Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.291
Filter
1.
BMJ ; 386: q1456, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38950940
2.
J Biomed Opt ; 29(7): 076502, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006313

ABSTRACT

Significance: In in-line digital holographic microscopy (DHM), twin-image artifacts pose a significant challenge, and reduction or complete elimination is essential for object reconstruction. Aim: To facilitate object reconstruction using a single hologram, significantly reduce inaccuracies, and avoid iterative processing, a digital holographic reconstruction algorithm called phase-support constraint on phase-only function (PCOF) is presented. Approach: In-line DHM simulations and tabletop experiments employing the sliding-window approach are used to compute the arithmetic mean and variance of the phase values in the reconstructed image. A support constraint mask, through variance thresholding, effectively enabled twin-image artifacts. Results: Quantitative evaluations using metrics such as mean squared error, peak signal-to-noise ratio, and mean structural similarity index show PCOF's superior capability in eliminating twin-image artifacts and achieving high-fidelity reconstructions compared with conventional methods such as angular spectrum and iterative phase retrieval methods. Conclusions: PCOF stands as a promising approach to in-line digital holographic reconstruction, offering a robust solution to mitigate twin-image artifacts and enhance the fidelity of reconstructed objects.


Subject(s)
Algorithms , Artifacts , Holography , Image Processing, Computer-Assisted , Holography/methods , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio , Microscopy/methods
4.
Proc Natl Acad Sci U S A ; 121(26): e2402200121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885384

ABSTRACT

Advancing our understanding of brain function and developing treatments for neurological diseases hinge on the ability to modulate neuronal groups in specific brain areas without invasive techniques. Here, we introduce Airy-beam holographic sonogenetics (AhSonogenetics) as an implant-free, cell type-specific, spatially precise, and flexible neuromodulation approach in freely moving mice. AhSonogenetics utilizes wearable ultrasound devices manufactured using 3D-printed Airy-beam holographic metasurfaces. These devices are designed to manipulate neurons genetically engineered to express ultrasound-sensitive ion channels, enabling precise modulation of specific neuronal populations. By dynamically steering the focus of Airy beams through ultrasound frequency tuning, AhSonogenetics is capable of modulating neuronal populations within specific subregions of the striatum. One notable feature of AhSonogenetics is its ability to flexibly stimulate either the left or right striatum in a single mouse. This flexibility is achieved by simply switching the acoustic metasurface in the wearable ultrasound device, eliminating the need for multiple implants or interventions. AhSonogentocs also integrates seamlessly with in vivo calcium recording via fiber photometry, showcasing its compatibility with optical modalities without cross talk. Moreover, AhSonogenetics can generate double foci for bilateral stimulation and alleviate motor deficits in Parkinson's disease mice. This advancement is significant since many neurological disorders, including Parkinson's disease, involve dysfunction in multiple brain regions. By enabling precise and flexible cell type-specific neuromodulation without invasive procedures, AhSonogenetics provides a powerful tool for investigating intact neural circuits and offers promising interventions for neurological disorders.


Subject(s)
Holography , Neurons , Animals , Holography/methods , Mice , Neurons/physiology , Wearable Electronic Devices , Ultrasonic Waves , Corpus Striatum/physiology , Brain/physiology
5.
Biosens Bioelectron ; 261: 116512, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908292

ABSTRACT

Natural killer (NK) cells are a crucial component of the innate immune system. This study introduces Cellytics NK, a novel platform for rapid and precise measurement of NK cell activity. This platform combines an NK-specific activation stimulator cocktail (ASC) and lens-free shadow imaging technology (LSIT), using optoelectronic components. LSIT captures digital hologram images of resting and ASC-activated NK cells, while an algorithm evaluates cell size and cytoplasmic complexity using shadow parameters. The combined shadow parameter derived from the peak-to-peak distance and width standard deviation rapidly distinguishes active NK cells from inactive NK cells at the single-cell level within 30 s. Here, the feasibility of the system was demonstrated by assessing NK cells from healthy donors and immunocompromised cancer patients, demonstrating a significant difference in the innate immunity index (I3). Cancer patients showed a lower I3 value (161%) than healthy donors (326%). I3 was strongly correlated with NK cell activity measured using various markers such as interferon-gamma, tumor necrosis factor-alpha, perforin, granzyme B, and CD107a. This technology holds promise for advancing immune functional assays, offering rapid and accurate on-site analysis of NK cells, a crucial innate immune cell, with its compact and cost-effective optoelectronic setup, especially in the post-COVID-19 era.


Subject(s)
Biosensing Techniques , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/cytology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Immunity, Innate , COVID-19/immunology , COVID-19/virology , Holography/methods , Holography/instrumentation , Lymphocyte Activation , Interferon-gamma/analysis , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Neoplasms/immunology , Neoplasms/diagnostic imaging , Granzymes , Tumor Necrosis Factor-alpha , Perforin/metabolism
6.
Nature ; 631(8020): 360-368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926570

ABSTRACT

A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.


Subject(s)
Connectome , Drosophila melanogaster , Motor Neurons , Nerve Tissue , Neural Pathways , Synapses , Animals , Female , Datasets as Topic , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Drosophila melanogaster/ultrastructure , Extremities/physiology , Extremities/innervation , Holography , Microscopy, Electron , Motor Neurons/cytology , Motor Neurons/physiology , Motor Neurons/ultrastructure , Movement , Muscles/innervation , Muscles/physiology , Nerve Tissue/anatomy & histology , Nerve Tissue/cytology , Nerve Tissue/physiology , Nerve Tissue/ultrastructure , Neural Pathways/cytology , Neural Pathways/physiology , Neural Pathways/ultrastructure , Synapses/physiology , Synapses/ultrastructure , Tomography, X-Ray , Wings, Animal/innervation , Wings, Animal/physiology
7.
Math Biosci Eng ; 21(5): 5947-5971, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38872565

ABSTRACT

The technology of robot-assisted prostate seed implantation has developed rapidly. However, during the process, there are some problems to be solved, such as non-intuitive visualization effects and complicated robot control. To improve the intelligence and visualization of the operation process, a voice control technology of prostate seed implantation robot in augmented reality environment was proposed. Initially, the MRI image of the prostate was denoised and segmented. The three-dimensional model of prostate and its surrounding tissues was reconstructed by surface rendering technology. Combined with holographic application program, the augmented reality system of prostate seed implantation was built. An improved singular value decomposition three-dimensional registration algorithm based on iterative closest point was proposed, and the results of three-dimensional registration experiments verified that the algorithm could effectively improve the three-dimensional registration accuracy. A fusion algorithm based on spectral subtraction and BP neural network was proposed. The experimental results showed that the average delay of the fusion algorithm was 1.314 s, and the overall response time of the integrated system was 1.5 s. The fusion algorithm could effectively improve the reliability of the voice control system, and the integrated system could meet the responsiveness requirements of prostate seed implantation.


Subject(s)
Algorithms , Augmented Reality , Magnetic Resonance Imaging , Neural Networks, Computer , Prostate , Prostatic Neoplasms , Robotics , Humans , Male , Robotics/instrumentation , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Prostate/diagnostic imaging , Imaging, Three-Dimensional , Voice , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods , Holography/methods , Holography/instrumentation , Brachytherapy/instrumentation , Reproducibility of Results
8.
Sensors (Basel) ; 24(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38894226

ABSTRACT

This study presents a novel label-free approach for characterizing cell death states, eliminating the need for complex molecular labeling that may yield artificial or ambiguous results due to technical limitations in microscope resolution. The proposed holographic tomography technique offers a label-free avenue for capturing precise three-dimensional (3D) refractive index morphologies of cells and directly analyzing cellular parameters like area, height, volume, and nucleus/cytoplasm ratio within the 3D cellular model. We showcase holographic tomography results illustrating various cell death types and elucidate distinctive refractive index correlations with specific cell morphologies complemented by biochemical assays to verify cell death states. These findings hold promise for advancing in situ single cell state identification and diagnosis applications.


Subject(s)
Cell Death , Holography , Imaging, Three-Dimensional , Tomography , Holography/methods , Tomography/methods , Imaging, Three-Dimensional/methods , Humans , Refractometry/methods
9.
Sci Rep ; 14(1): 13679, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871757

ABSTRACT

This study introduces a novel approach in the realm of liquid biopsies, employing a 3D Mueller-matrix (MM) image reconstruction technique to analyze dehydrated blood smear polycrystalline structures. Our research centers on exploiting the unique optical anisotropy properties of blood proteins, which undergo structural alterations at the quaternary and tertiary levels in the early stages of diseases such as cancer. These alterations manifest as distinct patterns in the polycrystalline microstructure of dried blood droplets, offering a minimally invasive yet highly effective method for early disease detection. We utilized a groundbreaking 3D MM mapping technique, integrated with digital holographic reconstruction, to perform a detailed layer-by-layer analysis of partially depolarizing dry blood smears. This method allows us to extract critical optical anisotropy parameters, enabling the differentiation of blood films from healthy individuals and prostate cancer patients. Our technique uniquely combines polarization-holographic and differential MM methodologies to spatially characterize the 3D polycrystalline structures within blood films. A key advancement in our study is the quantitative evaluation of optical anisotropy maps using statistical moments (first to fourth orders) of linear and circular birefringence and dichroism distributions. This analysis provides a comprehensive characterization of the mean, variance, skewness, and kurtosis of these distributions, crucial for identifying significant differences between healthy and cancerous samples. Our findings demonstrate an exceptional accuracy rate of over 90 % for the early diagnosis and staging of cancer, surpassing existing screening methods. This high level of precision and the non-invasive nature of our technique mark a significant advancement in the field of liquid biopsies. It holds immense potential for revolutionizing cancer diagnosis, early detection, patient stratification, and monitoring, thereby greatly enhancing patient care and treatment outcomes. In conclusion, our study contributes a pioneering technique to the liquid biopsy domain, aligning with the ongoing quest for non-invasive, reliable, and efficient diagnostic methods. It opens new avenues for cancer diagnosis and monitoring, representing a substantial leap forward in personalized medicine and oncology.


Subject(s)
Holography , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Anisotropy , Holography/methods , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/diagnostic imaging , Liquid Biopsy/methods
10.
Mil Med Res ; 11(1): 38, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867274

ABSTRACT

Digital in-line holographic microscopy (DIHM) is a non-invasive, real-time, label-free technique that captures three-dimensional (3D) positional, orientational, and morphological information from digital holographic images of living biological cells. Unlike conventional microscopies, the DIHM technique enables precise measurements of dynamic behaviors exhibited by living cells within a 3D volume. This review outlines the fundamental principles and comprehensive digital image processing procedures employed in DIHM-based cell tracking methods. In addition, recent applications of DIHM technique for label-free identification and digital tracking of various motile biological cells, including human blood cells, spermatozoa, diseased cells, and unicellular microorganisms, are thoroughly examined. Leveraging artificial intelligence has significantly enhanced both the speed and accuracy of digital image processing for cell tracking and identification. The quantitative data on cell morphology and dynamics captured by DIHM can effectively elucidate the underlying mechanisms governing various microbial behaviors and contribute to the accumulation of diagnostic databases and the development of clinical treatments.


Subject(s)
Cell Tracking , Holography , Microscopy , Holography/methods , Microscopy/methods , Humans , Cell Tracking/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Quantitative Phase Imaging
11.
J Am Coll Cardiol ; 84(1): 130-136, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38754705

ABSTRACT

Iatrogenic aortic dissection is a rare but life-threatening complication of coronary artery bypass surgery. We report a case with incidentally detected iatrogenic aortic dissection related to aorta cross-clamping that was successfully managed with watchful follow-up. The decision making was based on 3-dimensional holographic and fluid dynamic analysis guidance.


Subject(s)
Aortic Dissection , Coronary Artery Bypass , Holography , Iatrogenic Disease , Imaging, Three-Dimensional , Humans , Aortic Dissection/etiology , Aortic Dissection/diagnostic imaging , Aortic Dissection/surgery , Holography/methods , Coronary Artery Bypass/adverse effects , Male , Tomography, X-Ray Computed , Aged , Hydrodynamics , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/diagnosis , Female
12.
ACS Appl Bio Mater ; 7(6): 4029-4038, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38756048

ABSTRACT

Pollen grains are remarkable material composites, with various organelles in their fragile interior protected by a strong shell made of sporopollenin. The outermost layer of angiosperm pollen grains contains a lipid-rich substance called pollenkitt, which is a natural bioadhesive that helps preserve structural integrity when the pollen grain is exposed to external environmental stresses. In addition, its viscous nature enables it to adhere to various floral and insect surfaces, facilitating the pollination process. To examine the physicochemical properties of aqueous pollenkitt droplets, we used in-line digital holographic microscopy to capture light scattering from individual pollenkitt particles. Comparison of pollenkitt holograms to those modeled using the Lorenz-Mie theory enables investigations into the minute variations in the refractive index and size resulting from changes in local temperature and pollen aging.


Subject(s)
Biocompatible Materials , Holography , Materials Testing , Microscopy , Pollen , Pollen/chemistry , Biocompatible Materials/chemistry , Particle Size , Viscosity , Elasticity , Magnoliopsida/chemistry , Temperature , Quantitative Phase Imaging
13.
Biol Reprod ; 110(6): 1125-1134, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38733568

ABSTRACT

Assisted reproduction is one of the significant tools to treat human infertility. Morphological assessment is the primary method to determine sperm and embryo viability during in vitro fertilization cycles. It has the advantage of being a quick, convenient, and inexpensive means of assessment. However, visual observation is of limited predictive value for early embryo morphology. It has led many to search for other imaging tools to assess the reproductive potential of a given embryo. The limitations of visual assessment apply to both humans and animals. One recent innovation in assisted reproduction technology imaging is interferometric phase microscopy, also known as holographic microscopy. Interferometric phase microscopy/quantitative phase imaging is the next likely progression of analytical microscopes for the assisted reproduction laboratory. The interferometric phase microscopy system analyzes waves produced by the light as it passes through the specimen observed. The microscope collects the light waves produced and uses the algorithm to create a hologram of the specimen. Recently, interferometric phase microscopy has been combined with quantitative phase imaging, which joins phase contrast microscopy with holographic microscopy. These microscopes collect light waves produced and use the algorithm to create a hologram of the specimen. Unlike other systems, interferometric phase microscopy can provide a quantitative digital image, and it can make 2D and 3D images of the samples. This review summarizes some newer and more promising quantitative phase imaging microscopy systems for evaluating gametes and embryos. Studies clearly show that quantitative phase imaging is superior to bright field microscopy-based evaluation methods when evaluating sperm and oocytes prior to IVF and embryos prior to transfer. However, further assessment of these systems for efficacy, reproducibility, cost-effectiveness, and embryo/gamete safety must take place before they are widely adopted.


Subject(s)
Embryo, Mammalian , Holography , Holography/methods , Animals , Humans , Embryo, Mammalian/diagnostic imaging , Embryo, Mammalian/physiology , Male , Female , Germ Cells/physiology , Spermatozoa/physiology , Reproductive Techniques, Assisted , Fertilization in Vitro/methods , Microscopy/methods , Microscopy/instrumentation
14.
Medicine (Baltimore) ; 103(21): e38233, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788017

ABSTRACT

To explore the effect of holographic Guasha therapy on the Pittsburg Sleep Quality Index (PSQI) and Hamilton Anxiety Rating Scale (HAMA) in older adults with hypertension living in the community. This prospective study was conducted from July 2019 to December 2020. Older adults with hypertension (systolic pressure ≥ 140 mm Hg, diastolic pressure ≥ 90 mm Hg) were divided into the control and Guasha groups. The PSQI and HAMA were assessed before and after 4 weeks of intervention. 62 patients were enrolled, with 31/group (Guasha: 72.4 ±â€…6.9 years, 23.0 ±â€…3.1 kg/m2; control: 71.4 ±â€…6.3 years; 22.9 ±â€…2.9 kg/m2). The total PSQI score did not decrease in the control group after 4 weeks (from 14.8 ±â€…1.2 to 14.8 ±â€…1.8, P = .498) but decreased in the Guasha group (from 14.9 ±â€…1.1 to 6.8 ±â€…3.5, P < .001). All PSQI subscores decreased in the Guasha group after 4 weeks of Guasha intervention (all P < .05), except for the use of sleep medication, since the use of such drugs was an exclusion criterion. The HAMA index scores did not change in the control or Guasha group (both P > .05). Holographic Guasha appears to achieve better sleep outcomes than conventional treatment in improving the sleep quality of older adults with hypertension living in the community. The participants were not randomly assigned to the treatments, and the results should be confirmed in a formal trial.


Subject(s)
Holography , Hypertension , Sleep Quality , Humans , Aged , Hypertension/drug therapy , Male , Female , Prospective Studies , Holography/methods , Treatment Outcome
15.
BMC Med Educ ; 24(1): 498, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704522

ABSTRACT

BACKGROUND: Mixed reality offers potential educational advantages in the delivery of clinical teaching. Holographic artefacts can be rendered within a shared learning environment using devices such as the Microsoft HoloLens 2. In addition to facilitating remote access to clinical events, mixed reality may provide a means of sharing mental models, including the vertical and horizontal integration of curricular elements at the bedside. This study aimed to evaluate the feasibility of delivering clinical tutorials using the Microsoft HoloLens 2 and the learning efficacy achieved. METHODS: Following receipt of institutional ethical approval, tutorials on preoperative anaesthetic history taking and upper airway examination were facilitated by a tutor who wore the HoloLens device. The tutor interacted face to face with a patient and two-way audio-visual interaction was facilitated using the HoloLens 2 and Microsoft Teams with groups of students who were located in a separate tutorial room. Holographic functions were employed by the tutor. The tutor completed the System Usability Scale, the tutor, technical facilitator, patients, and students provided quantitative and qualitative feedback, and three students participated in semi-structured feedback interviews. Students completed pre- and post-tutorial, and end-of-year examinations on the tutorial topics. RESULTS: Twelve patients and 78 students participated across 12 separate tutorials. Five students did not complete the examinations and were excluded from efficacy calculations. Student feedback contained 90 positive comments, including the technology's ability to broadcast the tutor's point-of-vision, and 62 negative comments, where students noted issues with the audio-visual quality, and concerns that the tutorial was not as beneficial as traditional in-person clinical tutorials. The technology and tutorial structure were viewed favourably by the tutor, facilitator and patients. Significant improvement was observed between students' pre- and post-tutorial MCQ scores (mean 59.2% Vs 84.7%, p < 0.001). CONCLUSIONS: This study demonstrates the feasibility of using the HoloLens 2 to facilitate remote bedside tutorials which incorporate holographic learning artefacts. Students' examination performance supports substantial learning of the tutorial topics. The tutorial structure was agreeable to students, patients and tutor. Our results support the feasibility of offering effective clinical teaching and learning opportunities using the HoloLens 2. However, the technical limitations and costs of the device are significant, and further research is required to assess the effectiveness of this tutorial format against in-person tutorials before wider roll out of this technology can be recommended as a result of this study.


Subject(s)
Students, Medical , Humans , Male , Female , Computer-Assisted Instruction/methods , Education, Medical, Undergraduate/methods , Feasibility Studies , Educational Measurement , Clinical Competence , Adult , Holography , Medical History Taking
16.
Eur Radiol Exp ; 8(1): 57, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724831

ABSTRACT

BACKGROUND: We compared computed tomography (CT) images and holograms (HG) to assess the number of arteries of the lung lobes undergoing lobectomy and assessed easiness in interpretation by radiologists and thoracic surgeons with both techniques. METHODS: Patients scheduled for lobectomy for lung cancer were prospectively included and underwent CT for staging. A patient-specific three-dimensional model was generated and visualized in an augmented reality setting. One radiologist and one thoracic surgeon evaluated CT images and holograms to count lobar arteries, having as reference standard the number of arteries recorded at surgery. The easiness of vessel identification was graded according to a Likert scale. Wilcoxon signed-rank test and κ statistics were used. RESULTS: Fifty-two patients were prospectively included. The two doctors detected the same number of arteries in 44/52 images (85%) and in 51/52 holograms (98%). The mean difference between the number of artery branches detected by surgery and CT images was 0.31 ± 0.98, whereas it was 0.09 ± 0.37 between surgery and HGs (p = 0.433). In particular, the mean difference in the number of arteries detected in the upper lobes was 0.67 ± 1.08 between surgery and CT images and 0.17 ± 0.46 between surgery and holograms (p = 0.029). Both radiologist and surgeon showed a higher agreement for holograms (κ = 0.99) than for CT (κ = 0.81) and found holograms easier to evaluate than CTs (p < 0.001). CONCLUSIONS: Augmented reality by holograms is an effective tool for preoperative vascular anatomy assessment of lungs, especially when evaluating the upper lobes, more prone to anatomical variations. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04227444 RELEVANCE STATEMENT: Preoperative evaluation of the lung lobe arteries through augmented reality may help the thoracic surgeons to carefully plan a lobectomy, thus contributing to optimize patients' outcomes. KEY POINTS: • Preoperative assessment of the lung arteries may help surgical planning. • Lung artery detection by augmented reality was more accurate than that by CT images, particularly for the upper lobes. • The assessment of the lung arterial vessels was easier by using holograms than CT images.


Subject(s)
Augmented Reality , Holography , Lung Neoplasms , Pulmonary Artery , Tomography, X-Ray Computed , Humans , Female , Male , Tomography, X-Ray Computed/methods , Aged , Prospective Studies , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Middle Aged , Holography/methods , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/anatomy & histology , Imaging, Three-Dimensional , Reference Standards , Lung/diagnostic imaging , Lung/blood supply , Lung/surgery
17.
Nat Commun ; 15(1): 4109, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750038

ABSTRACT

Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Lipid Bilayers/chemistry , Holography/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Microfluidics/methods , Microfluidics/instrumentation , Female , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cell Line, Tumor , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Biomarkers/analysis
18.
EMBO Rep ; 25(6): 2786-2811, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38654122

ABSTRACT

Ribosome biogenesis is initiated in the nucleolus, a multiphase biomolecular condensate formed by liquid-liquid phase separation. The nucleolus is a powerful disease biomarker and stress biosensor whose morphology reflects function. Here we have used digital holographic microscopy (DHM), a label-free quantitative phase contrast microscopy technique, to detect nucleoli in adherent and suspension human cells. We trained convolutional neural networks to detect and quantify nucleoli automatically on DHM images. Holograms containing cell optical thickness information allowed us to define a novel index which we used to distinguish nucleoli whose material state had been modulated optogenetically by blue-light-induced protein aggregation. Nucleoli whose function had been impacted by drug treatment or depletion of ribosomal proteins could also be distinguished. We explored the potential of the technology to detect other natural and pathological condensates, such as those formed upon overexpression of a mutant form of huntingtin, ataxin-3, or TDP-43, and also other cell assemblies (lipid droplets). We conclude that DHM is a powerful tool for quantitatively characterizing nucleoli and other cell assemblies, including their material state, without any staining.


Subject(s)
Cell Nucleolus , Holography , Humans , Cell Nucleolus/metabolism , Holography/methods , Neural Networks, Computer , Microscopy/methods , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Ataxin-3/metabolism , Ataxin-3/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Microscopy, Phase-Contrast/methods , Quantitative Phase Imaging
19.
J Acoust Soc Am ; 155(4): 2875-2890, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38682913

ABSTRACT

Numerical simulations of head-related transfer functions (HRTFs) conventionally assume a rigid boundary condition for the pinna. The human pinna, however, is an elastic deformable body that can vibrate due to incident acoustic waves. This work investigates how sound-induced vibrations of the pinna can affect simulated HRTF magnitudes. The work will motivate the research question by measuring the sound-induced vibrational patterns of an artificial pinna with a high-speed holographic interferometric system. Then, finite element simulations are used to determine HRTFs for a tabletop model of the B&K 5128 head and torso simulator for a number of directions. Two scenarios are explored: one where the pinna is modeled as perfectly rigid, and another where the pinna is modeled as linear elastic with material properties close to that of auricular cartilage. The findings suggest that pinna vibrations have negligible effects on HRTF magnitudes up to 5 kHz. The same conclusion, albeit with less certainty, is drawn for higher frequencies. Finally, the importance of the elastic domain's material properties is emphasized and possible implications for validation studies on dummy heads 1as well as the limitations of the present work are discussed in detail.


Subject(s)
Computer Simulation , Ear Auricle , Finite Element Analysis , Head , Sound , Vibration , Humans , Ear Auricle/physiology , Ear Auricle/anatomy & histology , Head/physiology , Head/anatomy & histology , Holography/methods , Interferometry/methods , Elasticity , Numerical Analysis, Computer-Assisted , Models, Biological , Motion , Acoustic Stimulation
20.
Cells ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667312

ABSTRACT

The assessment of nanoparticle cytotoxicity is challenging due to the lack of customized and standardized guidelines for nanoparticle testing. Nanoparticles, with their unique properties, can interfere with biochemical test methods, so multiple tests are required to fully assess their cellular effects. For a more reliable and comprehensive assessment, it is therefore imperative to include methods in nanoparticle testing routines that are not affected by particles and allow for the efficient integration of additional molecular techniques into the workflow. Digital holographic microscopy (DHM), an interferometric variant of quantitative phase imaging (QPI), has been demonstrated as a promising method for the label-free assessment of the cytotoxic potential of nanoparticles. Due to minimal interactions with the sample, DHM allows for further downstream analyses. In this study, we investigated the capabilities of DHM in a multimodal approach to assess cytotoxicity by directly comparing DHM-detected effects on the same cell population with two downstream biochemical assays. Therefore, the dry mass increase in RAW 264.7 macrophages and NIH-3T3 fibroblast populations measured by quantitative DHM phase contrast after incubation with poly(alkyl cyanoacrylate) nanoparticles for 24 h was compared to the cytotoxic control digitonin, and cell culture medium control. Viability was then determined using a metabolic activity assay (WST-8). Moreover, to determine cell death, supernatants were analyzed for the release of the enzyme lactate dehydrogenase (LDH assay). In a comparative analysis, in which the average half-maximal effective concentration (EC50) of the nanocarriers on the cells was determined, DHM was more sensitive to the effect of the nanoparticles on the used cell lines compared to the biochemical assays.


Subject(s)
Nanoparticles , Animals , Mice , NIH 3T3 Cells , Nanoparticles/toxicity , Nanoparticles/chemistry , RAW 264.7 Cells , Cell Survival/drug effects , Holography/methods , Quantitative Phase Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...