Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.641
Filter
1.
Food Res Int ; 186: 114355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729701

ABSTRACT

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Subject(s)
Digestion , Fatty Acids , Hordeum , Oleic Acid , Starch , Starch/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Hordeum/chemistry , Oleic Acid/chemistry , Stearic Acids/chemistry , Linoleic Acid/chemistry , alpha-Linolenic Acid/chemistry , Oleic Acids
2.
Food Res Int ; 187: 114345, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763637

ABSTRACT

Long-term consumption of Western-style diet (WSD) can lead to metabolic disorders and dysbiosis of gut microbiota, presenting a critical risk factor for various chronic conditions such as fatty liver disease. In the present study, we investigated the beneficial role of co-fermented whole grain quinoa and black barley with Lactobacillus kisonensis on rats fed a WSD. Male Sprague-Dawley (SD) rats, aged six weeks and weighing 180 ± 10 g, were randomly assigned to one of three groups: the normal control group (NC, n = 7), the WSD group (HF, n = 7), and the WSD supplemented with a co-fermented whole grain quinoa with black barley (FQB) intervention group (HFF, n = 7). The findings indicated that FQB was effective in suppressing body weight gain, mitigating hepatic steatosis, reducing perirenal fat accumulation, and ameliorating pathological damage in the livers and testicular tissues of rats. Additionally, FQB intervention led to decreased levels of serum uric acid (UA), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). These advantageous effects can be ascribed to the regulation of FQB on gut microbiota dysbiosis, which includes the restoration of intestinal flora diversity, reduction of the F/B ratio, and promotion of probiotics abundance, such as Akkermansia and [Ruminococcus] at the genus level. The study employed the UPLC-Q-TOF-MSE technique to analyze metabolites in fecal and hepatic samples. The findings revealed that FQB intervention led to a regression in the levels of specific metabolites in feces, including oxoadipic acid and 20a, 22b-dihydroxycholesterol, as well as in the liver, such as pyridoxamine, xanthine and xanthosine. The transcriptome sequencing of liver tissues revealed that FQB intervention modulated the mRNA expression of specific genes, including Cxcl12, Cidea, and Gck, known for their roles in anti-inflammatory and anti-insulin resistance mechanisms in the context of WSD. Our findings indicate that co-fermented whole-grain quinoa with black barley has the potential to alleviate metabolic disorders and chronic inflammation resulting from the consumption of WSD.


Subject(s)
Chenopodium quinoa , Diet, Western , Fermentation , Gastrointestinal Microbiome , Hordeum , Lactobacillus , Rats, Sprague-Dawley , Animals , Hordeum/chemistry , Male , Lactobacillus/metabolism , Chenopodium quinoa/chemistry , Rats , Liver/metabolism , Dysbiosis , Metabolomics , Fermented Foods , Multiomics
3.
Food Res Int ; 183: 114226, 2024 May.
Article in English | MEDLINE | ID: mdl-38760145

ABSTRACT

Highland barley (HB) is an intriguing plateau cereal crop with high nutrition and health benefits. However, abundant dietary fiber and deficient gluten pose challenges to the processing and taste of whole HB products. Extrusion technology has been proved to be effective in overcoming these hurdles, but the association between the structure and physicochemical properties during extrusion remains inadequately unexplored. Therefore, this study aims to comprehensively understand the impact of extrusion conditions on the physicochemical properties of HB flour (HBF) and the multi-scale structure of starch. Results indicated that the nutritional value of HBF were significantly increased (soluble dietary fiber and ß-glucan increased by 24.05%, 19.85% respectively) after extrusion. Typical underlying mechanisms based on starch structure were established. High temperature facilitated starch gelatinization, resulting in double helices unwinding, amylose leaching, and starch-lipid complexes forming. These alterations enhanced the water absorption capacity, cold thickening ability, and peak viscosity of HBF. More V-type complexes impeded amylose rearrangement, thus enhancing resistance to retrogradation and thermal stability. Extrusion at high temperature and moisture exhibited similarities to hydrothermal treatment, partly promoting amylose rearrangement and enhancing HBF peak viscosity. Conversely, under low temperature and high moisture, well-swelled starch granules were easily broken into shorter branch-chains by higher shear force, which enhanced the instant solubility and retrogradation resistance of HBF as well as reduced its pasting viscosity and the capacity to form gel networks. Importantly, starch degradation products during this condition were experimentally confirmed from various aspects. This study provided some reference for profiting from extrusion for further development of HB functional food and "clean label" food additives.


Subject(s)
Amylose , Flour , Food Handling , Hordeum , Starch , Hordeum/chemistry , Starch/chemistry , Flour/analysis , Viscosity , Amylose/chemistry , Food Handling/methods , Nutritive Value , Dietary Fiber/analysis , Solubility , beta-Glucans/chemistry , Chemical Phenomena , Hot Temperature
4.
Food Chem ; 453: 139586, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761723

ABSTRACT

To aid valorisation of beer brewing by-products, more insight into their composition is essential. We have analysed the phenolic compound composition of four brewing by-products, namely barley rootlets, spent grain, hot trub, and cold trub. The main phenolics detected were hydroxycinnamoylagmatines and dimers thereof. Barley rootlets contained the highest hydroxycinnamoylagmatine content and cold trub the highest dimer content. Additionally, variations in (dimeric) hydroxycinnamoylagmatine composition and content were observed in fourteen barley rootlet samples. The most abundant compound in all rootlets was the glycosylated 4-O-7'/3-8'-linked heterodimer of coumaroylagmatine and feruloylagmatine, i.e. CouAgm-4-O-7'/3-8'-(4'Hex)-DFerAgm. Structures of glycosylated and hydroxylated derivatives of coumaroylagmatine were elucidated by NMR spectroscopy after their purification from a rootlet extract. An MS-based decision tree was developed, which aids in identifying hydroxycinnamoylagmatine dimers in complex mixtures. In conclusion, this study shows that the diversity of phenolamides and (neo)lignanamides in barley-derived by-products is larger than previously reported.


Subject(s)
Beer , Hordeum , Hordeum/chemistry , Beer/analysis , Dimerization , Waste Products/analysis , Phenols/chemistry , Phenols/analysis , Coumaric Acids/chemistry , Coumaric Acids/analysis , Molecular Structure
5.
Food Chem ; 453: 139702, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38772309

ABSTRACT

This research explored the impact of binary cereal blends [barley with durum wheat (DW) and soft wheat (CW)], four autochthonous yeast strains (9502, 9518, 14061 and 17290) and two refermentation sugar concentrations (6-9 g/L), on volatolomics (VOCs) and odour profiles of craft beers using unsupervised statistics. For the first time, we applied permutation test to select volatiles with higher significance in explaining variance among samples. The unsupervised approach on the 19 selected VOCs revealed cereal-yeast interaction to be the main source of variability and DW-9502-6/9, DW-17290-6, CW-17290-6 and CW-9518-6 being the best technological strategies. In particular, in samples DW-9502-6/9, concentrations of some of the selected volatiles were observed to be approximately three to more than seven times higher than the average. PLS-correlation between VOCs and odour profiles proved to be very useful in assessing the weight of each of the selected VOCs on the perception of odour notes.


Subject(s)
Beer , Odorants , Volatile Organic Compounds , Beer/analysis , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Multivariate Analysis , Triticum/chemistry , Triticum/genetics , Hordeum/chemistry , Hordeum/genetics , Hordeum/microbiology , Humans , Fermentation
6.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792226

ABSTRACT

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Subject(s)
Allelopathy , Hordeum , Plant Extracts , Hordeum/chemistry , Hordeum/growth & development , Hordeum/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Introduced Species , Trifolium/chemistry , Trifolium/growth & development , Trifolium/drug effects , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Festuca/drug effects , Festuca/growth & development , Festuca/chemistry
7.
Food Chem ; 452: 139574, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733683

ABSTRACT

Barley leaves (BLs) naturally contained abundant phenolics, most of which are hardly completely released from food matrix during gastrointestinal digestion. Superfine grinding (SFG) and high hydrostatic pressure (HHP) are generally used to treat the functional plants due to their effectiveness to cell wall-breaking and improvement of nutraceutical bioavailability. Thus, this study investigated the synergistic effects of SFG and HHP (100, 300, 500 MPa/20 min) on the bioaccessbility of typical phenolics in BLs during the simulated in-vitro digestion. The results demonstrated that the highest bioaccessbility (40.98%) was found in the ultrafine sample with HHP at 500 MPa. CLSM and SEM confirmed SFG led to microstructurally rapture of BLs. Moreover, the recovery index of ABTS radical scavenging activity and FRAP of HHP-treated ultrafine and fine BLs samples maximumly increased by 53.62% and 9.61%, respectively. This study is expecting to provide the theoretical basis to improve the consumer acceptance of BLs.


Subject(s)
Antioxidants , Digestion , Hordeum , Hydrostatic Pressure , Plant Leaves , Polyphenols , Hordeum/chemistry , Hordeum/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Food Handling , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Humans
8.
Biomed Environ Sci ; 37(4): 377-386, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727160

ABSTRACT

Objective: This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans (C. elegans). Methods: In this study, the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C. elegans. The worms were fed Escherichia coli OP50 ( E. coli OP50), glucose, and different concentrations of LFBEP-C1. Body size, lifespan, movement, triglyceride content, and gene expression were analyzed. The results were analyzed using ANOVA and Tukey's multiple comparison test. Results: Compared with the model group, the head-swing frequency of C. elegans in the group of LFBEP-C1 at 20 µg/mL increased by 33.88%, and the body-bending frequency increased by 27.09%. This indicated that LFBEP-C1 improved the locomotive ability of C. elegans. The average lifespan of C. elegans reached 13.55 days, and the body length and width of the C. elegans decreased after LFBEP-C1 intake. Additionally, LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels. The expression levels of sbp-1, daf-2, and mdt-15 significantly decreased, while those of daf-16, tph-1, mod-1, and ser-4 significantly increased after LFBEP-C1 intake. Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion: LFBEP-C1 significantly reduced lipid deposition in C. elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development, lifespan, and exercise behavior of C. elegans. In addition, LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein, insulin, and 5-hydroxytryptamine signaling pathways.


Subject(s)
Caenorhabditis elegans , Hordeum , Lipid Metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Hordeum/chemistry , Lipid Metabolism/drug effects , Fermentation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Lactobacillus plantarum , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
9.
J Agric Food Chem ; 72(17): 10149-10161, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635353

ABSTRACT

The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.


Subject(s)
Aquaporins , Germination , Hordeum , Plant Proteins , Seeds , Water , Hordeum/metabolism , Hordeum/genetics , Hordeum/chemistry , Hordeum/growth & development , Aquaporins/metabolism , Aquaporins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Water/metabolism , Seeds/metabolism , Seeds/chemistry , Seeds/growth & development , Seeds/genetics , Plant Breeding , Edible Grain/metabolism , Edible Grain/chemistry , Edible Grain/growth & development , Edible Grain/genetics , Proteomics
10.
Poult Sci ; 103(6): 103664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569243

ABSTRACT

At 50 wk of age, broiler breeder roosters exhibit a significant decline of fertility. Therefore, the aim of this study was to assess the impact of incorporating barley sprout (BS) powder, D-aspartic acid (DA), or their combination into the diet on fertility, hatchability, semen quality, and the relative expression of StAR and P450SCC genes in aging broiler roosters. Aging (50 wk) male broiler breeders (n=32) were randomly assigned to one of four dietary treatments (2 × 2 factorial) with 2 levels of BS (0 or 2% basal diet) and DA (0 or 200 mg/kg/BW) for 12 wk. Roosters were individually housed under a 14-h light and 10-h dark cycle, with 150 g/d feed allocation and free access to fresh water, then euthanized. Throughout the study, the body weight of the broiler breeders was measured, along with various parameters related to semen quality, on a weekly basis. Additionally, artificial insemination was performed during the last 2 wk to evaluate reproductive endpoints. The results revealed that both BS and DA decreased (P < 0.01) body weight. Interestingly, the inclusion of BS, either alone or in combination with DA, resulted in a significant increase in total and forward sperm motility. Furthermore, it was demonstrated that the seminal concentration of malondialdehyde, a marker of oxidative stress, was significantly decreased by more than 20% in all groups compared to the control. The combination of both BS and DA led to the highest levels of circulating testosterone, as well as the functionality and membrane integrity of sperms. Additionally, it resulted in increased sperm concentrations, production, and penetration, ultimately leading to improved fertility rate and hatchability percentage. Moreover, a positive association between total motility and fertility was observed (P < 0.01). Furthermore, the combined supplementation of BS and DA up-regulated the relative mRNA expression of P450scc and StAR (P < 0.01). To summarize, dietary inclusion of BS, DA, or their combination have a potential to improve various aspects of reproductive performance in aging roosters.


Subject(s)
Animal Feed , Avian Proteins , Chickens , D-Aspartic Acid , Diet , Dietary Supplements , Fertility , Hordeum , Semen Analysis , Animals , Male , Chickens/physiology , Chickens/genetics , Hordeum/chemistry , Dietary Supplements/analysis , Semen Analysis/veterinary , Animal Feed/analysis , Diet/veterinary , Fertility/drug effects , Avian Proteins/genetics , Avian Proteins/metabolism , D-Aspartic Acid/administration & dosage , D-Aspartic Acid/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Random Allocation , Up-Regulation/drug effects , Gene Expression/drug effects
11.
Int J Biol Macromol ; 268(Pt 2): 131632, 2024 May.
Article in English | MEDLINE | ID: mdl-38643911

ABSTRACT

Advanced glycation end products (AGEs) can be caused during a glycoxidation reaction. This reaction is associated with complications of diabetes and the consequences of health problems. Therefore, we are exploring the prohibitory effect of highland barley protein hydrolysates (HBPHs) on AGE formation. Herein, first extracted the protein from highland barley with various pH conditions and then hydrolyzed using four different proteolytic enzymes (flavourzyme, trypsin, papain, pepsin) under different degrees of hydrolysis. We assessed three degrees of hydrolysates (lowest, middle, highest) of enzymes used to characterize the antioxidant activity and physicochemical properties. Among all the hydrolysates, flavourzyme-treated hydrolysates F-1, F-2, and F-3 indicated the high ability to scavenge DPPH (IC50 values of 0.97 %, 0.63 %, and 0.90 %), structural and functional properties. Finally, the inhibitory effect of the most active hydrolysates F-1, F-2, and F-3 against the AGEs formation was evaluated in multiple glucose-glycated bovine serum albumin (BSA) systems. Additionally, in a BSA system, F-3 exhibited the strong antiglycation activity, effectively suppressed the non-fluorescent AGE (CML), and the fructosamine level. Moreover, it decreased carbonyl compounds while also preventing the loss of thiol groups. Our results would be beneficial in the application of the food industry as a potential antiglycation agent for several chronic diseases.


Subject(s)
Glycation End Products, Advanced , Hordeum , Plant Proteins , Protein Hydrolysates , Serum Albumin, Bovine , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/antagonists & inhibitors , Hordeum/chemistry , Protein Hydrolysates/chemistry , Protein Hydrolysates/pharmacology , Serum Albumin, Bovine/chemistry , Plant Proteins/chemistry , Plant Proteins/pharmacology , Hydrolysis , Antioxidants/pharmacology , Antioxidants/chemistry , Animals , Glycosylation/drug effects
12.
Int J Biol Macromol ; 268(Pt 2): 131681, 2024 May.
Article in English | MEDLINE | ID: mdl-38643913

ABSTRACT

Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and ß-glucan. This study investigated the effects of ß-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that ß-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.


Subject(s)
Bread , Hordeum , Molecular Weight , Plant Proteins , Starch , Triticum , beta-Glucans , beta-Glucans/chemistry , Bread/analysis , Digestion , Hordeum/chemistry , Plant Proteins/chemistry , Starch/chemistry , Triticum/chemistry , Water/chemistry
13.
Molecules ; 29(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38675716

ABSTRACT

The health benefits of young barley leaves, rich in dietary fiber, have been studied for several decades; however, their beneficial effects on the intestinal microenvironment remain to be elucidated. To investigate the effects of young barley leaf-derived dietary fiber (YB) on the gut microbiota and immunity, mice were fed an AIN-93G diet containing cellulose or YB and subjected to subsequent analysis. The population of MHC-II-positive conventional dendritic cells (cDCs) and CD86 expression in the cDCs of Peyer's patches were elevated in the YB-fed mice. MHC-II and CD86 expression was also elevated in the bone marrow-derived DCs treated with YB. 16S-based metagenomic analysis revealed that the gut microbiota composition was markedly altered by YB feeding. Among the gut microbiota, Lachnospiraceae, mainly comprising butyrate-producing NK4A136 spp., were overrepresented in the YB-fed mice. In fact, fecal butyrate concentration was also augmented in the YB-fed mice, which coincided with increased retinaldehyde dehydrogenase (RALDH) activity in the CD103+ cDCs of the mesenteric lymph nodes. Consistent with elevated RALDH activity, the population of colonic IgA+ plasma cells was higher in the YB-fed mice than in the parental control mice. In conclusion, YB has beneficial effects on the gut microbiota and intestinal immune system.


Subject(s)
Dietary Fiber , Gastrointestinal Microbiome , Hordeum , Plant Leaves , Animals , Gastrointestinal Microbiome/drug effects , Hordeum/chemistry , Dietary Fiber/pharmacology , Plant Leaves/chemistry , Mice , Retinal Dehydrogenase/metabolism , Butyrates/metabolism , Feces/microbiology
14.
Food Funct ; 15(8): 4276-4291, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38526568

ABSTRACT

Fermentation is an effective method for improving the nutritional quality and functional characteristics of grains. This study investigated changes in the structural, physicochemical, and functional properties of fermented barley dietary fiber (FBDF) exerted by Lactiplantibacillus plantarum dy-1 (Lp. plantarum dy-1) as well as its in vitro fecal fermentation characteristics. Lp. plantarum dy-1 fermentation remarkably changed the structure of FBDF, including the microstructure and monosaccharide components, correlating with improved water or oil retaining and cholesterol adsorption capacities. Additionally, Lp. plantarum dy-1 fermentation significantly (p < 0.05) promoted the release of bound phenolics from 6.24 mg g-1 to 6.93 mg g-1 during in vitro digestion, contributing to the higher antioxidant capacity and inhibitory activity of α-amylase and pancreatic lipase compared with those of raw barley dietary fiber (RBDF). A total of 14 phenolic compounds were detected in the supernatants of digestion and fermentation samples. During colonic fermentation, FBDF significantly increased the production of acetate, propionate, and butyrate (p < 0.05), inhibited the growth of Escherichia-Shigella, and promoted the abundance of SCFA-producing microbiota such as Faecalibacterium and Prevotella_9. In conclusion, Lp. plantarum dy-1 fermentation enhanced the physicochemical properties and in vitro fermentation characteristics of barley dietary fiber, representing a promising bioprocessing technology for modifying barley bran.


Subject(s)
Dietary Fiber , Feces , Fermentation , Hordeum , Dietary Fiber/metabolism , Dietary Fiber/analysis , Hordeum/chemistry , Feces/microbiology , Humans , Gastrointestinal Microbiome , Digestion , Antioxidants/metabolism , Fatty Acids, Volatile/metabolism , Lactobacillus plantarum/metabolism , Phenols/metabolism
15.
J Food Sci ; 89(5): 2701-2715, 2024 May.
Article in English | MEDLINE | ID: mdl-38465705

ABSTRACT

Grain polyphenols are known to possess several health properties. However, their digestive stability and intestinal absorption have not been fully elucidated. This study investigated the fate of pigmented grain polyphenols in the digestive system. Purple rice, purple barley, purple wheat, and blue wheat extracts were subjected to simulated gastric and intestinal phase digestion, followed by Caco-2 cellular transport. Phenolic profiling and antioxidant activity were determined using benchtop assays and an ultra-high-performance liquid chromatography-2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid free radical) (UHPLC-ABTS•+) system. The results demonstrated a decrease in the total phenolic content of extracts after digestion, with purple rice extract retaining the highest phenolic content (79%) and ABTS•+antioxidant activity (31%). Antioxidant activity was retained the most during the gastric phase; however, dominant antioxidant compounds were not detected after intestinal digestion. Significant variations in phenolic composition and radical scavenging activity were detected after digestion. Protocatechuic acid, vanillic acid, apigenin, and chrysoeriol were all transported across the intestinal barrier. The findings of this study provide novel insights into the in vitro stability and antioxidant activity of cereal grain polyphenols after simulated digestion.


Subject(s)
Antioxidants , Digestion , Edible Grain , Oryza , Polyphenols , Humans , Polyphenols/analysis , Polyphenols/metabolism , Antioxidants/pharmacology , Caco-2 Cells , Oryza/chemistry , Edible Grain/chemistry , Triticum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Hordeum/chemistry , Biological Transport
16.
J Food Sci ; 89(4): 1960-1975, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488734

ABSTRACT

Effects of ultrafine grinding on the nutritional profile, physicochemical properties, and antioxidant activities of whole-grain highland barley (HB) including white highland barley (WHB) and black highland barley (BHB) were studied. Whole-grain HB was regularly ground and sieved through 80 mesh get 80 M powder, and HB was ultrafine grounded and sieved through 80 mesh, 150 mesh, and 200 mesh get 80UMM, 150UMM, and 200UMM samples. Particle size of WHB and BHB reduced significantly after ultrafine grinding. As the particle size decreased, moisture content of WHB and BHB decreased significantly, whereas fat content increased significantly. Redistribution of fiber components in WHB and BHB from insoluble to soluble fractions was also observed. Wherein, content of soluble pentosan of WHB and BHB increased significantly from 0.56% and 0.78% (80 M) to 0.91% and 1.14% (200UMM), respectively. Damaged starch of WHB and BHB increased significantly from 8.16% and 8.21% (80 M) to 10.29% and 10.07% (200UMM), respectively. Content of phenolic acid and flavonoid of WHB and BHB and associated antioxidant capacity were increased after ultrafine grinding. Color of L* value increased significantly, a* and b* values decreased significantly, indicating the whiteness of WHB and BHB was increased after ultrafine grinding. Pasting temperature of WHB and BHB decreased, whereas peak viscosity increased. X-ray diffraction patterns of HB showed typical A- and V-style polymorphs and the relative crystallinity of HB decreased as the particle size decreased. Taken together, ultrafine grinding has shown great potential in improving the nutritional, physiochemical, and antioxidant properties of whole-grain HB. Our research findings could help better understand the ultrafine grinded whole grain HB in food industry.


Subject(s)
Antioxidants , Hordeum , Hordeum/chemistry , Starch/chemistry , Particle Size
17.
Arch Anim Nutr ; 78(1): 30-44, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38436931

ABSTRACT

Cassava protein (CP), barley protein (BP) and yellow pea protein (YPP) are important nutrient and integral constituent of staple in pet foods. It is known that the digestion of proteins directly influences their absorption and utilisation. In the present work, we performed in vitro simulated gastrointestinal digestion of three plant proteins as a staple for dog and cat food. The digestion rate of CP, BP and YPP in dog food was 56.33 ± 0.90%, 48.53 ± 0.91%, and 66.96 ± 0.37%, respectively, whereas the digestion rate of CP, BP, and YPP in cat food was 66.25 ± 0.72%, 43.42 ± 0.83%, and 58.05 ± 0.85%, respectively. Using SDS-polyacrylamide gel electrophoresis to determine the molecular weight (MW) of each protein and the products of their digestion, it was revealed that MW of digestion samples decreased, and MW during the small intestine phase was lower than that during the gastric phase. Peptide sequences of digested products were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it was found that the total number of peptides in the small intestine digestion samples was higher than that in the gastric phase samples. The MW of peptides obtained from CP was within the range of 1000-1500 Da, while MW of peptides derived from BP and YPP was within the range of 400-2000 Da. In addition, free amino acids were mainly produced in the small intestine phase. Furthermore, the percentage of essential amino acids in the small intestine phase (63 ~ 82%) was higher than that in the gastric phase (37 ~ 63%). Taken together, these findings contribute to the current understanding of the utilisation of plant proteins in dog and cat foods and provide important insights into the selection and application of plant proteins as a staple in dog and cat foods.


Subject(s)
Amino Acids , Digestion , Peptides , Digestion/physiology , Amino Acids/metabolism , Amino Acids/chemistry , Animals , Peptides/metabolism , Peptides/chemistry , Animal Feed/analysis , Plant Proteins/metabolism , Plant Proteins/chemistry , Hordeum/chemistry , Hordeum/metabolism , Manihot/chemistry , Manihot/metabolism , Pisum sativum/chemistry , Pisum sativum/metabolism , Dogs , Pea Proteins/chemistry , Pea Proteins/metabolism , Cats , Tandem Mass Spectrometry/veterinary , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/physiology , Gastrointestinal Tract/chemistry
18.
Food Funct ; 15(7): 3246-3258, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38446134

ABSTRACT

Barley (Hordeum vulgare L.) is rich in starch and non-starch polysaccharides (NSPs), especially ß-glucan and arabinoxylan. Genotypes and isolation methods may affect their structural characteristics, properties and biological activities. The structure-activity relationships of NSPs in barley have not been paid much attention. This review summarizes the extraction methods, structural characteristics and physicochemical properties of barley polysaccharides. Moreover, the roles of barley ß-glucan and arabinoxylan in the immune system, glucose metabolism, regulation of lipid metabolism and absorption of mineral elements are summarized. This review may help in the development of functional products in barley.


Subject(s)
Hordeum , beta-Glucans , Hordeum/chemistry , Polysaccharides/chemistry , Starch/metabolism , beta-Glucans/chemistry
19.
Food Res Int ; 178: 113961, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309915

ABSTRACT

This investigation delves into the dynamic metabolic shifts within barley grains during the roasting process, employing UPLC-QqQ-MS/MS analysis. The complex spectrum of metabolites before and after roasting is revealed. The resulting data, unveils substantial transformations in chemical composition during roasting. A total of 62 chromatographic peaks spanning phenolic compounds, flavones, Millard Reaction Products, amino acids, lignans, vitamins, folates, and anthocyanins were annotated. Leveraging UPLC-QqQ-MS/MS analysis, we scrutinized the intricate metabolite profile before and after roasting where the roasting process was found to trigger dynamic changes across diverse metabolite classes particularly Millard Reaction Products, produced through the Maillard reaction, with dihydro-5-methyl-5H-cyclopentapyrazine, maltol and hydroxy maltol emerging as discerning markers of roasting progression. Amino acids and sugars showed degradation, while beta-glucan, a signature barley sugar, experienced notable decline. Folate derivatives witnessed pronounced reduction, aligning with the heat sensitivity of folates. Harnessing the power of multivariate data analysis, the consequences of roasting materialize through distinct clusters in PCA and OPLS-DA plots. Noteworthy, roasting duration governs the trajectory of metabolic divergence, culminating in the identification of roasting-specific markers. Epigallocatechin, procyanidin B, 10-HCO-H4 folate, and hordatine A emerge as pivotal discriminators. Orthogonal Projection to Latent Structure (OPLS) analysis linked anti-inflammatory activity with 30-min, 1-hour, and 1.5-hour roasted samples, with hordatine B in addition to some Millard Reaction Products being correlated with pro-inflammatory marker downregulation.. This study encapsulates the intricate metabolic metamorphosis ignited by roasting in barley grains, offering a holistic comprehension of their potential health-enhancing attributes. Key metabolites act as poignant indicators of these transformations, substantiating the complex interplay between roasting and the barley grain metabolome.


Subject(s)
Hordeum , Hordeum/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Anthocyanins/analysis , Chemometrics , Amino Acids/analysis , Folic Acid
20.
Int J Biol Macromol ; 260(Pt 1): 129417, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224806

ABSTRACT

The impacts of protein types and its interaction with ß-glucan on the in vitro digestibility of highland barley starch were investigated through analyzing physicochemical and microstructural properties of highland barley flour (HBF) after sequentially removing water- (WP), salt- (SP), alcohol- (AP) and alkali-soluble (AlkP) proteins. Resistant starch (RS) increased significantly in HBF after removing WP and SP, and RS of HBF was lower than that of without ß-glucan. After removing WP, SP and AP, swelling powers of HBF without ß-glucan (9.33-9.77) were higher than those of HBF (12.09-15.95). Trends of peak viscosity and peak temperature (thermal degradation temperature) were similar as swelling power, and HBF without AP showed the highest peak temperature (310.33 °C). Removals of different proteins improved the crystalline structure and short-range order of starch. There was a blue shift in T2 values and an opposite change in free water proportion. The matrix on starch surface was mainly formed by AP and AlkP, which could be aggregated by ß-glucan. But, the inhibitory effect of AP or AlkP was stronger than that of proteins combined with ß-glucan. These results help in the development of starch-based foods with different digestive properties by combining different protein types with ß-glucan.


Subject(s)
Hordeum , beta-Glucans , Starch/chemistry , Hordeum/chemistry , beta-Glucans/chemistry , Flour , Resistant Starch , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...