | MEDLINE | ID: mdl-38669245

ABSTRACT

The three-dimensional swimming tracks of motile microorganisms can be used to identify their species, which holds promise for the rapid identification of bacterial pathogens. The tracks also provide detailed information on the cells' responses to external stimuli such as chemical gradients and physical objects. Digital holographic microscopy (DHM) is a well-established, but computationally intensive method for obtaining three-dimensional cell tracks from video microscopy data. We demonstrate that a common neural network (NN) accelerates the analysis of holographic data by an order of magnitude, enabling its use on single-board computers and in real time. We establish a heuristic relationship between the distance of a cell from the focal plane and the size of the bounding box assigned to it by the NN, allowing us to rapidly localise cells in three dimensions as they swim. This technique opens the possibility of providing real-time feedback in experiments, for example by monitoring and adapting the supply of nutrients to a microbial bioreactor in response to changes in the swimming phenotype of microbes, or for rapid identification of bacterial pathogens in drinking water or clinical samples.


Subject(s)
Deep Learning , Holography , Microscopy , Holography/methods , Microscopy/methods , Imaging, Three-Dimensional/methods , Bacteria , Quantitative Phase Imaging
7.
J Acoust Soc Am ; 155(4): 2875-2890, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38682913

ABSTRACT

Numerical simulations of head-related transfer functions (HRTFs) conventionally assume a rigid boundary condition for the pinna. The human pinna, however, is an elastic deformable body that can vibrate due to incident acoustic waves. This work investigates how sound-induced vibrations of the pinna can affect simulated HRTF magnitudes. The work will motivate the research question by measuring the sound-induced vibrational patterns of an artificial pinna with a high-speed holographic interferometric system. Then, finite element simulations are used to determine HRTFs for a tabletop model of the B&K 5128 head and torso simulator for a number of directions. Two scenarios are explored: one where the pinna is modeled as perfectly rigid, and another where the pinna is modeled as linear elastic with material properties close to that of auricular cartilage. The findings suggest that pinna vibrations have negligible effects on HRTF magnitudes up to 5 kHz. The same conclusion, albeit with less certainty, is drawn for higher frequencies. Finally, the importance of the elastic domain's material properties is emphasized and possible implications for validation studies on dummy heads 1as well as the limitations of the present work are discussed in detail.


Subject(s)
Computer Simulation , Ear Auricle , Finite Element Analysis , Head , Sound , Vibration , Humans , Ear Auricle/physiology , Ear Auricle/anatomy & histology , Head/physiology , Head/anatomy & histology , Holography/methods , Interferometry/methods , Elasticity , Numerical Analysis, Computer-Assisted , Models, Biological , Motion , Acoustic Stimulation
8.
Lab Chip ; 24(10): 2736-2746, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38660758

ABSTRACT

The incidence of urothelial carcinoma continues to rise annually, particularly among the elderly. Prompt diagnosis and treatment can significantly enhance patient survival and quality of life. Urine cytology remains a widely-used early screening method for urothelial carcinoma, but it still has limitations including sensitivity, labor-intensive procedures, and elevated cost. In recent developments, microfluidic chip technology offers an effective and efficient approach for clinical urine specimen analysis. Digital holographic microscopy, a form of quantitative phase imaging technology, captures extensive data on the refractive index and thickness of cells. The combination of microfluidic chips and digital holographic microscopy facilitates high-throughput imaging of live cells without staining. In this study, digital holographic flow cytometry was employed to rapidly capture images of diverse cell types present in urine and to reconstruct high-precision quantitative phase images for each cell type. Then, various machine learning algorithms and deep learning models were applied to categorize these cell images, and remarkable accuracy in cancer cell identification was achieved. This research suggests that the integration of digital holographic flow cytometry with artificial intelligence algorithms offers a promising, precise, and convenient approach for early screening of urothelial carcinoma.


Subject(s)
Deep Learning , Flow Cytometry , Holography , Machine Learning , Humans , Lab-On-A-Chip Devices , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/urine
9.
J Biomed Opt ; 29(5): 052920, 2024 May.
Article in English | MEDLINE | ID: mdl-38495527

ABSTRACT

Significance: The interference-holographic method of phase scanning of fields of scattered laser radiation is proposed. The effectiveness of this method for the selection of variously dispersed components is demonstrated. This method made it possible to obtain polarization maps of biological tissues at a high level of depolarized background. The scale-selective analysis of such maps was used to determine necrotic changes in the optically anisotropic architectonics of biological tissues. Objective: Development and experimental approbation of layered phase polarimetry of repeatedly scattered fields in diffuse layers of biological tissues. Application of scale-selective processing of the found coordinate distributions of polarization states in various phase sections of object fields. Determination of criteria (markers) for histological differential diagnosis of the causes of necrotic changes in optical anisotropy of biological tissues. Approach: We used a synthesis of three instrumental and analytical methods. Polarization-interference registration of laser radiation scattered by a sample of biological tissue. Digital holographic reconstruction and layered phase scanning of distributions of complex amplitudes of the object field. Analytical determination of polarization maps of various phase cross-sections of repeatedly scattered radiation. Application of wavelet analysis of the distributions of polarization states in the phase plane of a single scattered component of an object field. Determination of criteria (markers) for differential diagnosis of necrotic changes in biological tissues with different morphological structure. Two cases are considered. The first case is the myocardium of those who died as a result of coronary heart disease and acute coronary insufficiency. The second case is lung tissue samples of deceased with bronchial asthma and fibrosis. Results: A method of polarization-interference mapping of diffuse object fields of biological tissues has been developed and experimentally implemented. With the help of digital holographic reconstruction of the distributions of complex amplitudes, polarization maps in various phase sections of a diffuse object field are found. The wavelet analysis of azimuth and ellipticity distributions of polarization in the phase plane of a single scattered component of laser radiation is used. Scenarios for changing the amplitude of the wavelet coefficients for different scales of the scanning salt-like MHAT function are determined. Statistical moments of the first to fourth orders are determined for the distributions of the amplitudes of the wavelet coefficients of the azimuth maps and the ellipticity of polarization. As a result, diagnostic markers of necrotic changes in the myocardium and lung tissue were determined. The statistical criteria found are the basis for determining the accuracy of their differential diagnosis of various necrotic states of biological tissues. Conclusions: Necrotic changes caused by "coronary artery disease-acute coronary insufficiency" and "asthma-pulmonary fibrosis" were demonstrated by the method of wavelet differentiation with polarization interference with excellent accuracy.


Subject(s)
Holography , Lasers , Spectrum Analysis , Histological Techniques , Myocardium
10.
No Shinkei Geka ; 52(2): 248-253, 2024 Mar.
Article in Japanese | MEDLINE | ID: mdl-38514113

ABSTRACT

Recently, three-dimensional(3D)holograms from mixed-reality(MR)devices have become available in the medical field. 3D holographic images can provide immersive and intuitive information that has been reported to be very useful for preoperative simulations. Compared with conventional 3D images on a two-dimensional(2D)monitor, 3D holograms offer a higher level of realism, allowing observation of the images anytime and anywhere if the MR device is operational. Even during surgery, surgeons can check realistic 3D holograms in front of them, above the surgical field, without having to turn their heads toward a 2D monitor on the wall. 3D holograms can also be used for neuronavigation if the hologram is tracked to the patient's real head. This method can be defined as 3D augmented reality(AR)navigation, which shows a hologram of a target, such as a tumor or aneurysm, inside the head and brain. In the future, interventions using these techniques with 3D holograms from MR devices are expected to evolve and develop new types of treatments for endoscopic surgery or fluoroscopy-guided endovascular surgery.


Subject(s)
Augmented Reality , Holography , Surgery, Computer-Assisted , Humans , Surgery, Computer-Assisted/methods , Neuronavigation/methods , Imaging, Three-Dimensional/methods , Holography/methods
11.
Sensors (Basel) ; 24(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38339437

ABSTRACT

Quantitative phase imaging by digital holographic microscopy (DHM) is a nondestructive and label-free technique that has been playing an indispensable role in the fields of science, technology, and biomedical imaging. The technique is competent in imaging and analyzing label-free living cells and investigating reflective surfaces. Herein, we introduce a new configuration of a wide field-of-view single-shot common-path off-axis reflective DHM for the quantitative phase imaging of biological cells that leverages several advantages, including being less-vibration sensitive to external perturbations due to its common-path configuration, also being compact in size, simple in optical design, highly stable, and cost-effective. A detailed description of the proposed DHM system, including its optical design, working principle, and capability for phase imaging, is presented. The applications of the proposed system are demonstrated through quantitative phase imaging results obtained from the reflective surface (USAF resolution test target) as well as transparent samples (living plant cells). The proposed system could find its applications in the investigation of several biological specimens and the optical metrology of micro-surfaces.


Subject(s)
Holography , Holography/methods , Quantitative Phase Imaging
12.
Sci Rep ; 14(1): 2760, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332203

ABSTRACT

Nearly half of cancer patients who receive standard-of-care treatments fail to respond to their first-line chemotherapy, demonstrating the pressing need for improved methods to select personalized cancer therapies. Low-coherence digital holography has the potential to fill this need by performing dynamic contrast OCT on living cancer biopsies treated ex vivo with anti-cancer therapeutics. Fluctuation spectroscopy of dynamic light scattering under conditions of holographic phase stability captures ultra-low Doppler frequency shifts down to 10 mHz caused by light scattering from intracellular motions. In the comparative preclinical/clinical trials presented here, a two-species (human and canine) and two-cancer (esophageal carcinoma and B-cell lymphoma) analysis of spectral phenotypes identifies a set of drug response characteristics that span species and cancer type. Spatial heterogeneity across a centimeter-scale patient biopsy sample is assessed by measuring multiple millimeter-scale sub-samples. Improved predictive performance is achieved for chemoresistance profiling by identifying red-shifted sub-samples that may indicate impaired metabolism and removing them from the prediction analysis. These results show potential for using biodynamic imaging for personalized selection of cancer therapy.


Subject(s)
Holography , Neoplasms , Humans , Animals , Dogs , Dynamic Light Scattering , Precision Medicine , Quantitative Phase Imaging , Neoplasms/drug therapy , Holography/methods
13.
Int J Mol Sci ; 25(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38397075

ABSTRACT

We investigate Quantum Electrodynamics corresponding to the holographic brain theory introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular conformational states of water) for coherent light sources of holograms. Next, we estimate memory capacity of a brain neocortex, and adopt binary holograms to manipulate optical information. Finally, we introduce a control theory to manipulate holograms involving biological water's molecular conformational states. We show how a desired waveform in holography is achieved in a hierarchical model using numerical simulations.


Subject(s)
Holography , Humans , Brain , Water
14.
Sci Data ; 11(1): 3, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168104

ABSTRACT

Digital holographic microscopy (DHM) is an intriguing medical diagnostic tool due to its label-free and quantitative nature, providing high-contrast images of phase samples. By capturing both intensity and phase information, DHM enables the numerical reconstruction of quantitative phase images. However, the lateral resolution is limited by the diffraction limit, which prompted the recent suggestion of microsphere-assisted DHM to enhance the DHM resolution straightforwardly. The use of such a technique as a medical diagnostic tool requires testing and validation of the proposed assays to prove their feasibility and viability. This paper publishes 760 and 609 microsphere-assisted DHM images of normal and thalassemic red blood cells obtained from a normal and thalassemic male individual, respectively.


Subject(s)
Holography , Thalassemia , Humans , Male , Holography/methods , Thalassemia/pathology
15.
J Microsc ; 294(1): 5-13, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38196346

ABSTRACT

Quantitative phase imaging (QPI) is a powerful tool for label-free visualisation of living cells. Here, we compare two QPI microscopes - the Telight Q-Phase microscope and the Nanolive 3D Cell Explorer-fluo microscope. Both systems provide unbiased information about cell morphology, such as individual cell dry mass, perimeter and area. The Q-Phase microscope uses artefact-free, coherence-controlled holographic imaging technology to visualise cells in real time with minimal phototoxicity. The 3D Cell Explorer-fluo employs laser-based holotomography to reconstruct 3D images of living cells, visualising their internal structures and dynamics. Here, we analysed the strengths and limitations of both microscopes when examining two morphologically distinct cell lines - the cuboidal epithelial MDCK cells which form multicellular clusters and solitary growing Rat2 fibroblasts. We focus mainly on the ability of the devices to generate images suitable for single-cell segmentation by the built-in software, and we discuss the segmentation results and quantitative data generated from the segmented images. We show that both microscopes offer slightly different advantages, and the choice between them depends on the specific requirements and goals of the user.


Subject(s)
Holography , Microscopy , Microscopy/methods , Quantitative Phase Imaging , Cell Line , Holography/methods , Lasers
16.
Lab Chip ; 24(4): 924-932, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38264771

ABSTRACT

Nowadays, label-free imaging flow cytometry at the single-cell level is considered the stepforward lab-on-a-chip technology to address challenges in clinical diagnostics, biology, life sciences and healthcare. In this framework, digital holography in microscopy promises to be a powerful imaging modality thanks to its multi-refocusing and label-free quantitative phase imaging capabilities, along with the encoding of the highest information content within the imaged samples. Moreover, the recent achievements of new data analysis tools for cell classification based on deep/machine learning, combined with holographic imaging, are urging these systems toward the effective implementation of point of care devices. However, the generalization capabilities of learning-based models may be limited from biases caused by data obtained from other holographic imaging settings and/or different processing approaches. In this paper, we propose a combination of a Mask R-CNN to detect the cells, a convolutional auto-encoder, used to the image feature extraction and operating on unlabelled data, thus overcoming the bias due to data coming from different experimental settings, and a feedforward neural network for single cell classification, that operates on the above extracted features. We demonstrate the proposed approach in the challenging classification task related to the identification of drug-resistant endometrial cancer cells.


Subject(s)
Algorithms , Holography , Flow Cytometry , Image Processing, Computer-Assisted/methods , Microscopy , Holography/methods
17.
J Biophotonics ; 17(3): e202300355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010123

ABSTRACT

We propose a laser heterodyne digital holography microscopy system based on a moving grating, which uses the Doppler principle between a moving grating and beam to achieve a low-frequency bias between the diffracted beams, abandoning traditional heterodyne digital holography that requires multiple acousto-optic modulators. The dynamic phase distribution obtained using the laser heterodyne digital holography phase-reconstruction algorithm was more realistic and analyzable than the results of the angular spectrum algorithm. The structure and algorithm were used to capture the shape characteristics of mouse fibroblasts after ~2 h of incubation (37°C, 5% CO2), and the dynamic phase distribution of the cells was monitored in real-time during the attachment process. The system proposed in this study, with its high spatial resolution and high-precision phase measurement capability, is suitable for both static and live cells.


Subject(s)
Holography , Mice , Animals , Holography/methods , Quantitative Phase Imaging , Microscopy/methods , Light , Eye
18.
Small ; 20(16): e2304564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009767

ABSTRACT

Unknown particle screening-including virus and nanoparticles-are keys in medicine, industry, and also in water pollutant determination. Here, RYtov MIcroscopy for Nanoparticles Identification (RYMINI) is introduced, a staining-free, non-invasive, and non-destructive optical approach that is merging holographic label-free 3D tracking with high-sensitivity quantitative phase imaging into a compact optical setup. Dedicated to the identification and then characterization of single nano-object in solution, it is compatible with highly demanding environments, such as level 3 biological laboratories, with high resilience to external source of mechanical and optical noise. Metrological characterization is performed at the level of each single particle on both absorbing and transparent particles as well as on immature and infectious HIV, SARS-CoV-2 and extracellular vesicles in solution. The capability of RYMINI to determine the nature, concentration, size, complex refractive index and mass of each single particle without knowledge or model of the particles' response is demonstrated. The system surpasses 90% accuracy for automatic identification between dielectric/metallic/biological nanoparticles and ≈80% for intraclass chemical determination of metallic and dielectric. It falls down to 50-70% for type determination inside the biological nanoparticle's class.


Subject(s)
Holography , Metal Nanoparticles , Nanoparticles , Viruses , Nanoparticles/chemistry , Microscopy/methods
19.
Article in English | MEDLINE | ID: mdl-38083752

ABSTRACT

An Augmented Reality (AR) system based on the holographic projection of the relevant anatomic structures is proposed for auxiliary visualization during surgeries. The current two-dimensional visualization systems require the surgeons to mentally extract the associated three-dimensional information during the interventions, which entails risks and complications. This work shows an AR holographic projection system for real-time three-dimensional representation of the relevant surgical information, thus overcoming this problem. As an initial proof of concept, the system is experimentally assessed as potential surgery training tool.Clinical Relevance- This work explores the potential of AR holographic projection systems for intraoperative assistance to the surgical team, starting from its possible use as surgery training and planning tool.


Subject(s)
Augmented Reality , Holography , Surgery, Computer-Assisted
20.
Opt Express ; 31(23): 39222-39238, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38018006

ABSTRACT

Two decades after its introduction, optogenetics - a biological technique to control the activity of neurons or other cell types with light - remains a cutting edge and promising tool to study biological processes. Its increasing usage in research varies widely from causally exploring biological mechanisms and neural computations, to neurostimulation and sensory restauration. To stimulate neurons in the brain, a variety of approaches have been developed to generate precise spatiotemporal light patterns. Yet certain constrains still exists in the current optical techniques to activate a neuronal population with both cellular resolution and millisecond precision. Here, we describe an experimental setup allowing to stimulate a few tens of neurons in a plane at sub-millisecond rates using 2-photon activation. A liquid crystal on silicon spatial light modulator (LCoS-SLM) was used to generate spatial patterns in 2 dimensions. The image of the patterns was formed on the plane of a digital micromirror device (DMD) that was used as a fast temporal modulator of each region of interest. Using fluorescent microscopy and patch-clamp recording of neurons in culture expressing the light-gated ion channels, we characterized the temporal and spatial resolution of the microscope. We described the advantages of combining the LCoS-SLM with the DMD to maximize the temporal precision, modulate the illumination amplitude, and reduce background activation. Finally, we showed that this approach can be extended to patterns in 3 dimensions. We concluded that the methodology is well suited to address important questions about the role of temporal information in neuronal coding.


Subject(s)
Holography , Photons , Photic Stimulation/methods , Holography/methods , Neurons , Brain
SELECTION OF CITATIONS
SEARCH DETAIL
...