Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 812
Filter
1.
Int J Mol Sci ; 25(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39337448

ABSTRACT

Myxedema is a potentially life-threatening condition typically observed in severe hypothyroidism. However, localized or diffuse myxedema is also observed in hyperthyroidism. The exact cause and mechanism of this paradoxical situation is not clear. We report here the analysis of body fluid distribution by bioelectrical impedance analysis (BIA) in 103 thyroid patients, subdivided according to their functional status. All BIA parameters measured in subclinical thyroid dysfunctions did not significantly differ from those observed in euthyroid controls. On the contrary, they were clearly altered in the two extreme, opposite conditions of thyroid dysfunctions, namely overt hyperthyroidism and severe hypothyroidism, indicating the occurrence of a typical hormetic condition. Surprisingly, differences in BIA parameters related to fluid body composition were even more evident in hyperthyroidism than in hypothyroidism. A hormetic response to thyroid hormone (TH)s was previously reported to explain the paradoxical, biphasic, time- and dose-dependent effects on other conditions. Our results indicate that myxedema, observed in both hypothyroid and hyperthyroid conditions, represents another example of a hormetic-type response to THs. BIA offers no additional valuable information in evaluating fluid body composition in subclinical thyroid dysfunctions, but it represents a valuable method to analyze and monitor body fluid composition and distribution in overt and severe thyroid dysfunctions.


Subject(s)
Hyperthyroidism , Hypothyroidism , Myxedema , Humans , Hypothyroidism/complications , Hypothyroidism/metabolism , Hyperthyroidism/complications , Hyperthyroidism/metabolism , Hyperthyroidism/physiopathology , Female , Male , Middle Aged , Adult , Electric Impedance , Hormesis , Aged , Thyroid Hormones/metabolism , Thyroid Hormones/blood , Body Composition
2.
Pestic Biochem Physiol ; 204: 106061, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277377

ABSTRACT

Aphis gossypii Glover is one of the most agriculturally important phloem-feeding economic pests, causing tremendous loss in crop yield annually. The hormesis is an important cause of A. gossypii resistance formation, population resurgence, and re-outbreak. However, whether the hormesises induced by different insecticides interact mutually remain largely unclear. In the study, four-generation A. gossypii experiment found that the 24-h sublethal-dose (LC20) sulfoxaflor treatment on G0 significantly increased the net reproductive rate (R0) and fecundity of G1 and G2 generation A. gossypii, but it did not significantly affect the fecundity of G3 and G4 individuals. Transcriptomic analyses revealed that the insecticide-induced significant up-regulation of pathways ribosome, energy metabolism, and the DNA replication and reparation might be responsible for the enhancement of fecundity in G1 and G2 A. gossypii. Notably, G0 exposure to LC20 sulfoxaflor followed by G1 exposure to LC30 deltamethrin resulted in a stronger reproductive stimulation than sulfoxaflor or deltamethrin exposure alone. Our findings provide valuable reference for optimizing sulfoxaflor application in integrated pest management strategies.


Subject(s)
Aphids , Hormesis , Insecticides , Pyridines , Reproduction , Sulfur Compounds , Animals , Sulfur Compounds/toxicity , Sulfur Compounds/pharmacology , Reproduction/drug effects , Aphids/drug effects , Aphids/genetics , Hormesis/drug effects , Pyridines/toxicity , Pyridines/pharmacology , Insecticides/toxicity , Insecticides/pharmacology , Pyrethrins/toxicity , Nitriles/toxicity , Nitriles/pharmacology , Fertility/drug effects
3.
J Hazard Mater ; 479: 135767, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39255662

ABSTRACT

Antibiotics usually induce the hormetic effects on bacteria, featured by low-dose stimulation and high-dose inhibition, which challenges the central belief in toxicity assessment and environmental risk assessment of antibiotics. However, there are currently no ideal parameters to quantitatively characterize hormesis. In this study, an effective area in hormesis (AH) was developed to quantify the biphasic dose-responses of single antibiotics (sulfonamides (SAs), sulfonamides potentiators (SAPs), and tetracyclines (TCs)) and binary mixtures (SAs-SAPs, SAs-TCs, and SAs-SAs) to the bioluminescence of Aliivibrio fischeri. Using Ebind (the lowest interaction energy between antibiotic and target protein) and Kow (octanol-water partition coefficient) as the structural descriptors, the reliable quantitative structure-activity relationship (QSAR) models were constructed for the AH values of test antibiotics and mixtures. Furthermore, a novel method based on AH was established to judge the joint toxic actions of binary antibiotics, which mainly exhibited synergism. The results also indicated that SAPs (or TCs) contributed more than SAs in the hormetic effects of antibiotic mixtures. This study proposes a new quantitative parameter for characterizing and predicting antibiotic hormesis, and considers hormesis as an integrated whole to reveal the combined effects of antibiotics, which will promote the development of risk evaluation for antibiotics and their mixtures.


Subject(s)
Aliivibrio fischeri , Anti-Bacterial Agents , Hormesis , Quantitative Structure-Activity Relationship , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hormesis/drug effects , Aliivibrio fischeri/drug effects , Sulfonamides/toxicity , Sulfonamides/chemistry , Tetracyclines/toxicity , Tetracyclines/chemistry , Dose-Response Relationship, Drug
4.
J Environ Manage ; 369: 122352, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232324

ABSTRACT

Black soldier fly larvae (BSFL) are considered important organisms, utilized as tools to transform waste including manure into valuable products. The growth and cultivation of BSFL are influenced by various factors, such as the presence of toxic substances in the feed and parasites. These factors play a crucial role in hormesis, and contributing to regulate these contaminants hermetic doses to get sustainable byproducts. This review aims to understand the effects on BSFL growth and activities in the presence of compounds like organic and inorganic pollutants. It also assesses the impact of microbes on BSFL growth and explores the bioaccumulation of pharmaceutical compounds, specifically focusing on heavy metals, pesticides, pharmaceuticals, indigenous bacteria, insects, and nematodes. The review concludes by addressing knowledge gaps, proposing future biorefineries, and offering recommendations for further research.


Subject(s)
Hormesis , Larva , Livestock , Manure , Recycling , Animals , Metals, Heavy/toxicity , Diptera , Pesticides/toxicity
5.
Transl Neurodegener ; 13(1): 46, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242576

ABSTRACT

Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.


Subject(s)
Mitochondria , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Mitochondria/metabolism , Hormesis/physiology , Animals
6.
BMC Microbiol ; 24(1): 290, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095741

ABSTRACT

INTRODUCTION: Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD: Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT: The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION: When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.


Subject(s)
Anti-Bacterial Agents , Biofilms , Hormesis , Pseudomonas aeruginosa , Zinc Oxide , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/growth & development , Zinc Oxide/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Hormesis/drug effects , Humans , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Cystic Fibrosis/microbiology , Gene Expression Regulation, Bacterial/drug effects , X-Ray Diffraction , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Dose-Response Relationship, Drug
7.
Physiol Plant ; 176(1): e14163, 2024.
Article in English | MEDLINE | ID: mdl-39141204

ABSTRACT

The concept of 'hormesis' is defined as a dose-response relationship whereby low doses of various toxic substances or physical stressors trigger bio-positive effects in diverse biological systems, whereas high doses cause inhibition of cellular performance (e.g. growth, viability). The two-sided phenomenon of specific low-dose stimulation and high-dose inhibition imposed by a 'hormetic-factor' has been well documented in toxicology and pharmacology. Multitudinous factors have been identified that correspondingly cause hormetic effects in diverse taxa of animals, fungi, and plants. This study particularly aims to elucidate the molecular basis for stimulatory implications of ionizing radiation (IR) on plant male gametophytes (pollen). Beyond that, this analysis impacts general research on cell growth, plant breeding, radiation protection, and, in a wider sense, medical treatment. For this purpose, IR-related data were surveyed and discussed in connection with the present knowledge about pollen physiology. It is concluded that IR-induced reactive oxygen species (ROS) have a key role here. Moreover, it is hypothesized that IR-exposure shifts the ratio between diverse types of ROS in the cell. The interrelation between ROS, intracellular Ca2+-gradient, NADPH oxidases, ROS-scavengers, actin dynamics, and cell wall properties are most probably involved in IR-hormesis of pollen germination and tube growth. Modulation of gene expression, phytohormone signalling, and cellular antioxidant capacity are also implicated in IR-hormesis.


Subject(s)
Pollen , Radiation, Ionizing , Reactive Oxygen Species , Pollen/radiation effects , Reactive Oxygen Species/metabolism , Hormesis/radiation effects , Germination/radiation effects
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125918

ABSTRACT

In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 µmol photons m-2 s-1) and at high irradiance (HI) (1000 µmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.


Subject(s)
Calcium Hydroxide , Nanoparticles , Photosystem II Protein Complex , Solanum lycopersicum , Photosystem II Protein Complex/metabolism , Calcium Hydroxide/chemistry , Nanoparticles/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Photosynthesis/drug effects , Hormesis , Electron Transport/drug effects , Reactive Oxygen Species/metabolism
9.
Food Chem Toxicol ; 192: 114941, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153727

ABSTRACT

The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).


Subject(s)
Blastocyst , Embryonic Development , Hormesis , Oocytes , Oocytes/drug effects , Oocytes/physiology , Embryonic Development/drug effects , Blastocyst/drug effects , Blastocyst/physiology , Humans , Animals , Female
10.
Mech Ageing Dev ; 220: 111960, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971236

ABSTRACT

Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.


Subject(s)
Hormesis , Humans , Animals , Healthy Aging/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy
11.
Commun Biol ; 7(1): 821, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969726

ABSTRACT

Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.


Subject(s)
Chlorella , Hormesis , Lipid Metabolism , Chlorella/metabolism , Chlorella/radiation effects , Chlorella/growth & development , Lipid Metabolism/radiation effects , Hormesis/radiation effects , Radiation, Ionizing , Biomass
12.
J Hazard Mater ; 476: 135160, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38991646

ABSTRACT

The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.


Subject(s)
Denitrification , Disinfectants , Nitrification , Nitrification/drug effects , Disinfectants/toxicity , Denitrification/drug effects , Hormesis/drug effects , Xylenes/toxicity , Aerobiosis , Drug Synergism , Water Pollutants, Chemical/toxicity , Heterotrophic Processes , Nitrogen/metabolism
13.
Sci Total Environ ; 949: 175165, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39084370

ABSTRACT

Emerging evidence reveals that low doses of stress stimulate, and high doses suppress, organism responses - a phenomenon known as hormesis. Here, we propose a framework for harnessing hormesis principles to optimize agrochemical use and mitigate pollution. We discuss how hormesis can be applied in agrochemical context and highlight challenges and needs beyond scientific research, offering a perspective for sustainable environmental solutions.


Subject(s)
Agrochemicals , Environmental Pollution , Hormesis , Environmental Pollution/prevention & control , Environmental Restoration and Remediation/methods
14.
Ecotoxicology ; 33(7): 818-829, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38990494

ABSTRACT

Temperature can interact with chemical pesticides and modulate their toxicity. Sublethal exposure to pesticides is known to trigger hormetic responses in pests. However, the simultaneous effects of temperature and sublethal exposure to single or mixture-based insecticides on the insects' stimulatory responses are not frequently considered in toxicological studies. Here we investigated the combined effects of temperature on the lethal and sublethal responses of the green peach aphid Myzus persicae after exposure to commercial formulations of a neonicotinoid (thiamethoxam) and a pyrethroid (lambda-cyhalothrin) and their mixture. Firstly, the concentration-response curves of the insecticides were determined under four temperatures (15 °C, 20 °C, 25 °C, and 28 °C) by the leaf dipping method. Subsequently, the sublethal concentrations C0, CL1, CL5, CL10, CL15, CL20, and CL30 were selected to assess sublethal effects on aphids' longevity and reproduction under the same temperatures. The results showed that the mixture of thiamethoxam + lambda-cyhalothrin caused greater toxicity to aphids compared to the formulations with each active ingredient alone and that the toxicity was higher at elevated temperatures. Furthermore, the exposure to low concentrations of the mixture (thiamethoxam + lambda-cyhalothrin) and the separated insecticides induced stimulatory responses in the longevity and fecundity of exposed aphid females, but the occurrence of such hormetic responses depended on the insecticide type, its sublethal concentration, and the temperature as well as their interactions.


Subject(s)
Aphids , Insecticides , Nitriles , Pyrethrins , Temperature , Thiamethoxam , Animals , Aphids/drug effects , Aphids/physiology , Insecticides/toxicity , Pyrethrins/toxicity , Nitriles/toxicity , Thiamethoxam/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Reproduction/drug effects , Hormesis
15.
J Exp Bot ; 75(17): 5295-5311, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-38938164

ABSTRACT

Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.


Subject(s)
Mass Spectrometry , Plant Growth Regulators , Plant Growth Regulators/metabolism , Plants/metabolism , Hormesis
16.
Biol Res ; 57(1): 37, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824571

ABSTRACT

It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.


Subject(s)
Hormesis , Mitochondria , Oxidative Stress , Humans , Hormesis/physiology , Mitochondria/physiology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Animals , Osteoarthritis/therapy , Osteoarthritis/physiopathology , Signal Transduction/physiology
17.
J Nucl Med ; 65(8): 1173-1174, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38906558

ABSTRACT

The linear no-threshold (LNT) model, which asserts that any level of ionizing radiation increases cancer risk, has been the basis of global radiation protection policies since the 1950s. Despite ongoing endorsements, a growing body of evidence challenges the LNT model, suggesting instead that low-level radiation exposure might reduce cancer risk, a concept known as radiation hormesis. This editorial examines the persistence of the LNT model despite evidence favoring radiation hormesis and proposes a solution: a public, online debate between proponents of the LNT model and advocates of radiation hormesis. This debate, organized by a government agency like Medicare, would be transparent and thorough, potentially leading to a shift in radiation protection policies. Acceptance of radiation hormesis could significantly reduce cancer mortality rates and streamline radiation safety regulations, fostering medical innovation and economic growth.


Subject(s)
Neoplasms, Radiation-Induced , Humans , Neoplasms, Radiation-Induced/prevention & control , Radiation Protection , Hormesis , Linear Models
18.
Environ Sci Technol ; 58(21): 9314-9327, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709515

ABSTRACT

Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.


Subject(s)
Hormesis , Risk Assessment , Water Pollutants, Chemical , Fluorocarbons , Alkanesulfonic Acids , Caprylates
19.
J Hazard Mater ; 472: 134616, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754232

ABSTRACT

Soil is recognized as an important reservoir of antibiotic resistance genes (ARGs). However, the effect of salinity on the antibiotic resistome in saline soils remains largely misunderstood. In this study, high-throughput qPCR was used to investigate the impact of low-variable salinity levels on the occurrence, health risks, driving factors, and assembly processes of the antibiotic resistome. The results revealed 206 subtype ARGs across 10 categories, with medium-salinity soil exhibiting the highest abundance and number of ARGs. Among them, high-risk ARGs were enriched in medium-salinity soil. Further exploration showed that bacterial interaction favored the proliferation of ARGs. Meanwhile, functional genes related to reactive oxygen species production, membrane permeability, and adenosine triphosphate synthesis were upregulated by 6.9%, 2.9%, and 18.0%, respectively, at medium salinity compared to those at low salinity. With increasing salinity, the driver of ARGs in saline soils shifts from bacterial community to mobile gene elements, and energy supply contributed 28.2% to the ARGs at extreme salinity. As indicated by the neutral community model, stochastic processes shaped the assembly of ARGs communities in saline soils. This work emphasizes the importance of salinity on antibiotic resistome, and provides advanced insights into the fate and dissemination of ARGs in saline soils.


Subject(s)
Drug Resistance, Microbial , Hormesis , Salinity , Soil Microbiology , Drug Resistance, Microbial/genetics , Hormesis/drug effects , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/drug effects , Soil/chemistry , Bacteria/drug effects , Bacteria/genetics
20.
Sci Total Environ ; 932: 172856, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697534

ABSTRACT

Antibiotics are frequently detected in surface water and pose potential threats to organisms in aquatic ecosystem such as microalgae. The occurrence of biphasic dose responses raised the possibility of stimulation of microalgal biomass by antibiotics at environmental-relevant concentration and caused potential ecological risk such as algal bloom. However, the underlying mechanisms of low concentration-induced hormetic effects are not well understood. In this study, we evaluated the hormesis of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. Results showed the hormetic effects of ofloxacin on cell density and carbon fixation rate (RC). The predicted maximum promotion was 17.45 % by 16.84 µg/L and 20.08 % by 15.78 µg/L at 21 d, respectively. The predicted maximum concentration of non-effect on cell density and RC at 21 d was 3.24 mg/L and 1.44 mg/L, respectively. Ofloxacin induced the mobilization of pigments and antioxidant enzymes to deal with oxidative stress. PCA analysis revealed Chl-a/Chl-b could act as a more sensitive biomarker under acute exposure while chlorophyll fluorescence parameters were in favor of monitoring long-term implication. The hormesis in increased secretion of extracellular organic matters was regarded as a defensive mechanism and accelerated indirect photodegradation of ofloxacin. Bioremoval was dominant and related to biomass accumulation in the total dissipation while abiotic removal appeared slight contributions. This study provided new insights into the understanding of hormesis of microalgae induced by antibiotics.


Subject(s)
Anti-Bacterial Agents , Chlorella , Hormesis , Ofloxacin , Water Pollutants, Chemical , Chlorella/drug effects , Ofloxacin/toxicity , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/toxicity , Microalgae/drug effects , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL