Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.363
Filter
1.
Theriogenology ; 229: 75-82, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39167835

ABSTRACT

The proper function of the placenta is essential for the health and growth of the fetus and the mother. The placenta relies on dynamic gene expression for its correct and timely development and function. Although numerous studies have identified genes vital for placental functions, equine placental molecular research has primarily focused on single placental locations, in sharp contrast with the broader approach in human studies. Here, we hypothesized that the molecular differences across different regions of the equine placenta are negligible because of its diffuse placental type with a macroscopic homogenous distribution of villi across the placental surface. We compared the transcriptome and stereological findings of the body, pregnant horn, and non-pregnant horn within the equine chorioallantois. Our transcriptomic analysis indicates that the variation between regions of the placenta within individuals is less than the variation observed between individuals. A low number of differentially expressed genes (DEGs) (n = 8) was identified when comparing pregnant and non-pregnant horns within the same placenta, suggesting a remarkable molecular uniformity. A higher number of DEGs was identified when comparing each horn to the body (193 DEGs comparing pregnant horn with body and 207 DEGs comparing non-pregnant horn with body). Genes with a higher expression in the body were associated with processes such as extracellular matrix synthesis and remodeling, which is relevant for placental maturation and placenta-endometrial separation at term and implies asynchrony of these processes across locations. The stereological analysis showed no differences in microcotyledonary density, and width between the locations. However, we observed a greater chorioallantoic thickness in the body and pregnant horn compared to the non-pregnant horn. Overall, our findings reveal a uniform transcriptomic profile across the placental horns, alongside a more distinct gene expression pattern between the uterine body and horns. These regional differences in gene expression suggest a different pace in the placental maturation and detachment among the placental locations.


Subject(s)
Placenta , Transcriptome , Female , Animals , Horses/genetics , Horses/physiology , Pregnancy , Placenta/metabolism , Chorioallantoic Membrane/metabolism , Gene Expression Profiling , Gene Expression Regulation/physiology
2.
Animal ; 18(9): 101278, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39213910

ABSTRACT

Many sport horse studbooks worldwide use microsatellite markers for parentage verification. However, many have expressed a desire to introduce genomic selection using genome-wide dense single nucleotide polymorphism (SNP) genotypes to complement their current breeding programmes. Hence, it does not make sense to genotype the same animal for both microsatellite markers and SNP markers. Transitioning to SNP-based parentage verification is an obvious solution but one barrier to this transition is the lack of SNP data on parents from which to verify parentage against. Therefore, the objective of this study was to assess the ability to impute the SNP genotype of a stallion from the genotypes of its progeny, with or without the consideration of the genotype of the progeny's dam. Genotype information from 55 935 SNPs was available on 13 327 horses. A total of 98 stallions had genotype data on 10 progeny and the genotypes of these stallions were used as a test population. Genome-wide genotype imputation was undertaken by combining a family- and population-based imputation approach. Several different scenarios were assessed to quantify the ability to accurately impute the genotype of a stallion based on genotype data of incrementally more half-sibling progeny. Using genomic information from four progeny the average genotype concordance of the imputed sire genotype compared to the actual sire's genotype was 0.932. The average genotype concordance rate increased to 0.960 when the genotypes of 10 progeny were included in the imputation process. The inclusion of the genotypes of the dams of the progeny improved the concordance rate from 0.932 to 0.977 when based on the genotype of just four progeny and their dams and from 0.960 to 0.996 when based on the genotype of 10 progeny and their dams. These results suggest it is possible to impute the genotype of a non-genotyped horse from the genotypes of its progeny and that the inclusion of the genotypes of the dams of the progeny improves this imputation accuracy further.


Subject(s)
Genotype , Polymorphism, Single Nucleotide , Animals , Horses/genetics , Male , Female , Breeding , Pedigree
3.
Animal ; 18(9): 101255, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39121723

ABSTRACT

Osteochondrosis (OC) is a developmental orthopaedic disease of significant concern in numerous sport horse breeds, with significant international relevance. Using digital radiographs, we assessed the occurrence of hock (tarsocrural joint) OC in 3 048 Pura Raza Española (PRE) horses which took part in a morpho-functional test, in three specific locations in the tarsus limbs: the Distal Intermediate Ridge of the Tibia (DIRT), the lateral trochlear ridges of the talus (LTT), and the medial trochlear ridges of the talus (MTT). An incidence rate of 13.3% was found for hock OC in the analysed sample, with the highest incidence rate observed in DIRT (10.0%) and the lowest in MTT (0.2%). Estimates of genetic predisposition to hock OC were carried out using three genetic approaches: 1a) a binomial threshold model based on the presence or absence of OC, 1b) a multinomial threshold model, on a scale from 0 (absence) to 3 (maximum), and 2) a linear model. The effects considered in the models included sex, genetic origin and stud class. All the analyses were based on the Bayesian inference methodology, using the THRGIBBS3F90 software. The binomial threshold model yielded the most suitable results, with an estimated heritability for Overall hock OC of 0.71 ± 0.055 on the underlying scale (0.53 on the observed scale), ranging in different locations from 0.48 ± 0.087 (LTT) to 0.66 ± 0.063 (DIRT) on the underlying scale (0.10 and 0.38 on the observed scale, respectively). The highest significative genetic correlation was observed between Overall and DIRT (0.97) for approach 1a, and the lowest significant genetic correlation was between Overall and LTT (0.49), for approach 2. This study contributes valuable insights into the genetic predisposition towards, as well as for the potential for selective breeding against, hock OC in PRE horses, and provides a basis for future research and breeding programmes aimed at minimising the occurrence of hock OC and promoting the overall health of this breed.


Subject(s)
Genetic Predisposition to Disease , Horse Diseases , Osteochondrosis , Animals , Horses/genetics , Osteochondrosis/veterinary , Osteochondrosis/genetics , Osteochondrosis/epidemiology , Horse Diseases/genetics , Male , Female , Tarsus, Animal , Breeding , Bayes Theorem , Radiography/veterinary , Tibia , Incidence
4.
BMC Genomics ; 25(1): 772, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118059

ABSTRACT

BACKGROUND: The Icelandic horse and Exmoor pony are ancient, native breeds, adapted to harsh environmental conditions and they have both undergone severe historic bottlenecks. However, in modern days, the selection pressures on these breeds differ substantially. The aim of this study was to assess genetic diversity in both breeds through expected (HE) and observed heterozygosity (HO) and effective population size (Ne). Furthermore, we aimed to identify runs of homozygosity (ROH) to estimate and compare genomic inbreeding and signatures of selection in the breeds. RESULTS: HO was estimated at 0.34 and 0.33 in the Icelandic horse and Exmoor pony, respectively, aligning closely with HE of 0.34 for both breeds. Based on genomic data, the Ne for the last generation was calculated to be 125 individuals for Icelandic horses and 42 for Exmoor ponies. Genomic inbreeding coefficient (FROH) ranged from 0.08 to 0.20 for the Icelandic horse and 0.12 to 0.27 for the Exmoor pony, with the majority of inbreeding attributed to short ROHs in both breeds. Several ROH islands associated with performance were identified in the Icelandic horse, featuring target genes such as DMRT3, DOCK8, EDNRB, SLAIN1, and NEURL1. Shared ROH islands between both breeds were linked to metabolic processes (FOXO1), body size, and the immune system (CYRIB), while private ROH islands in Exmoor ponies were associated with coat colours (ASIP, TBX3, OCA2), immune system (LYG1, LYG2), and fertility (TEX14, SPO11, ADAM20). CONCLUSIONS: Evaluations of genetic diversity and inbreeding reveal insights into the evolutionary trajectories of both breeds, highlighting the consequences of population bottlenecks. While the genetic diversity in the Icelandic horse is acceptable, a critically low genetic diversity was estimated for the Exmoor pony, which requires further validation. Identified signatures of selection highlight the differences in the use of the two breeds as well as their adaptive trait similarities. The results provide insight into genomic regions under selection pressure in a gaited performance horse breed and various adaptive traits in small-sized native horse breeds. This understanding contributes to preserving genetic diversity and population health in these equine populations.


Subject(s)
Genetic Variation , Homozygote , Inbreeding , Selection, Genetic , Horses/genetics , Animals , Iceland , Genomics/methods , Polymorphism, Single Nucleotide , Heterozygote , Breeding , Genetics, Population
5.
Nat Commun ; 15(1): 7510, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209879

ABSTRACT

The Greying with age phenotype in horses involves loss of hair pigmentation whereas skin pigmentation is not reduced, and a predisposition to melanoma. The causal mutation was initially reported as a duplication of a 4.6 kb intronic sequence in Syntaxin 17. The speed of greying varies considerably among Grey horses. Here we demonstrate the presence of two different Grey alleles, G2 carrying two tandem copies of the duplicated sequence and G3 carrying three. The latter is by far the most common allele, probably due to strong selection for the striking white phenotype. Our results reveal a remarkable dosage effect where the G3 allele is associated with fast greying and high incidence of melanoma whereas G2 is associated with slow greying and low incidence of melanoma. The copy number expansion transforms a weak enhancer to a strong melanocyte-specific enhancer that underlies hair greying (G2 and G3) and a drastically elevated risk of melanoma (G3 only). Our direct pedigree-based observation of the origin of a G2 allele from a G3 allele by copy number contraction demonstrates the dynamic evolution of this locus and provides the ultimate evidence for causality of the copy number variation of the 4.6 kb intronic sequence.


Subject(s)
Alleles , DNA Copy Number Variations , Hair Color , Introns , Melanoma , Qa-SNARE Proteins , Horses/genetics , Animals , DNA Copy Number Variations/genetics , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Melanoma/genetics , Melanoma/veterinary , Melanoma/epidemiology , Introns/genetics , Hair Color/genetics , Pedigree , Male , Female , Phenotype , Incidence , Horse Diseases/genetics , Horse Diseases/epidemiology , Skin Pigmentation/genetics
6.
Domest Anim Endocrinol ; 89: 106879, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39191115

ABSTRACT

Circulating microRNAs (miRNAs) are stable in body fluids and can serve as biomarkers for various diseases and physiological states. Although pregnancy-related miRNAs have been identified in various mammals, studies on parturition-related circulating miRNAs in mares are limited. Therefore, this study aimed to identify parturition-related miRNAs and examine their potential applications in the prediction of parturition date. miRNAs were extracted from the plasma of Thoroughbred mares 30 days (295-326 days pregnant) and 5 (323-352 days pregnant) - 0 (328-357 days pregnant) days before parturition, followed by small RNA sequencing (small RNA-seq) and reverse transcription quantitative PCR (RT-qPCR). Additionally, we measured plasma progestin concentrations in mares using an enzyme-linked immunosorbent assay. Small RNA-seq data indicated that 18 miRNAs were affected by parturition proximity. Among the 18 miRNAs, two novel miRNAs and three known miRNAs (miR-361-3p, miR-483, and miR-99a) showed significant changes at 5-0 days before parturition compared with that at 30 days to parturition. Plasma progestin concentrations were higher at 5-3 days to parturition than at 30 days to parturition, and then decreased on the day of parturition. Conclusively, this study provides basic knowledge of parturition-related circulating miRNAs in mares, and identifies miRNAs that could potentially be used as biomarkers to predict parturition in mares.


Subject(s)
Circulating MicroRNA , Parturition , Animals , Horses/blood , Horses/physiology , Horses/genetics , Female , Pregnancy , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , MicroRNAs/blood , MicroRNAs/genetics , Progestins/blood
7.
Gene Ther ; 31(9-10): 477-488, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972888

ABSTRACT

Gene doping, which includes the non-therapeutic use of genes or genetic elements that have the capacity to enhance athletic performance, is prohibited in horseracing and equestrian sports. To provide a comprehensive assessment of matrix and detection techniques, a custom adeno-associated virus serotype 8 vector was designed to include PCR binding sites for multiple target genes and assay types. The vector was injected via an intramuscular route into two Thoroughbred horses and matrices collected at defined timepoints. DNA was analysed using 3 detection methods: qPCR, digital PCR, and NGS. Overall, there was a strong correlation across the different detection methods employed, although digital PCR was less sensitive at lower concentrations. High concentrations of vector were detected at early timepoints in plasma and whole blood, which rapidly dropped after 0.5 d to trace levels by 4 d and 9 d post-administration respectively, following a similar pattern to previous studies. Vector was detected in dried blood spots at lower levels than whole blood, but with a similar detection time. Detection in hair root bulbs in one horse was observed at over a month post-administration, which opens new avenues for future gene doping testing in humans and animals.


Subject(s)
Dependovirus , Doping in Sports , Genetic Vectors , Horses/genetics , Animals , Dependovirus/genetics , Doping in Sports/methods , Genetic Vectors/genetics
8.
Vet Comp Oncol ; 22(3): 447-451, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38984644

ABSTRACT

Sarcoids are the most frequently diagnosed dermatological tumour in horses. It is a disease that can affect various species of equids, such as donkeys, mules and zebras. This type of tumour can develop in all horse breeds, regardless of age and gender. Treatment options depend on many factors, such as the type of lesion, location, extent, owner preference and financial considerations. In the present study, we investigated the TRIM29 expression, the methylation status of its first exon and its involvement in the formation of equine sarcoids. Bisulfite sequencing PCR (BSP) was used to determine DNA methylation at CpG sites and real-time quantitative polymerase chain reaction (qPCR) was used to detect TRIM29 expression level. Our results showed that TRIM29 is significantly downregulated in lesional samples (FC = -3.72; p < 0.001). Furthermore, TRIM29 expression was significantly correlated (R = -0.73; p < 0.001) with hypermethylation of its specific CpG sites in the first exon of this gene. Our research has demonstrated that the identification of increased methylation of CpG sequences in horse sarcoids, along with the decreased expression of the TRIM29 gene, is an important step towards understanding the molecular mechanisms underlying the disease. These findings can serve in the future as a diagnostic biomarker for horse sarcoids and help in detecting the disease.


Subject(s)
DNA Methylation , Horse Diseases , Animals , Horses/genetics , Horse Diseases/genetics , Horse Diseases/metabolism , Skin Neoplasms/veterinary , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Male , Gene Expression Regulation, Neoplastic
9.
Genet Sel Evol ; 56(1): 53, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987703

ABSTRACT

BACKGROUND: The Franches-Montagnes (FM) is the last native horse breed of Switzerland, established at the end of the 19th century by cross-breeding local mares with Anglo-Norman stallions. We collected high-density SNP genotype data (Axiom™ 670 K Equine genotyping array) from 522 FM horses, including 44 old-type horses (OF), 514 European Warmblood horses (WB) from Sweden and Switzerland (including a stallion used for cross-breeding in 1990), 136 purebred Arabians (AR), 32 Shagya Arabians (SA), and 64 Thoroughbred (TB) horses, as introgressed WB stallions showed TB origin in their pedigrees. The aim of the study was to ascertain fine-scale population structures of the FM breed, including estimation of individual admixture levels and genomic inbreeding (FROH) by means of Runs of Homozygosity. RESULTS: To assess fine-scale population structures within the FM breed, we applied a three-step approach, which combined admixture, genetic contribution, and FROH of individuals into a high-resolution network visualization. Based on this approach, we were able to demonstrate that population substructures, as detected by model-based clustering, can be either associated with a different genetic origin or with the progeny of most influential sires. Within the FM breed, admixed horses explained most of the genetic variance of the current breeding population, while OF horses only accounted for a small proportion of the variance. Furthermore, we illustrated that FM horses showed high TB admixture levels and we identified inconsistencies in the origin of FM horses descending from the Arabian stallion Doktryner. With the exception of WB, FM horses were less inbred compared to the other breeds. However, the relatively few but long ROH segments suggested diversity loss in both FM subpopulations. Genes located in FM- and OF-specific ROH islands had known functions involved in conformation and behaviour, two traits that are highly valued by breeders. CONCLUSIONS: The FM remains the last native Swiss breed, clearly distinguishable from other historically introgressed breeds, but it suffered bottlenecks due to intensive selection of stallions, restrictive mating choices based on arbitrary definitions of pure breeding, and selection of rare coat colours. To preserve the genetic diversity of FM horses, future conservation managements strategies should involve a well-balanced selection of stallions (e.g., by integrating OF stallions in the FM breeding population) and avoid selection for rare coat colours.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Horses/genetics , Animals , Pedigree , Male , Breeding/methods , Female , Switzerland , Genotype , Homozygote
10.
BMC Res Notes ; 17(1): 205, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061110

ABSTRACT

OBJECTIVE: Insertion and deletion (indel) analysis of CRISPR-Cas guide RNAs (gRNAs) is crucial in gene editing to assess gRNA efficiency and indel frequency. This study evaluates the utility of CRISPResso2 with Oxford Nanopore sequencing data (nCRISPResso2) for gRNA indel screening, compared to two common Sanger sequencing-based methods, TIDE and ICE. To achieve this, sheep and horse fibroblasts were transfected with Cas9 and a gRNA targeting the myostatin (MSTN) gene. DNA was subsequently extracted, and PCR products exceeding 600 bp were sequenced using both Sanger and Nanopore sequencing. Indel profiling was then conducted using TIDE, ICE, and nCRISPResso2. RESULTS: Comparison revealed close correspondence in indel formation among methods. For the sheep MSTN gRNA, indel percentages were 52%, 58%, and 64% for TIDE, ICE, and nCRISPResso2, respectively. Horse MSTN gRNA showed 81%, 87%, and 86% edited amplicons for TIDE, ICE, and nCRISPResso2. The frequency of each type of indel was also comparable among the three methods, with nCRISPResso2 and ICE aligning the closest. nCRISPResso2 offers a viable alternative for CRISPR-Cas gRNA indel screening, especially with large amplicons unsuitable for Illumina sequencing. CRISPResso2's compatibility with Nanopore data enables cost-effective and efficient indel profiling, yielding results comparable to common Sanger sequencing-based methods.


Subject(s)
CRISPR-Cas Systems , Gene Editing , INDEL Mutation , Myostatin , Nanopore Sequencing , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Animals , RNA, Guide, CRISPR-Cas Systems/genetics , Nanopore Sequencing/methods , Sheep/genetics , Horses/genetics , Gene Editing/methods , Myostatin/genetics
11.
Meat Sci ; 216: 109582, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38991479

ABSTRACT

This study conducted a thorough analysis of the myofiber type composition in the extensor digitorum longus muscle (EDL) and soleus muscle (SOL) of Kazakh horses, across different genders (male and female). The results showed significant differences in myofiber type composition between EDL and SOL, with a higher proportion of Type I fibers in SOL muscles and a greater prevalence of Type II fibers in EDL muscles. Additionally, the myofiber diameter in Kazakh horses was relatively small, potentially related to the tenderness and edible quality of their muscles. Using high-throughput sequencing technology, we constructed 32 cDNA sequencing libraries and obtained high-quality read data. Gene expression analysis revealed 278 and 372 differentially expressed genes (DEGs) in EDL and SOL muscles, respectively, including genes related to muscle contraction, metabolism, and development. Intersection analysis of DEGs between genders showed that 60 DEGs were significantly different in both male and female horses. GO annotation and KEGG analysis further elucidated the roles of these DEGs in muscle structure, function, and cellular signaling. Protein-protein interaction (PPI) network analysis and identification of hub genes provided new insights into the molecular mechanisms underlying muscle growth and development. Finally, the reliability of the DEGs data was validated through quantitative real-time PCR (qRT-PCR). This study not only enhances our understanding of the biological characteristics of horse muscles but also provides potential molecular targets for improving horse muscle performance and health.


Subject(s)
Gene Expression Profiling , Muscle Fibers, Fast-Twitch , Muscle Fibers, Slow-Twitch , Transcriptome , Animals , Horses/genetics , Male , Female , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , High-Throughput Nucleotide Sequencing , Protein Interaction Maps
12.
Nature ; 631(8022): 819-825, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843826

ABSTRACT

Horses revolutionized human history with fast mobility1. However, the timeline between their domestication and their widespread integration as a means of transport remains contentious2-4. Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 BCE, through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 BCE and earlier3,5. Finally, we detect significantly shortened generation times at Botai around 3500 BCE, a settlement from central Asia associated with corrals and a subsistence economy centred on horses6,7. This supports local horse husbandry before the rise of modern domestic bloodlines.


Subject(s)
Animal Husbandry , Domestication , Horses , Transportation , Animals , Female , Male , Animal Husbandry/history , Asia , Europe , Genome/genetics , History, Ancient , Horses/classification , Horses/genetics , Reproduction , Transportation/history , Transportation/methods , Phylogeny
13.
Genes (Basel) ; 15(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38927726

ABSTRACT

This study analyzed ancient DNA from the remains of horses unearthed from the Shihuyao tombs. These were found to date from the Han and Tang Dynasties in Xinjiang (approximately 2200 to 1100 years ago). Two high-quality mitochondrial genomes were acquired and analyzed using next-generation sequencing. The genomes were split into two maternal haplogroups, B and D, according to a study that included ancient and contemporary samples from Eurasia. A close genetic affinity was observed between the horse of the Tang Dynasty and Akhal-Teke horses according to the primitive horse haplotype G1. Historical evidence suggests that the ancient Silk Road had a vital role in their dissemination. Additionally, the matrilineal history of the Akhal-Teke horse was accessed and suggested that the early domestication of the breed was for military purposes.


Subject(s)
DNA, Ancient , Genome, Mitochondrial , Haplotypes , Animals , Horses/genetics , Genome, Mitochondrial/genetics , China , DNA, Ancient/analysis , DNA, Mitochondrial/genetics , Phylogeny , History, Ancient , High-Throughput Nucleotide Sequencing , Domestication
14.
PeerJ ; 12: e17549, 2024.
Article in English | MEDLINE | ID: mdl-38912049

ABSTRACT

Polish Konik remains one of the most important horse breeds in Poland. The primitive, native horses with a stocky body and mouse-like coat color are protected by a conservation program, while their Polish population consists of about 3,480 individuals, representing 16 dam and six sire lines. To define the population's genetic structure, mitochondrial DNA and Y chromosome sequence variables were identified. The mtDNA whole hypervariable region analysis was carried out using the Sanger sequencing method on 233 Polish Koniks belonging to all dam lines, while the Y chromosome analysis was performed with the competitive allele-specific PCR genotyping method on 36 horses belonging to all sire lines. The analysis of the mtDNA hypervariable region detected 47 SNPs, which assigned all tested horses to 43 haplotypes. Most dam lines presented more than one haplotype; however, five dam lines were represented by only one haplotype. The haplotypes were classified into six (A, B, E, J, G, R) recognized mtDNA haplogroups, with most horses belonging to haplogroup A, common among Asian horse populations. Y chromosome analysis allocated Polish Koniks in the Crown group, condensing all modern horse breeds, and divided them into three haplotypes clustering with coldblood breeds (28 horses), warmblood breeds (two horses), and Duelmener Pony (six horses). The clustering of all Wicek sire line stallions with Duelmener horses may suggest a historical relationship between the breeds. Additionally, both mtDNA and Y chromosome sequence variability results indicate crossbreeding before the studbooks closure or irregularities in the pedigrees occurred before the DNA testing introduction.


Subject(s)
DNA, Mitochondrial , Haplotypes , Y Chromosome , Animals , Horses/genetics , DNA, Mitochondrial/genetics , Poland , Y Chromosome/genetics , Haplotypes/genetics , Male , Polymorphism, Single Nucleotide , Female , Breeding
15.
PLoS Genet ; 20(6): e1011285, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885195

ABSTRACT

The control of transcription is crucial for homeostasis in mammals. A previous selective sweep analysis of horse racing performance revealed a 19.6 kb candidate regulatory region 50 kb downstream of the Endothelin3 (EDN3) gene. Here, the region was narrowed to a 5.5 kb span of 14 SNVs, with elite and sub-elite haplotypes analyzed for association to racing performance, blood pressure and plasma levels of EDN3 in Coldblooded trotters and Standardbreds. Comparative analysis of human HiCap data identified the span as an enhancer cluster active in endothelial cells, interacting with genes relevant to blood pressure regulation. Coldblooded trotters with the sub-elite haplotype had significantly higher blood pressure compared to horses with the elite performing haplotype during exercise. Alleles within the elite haplotype were part of the standing variation in pre-domestication horses, and have risen in frequency during the era of breed development and selection. These results advance our understanding of the molecular genetics of athletic performance and vascular traits in both horses and humans.


Subject(s)
Athletic Performance , Blood Pressure , Haplotypes , Horses/genetics , Animals , Humans , Blood Pressure/genetics , Athletic Performance/physiology , Haplotypes/genetics , Endothelin-3/genetics , Polymorphism, Single Nucleotide , Alleles , Male , Endothelial Cells/metabolism
16.
Behav Genet ; 54(4): 333-341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38856811

ABSTRACT

Retraining retired racehorses for various purposes can help correct behavioral issues. However, ensuring efficiency and preventing accidents present global challenges. Based on the hypothesis that a simple personality assessment could help address these challenges, the present study aimed to identify genetic markers associated with personality. Eight genes were selected from 18 personality-related candidate genes that are orthologs of human personality genes, and their association with personality was verified based on actual behavior. A total of 169 Thoroughbred horses were assessed for their tractability (questionnaire concerning tractability in 14 types of situations and 3 types of impressions) during the training process. Personality factors were extracted from the data using principal component analysis and analyzed for their association with single nucleotide variants as non-synonymous substitutions in the target genes. Three genes, CDH13, SLC6A4, and MAOA, demonstrated significant associations based on simple linear regression, marking the identification of these genes for the first time as contributors to temperament in Thoroughbred horses. All these genes, as well as the previously identified HTR1A, are involved in the serotonin neurotransmitter system, suggesting that the tractability of horses may be correlated with their social personality. Assessing the genotypes of these genes before retraining is expected to prevent problems in the development of a racehorse's second career and shorten the training period through individual customization of training methods, thereby improving racehorse welfare.


Subject(s)
Behavior, Animal , Cadherins , Monoamine Oxidase , Personality , Polymorphism, Single Nucleotide , Animals , Horses/genetics , Monoamine Oxidase/genetics , Personality/genetics , Polymorphism, Single Nucleotide/genetics , Behavior, Animal/physiology , Cadherins/genetics , Genotype , Male , Female , Serotonin Plasma Membrane Transport Proteins/genetics
17.
Genet Sel Evol ; 56(1): 45, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872118

ABSTRACT

BACKGROUND: Body conformation, including withers height, is a major selection criterion in horse breeding and is associated with other important traits, such as health and performance. However, little is known about the genomic background of equine conformation. Therefore, the aim of this study was to use imputed sequence-level genotypes from up to 4891 German Warmblood horses to identify genomic regions associated with withers height and linear conformation traits. Furthermore, the traits were genetically characterised and putative causal variants for withers height were detected. RESULTS: A genome-wide association study (GWAS) for withers height confirmed the presence of a previously known quantitative trait locus (QTL) on Equus caballus (ECA) chromosome 3 close to the LCORL/NCAPG locus, which explained 16% of the phenotypic variance for withers height. An additional significant association signal was detected on ECA1. Further investigations of the region on ECA3 identified a few promising candidate causal variants for withers height, including a nonsense mutation in the coding sequence of the LCORL gene. The estimated heritability for withers height was 0.53 and ranged from 0 to 0.34 for the conformation traits. GWAS identified significantly associated variants for more than half of the investigated conformation traits, among which 13 showed a peak on ECA3 in the same region as withers height. Genetic parameter estimation revealed high genetic correlations between these traits and withers height for the QTL on ECA3. CONCLUSIONS: The use of imputed sequence-level genotypes from a large study cohort led to the discovery of novel QTL associated with conformation traits in German Warmblood horses. The results indicate the high relevance of the QTL on ECA3 for various conformation traits, including withers height, and contribute to deciphering causal mutations for body size in horses.


Subject(s)
Genome-Wide Association Study , Genotype , Quantitative Trait Loci , Animals , Horses/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Phenotype , Male , Female
18.
J Equine Vet Sci ; 138: 105098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763367

ABSTRACT

The Polo Argentino (PA) horse is a recognized breed, developed originally by mixing crossbred and Thoroughbred (TB) horses to play polo. Early PA selection is difficult due to unreliable performance estimations. This study investigated the usefulness of genomic markers previously linked to morphological and functional traits as a tool for the early selection of PA. To this, we genotyped 520 PA and 30 TB horses using the Equine GGPArray (Illumina, n = 71,778 SNPs). Analyses included a genetic characterization of six genetic markers associated with behavioral (DRD4), muscular development (MSTN), and body size (LCORL, HMGA6, ZFAT, and LASP1) genes. Genetic differences in the DRD4, MSTN, and LCORL SNP were found between the two breeds, in the last two FST index between breeds was 0.13 and 0.6, respectively (p < 0.01). In DRD4, G allele was the more prevalent in PA (0.56 vs 0.45 in TB, p < 0.05), but no differences were observed between the genotypes associated with phenotypes. In MSTN, heterozygous genotypes were the most common in PA (48 %), with a significant decrease in AA (Hardy-Weinberg p < 0.05), suggesting a negative selection against it in polo horses. In body size, HMGA2 was monomorphic in all horses, while ZFAT and LASP1 SNP showed higher variability. Interestingly, 99 % of PA showed a TT genotype in LCORL (only 66 % in TB), demonstrating selection for smaller horses. Our results suggest that empirical selection in PA has generated an incipient genomic differentiation in discrete traits which could be used as a marker-assisted selection tool for early selection of polo horses.


Subject(s)
Sports , Animals , Horses/genetics , Polymorphism, Single Nucleotide , Genomics/methods , Genetic Markers/genetics , Male , Genotype , Physical Conditioning, Animal
19.
Equine Vet J ; 56(4): 786-795, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38785417

ABSTRACT

BACKGROUND: Chromosomal abnormalities occur in the equine population at a rate of approximately 2%. The use of molecular cytogenetic techniques allows a more accurate identification of chromosomal abnormalities, especially those with a low rate of abnormal metaphases, demonstrating that the actual incidence in equine populations is higher. OBJECTIVES: Estimation of the number of carriers of karyotypic abnormalities in a sample from a population of young horses of various breeds, using molecular cytogenetic techniques. STUDY DESIGN: Cross-sectional. METHODS: Venous blood samples were collected from 500 young horses representing 5 breeds (Purebred Arabian, Hucul, Polish primitive horse [Konik], Malopolska, Coldblood, Silesian). Chromosomes and DNA were obtained from blood lymphocytes and evaluated by fluorescence in situ hybridisation (FISH) and PCR, using probes and markers for the sex chromosomes and select autosomes. RESULTS: Nineteen horses, 18 mares and 1 stallion, were diagnosed with different chromosomal abnormalities: 17 cases of mosaic forms of sex chromosome aneuploidies with a very low incidence (0.6%-4.7%), one case of a SRY-negative 64,XY sex reversal mare, and one mare with X-autosome translocation. The percentage of sex chromosomal aberrations was established as 3.8% in the whole population, 6.08% in females and 0.49% in males. MAIN LIMITATIONS: Limited sample size, confined to horses from Poland. CONCLUSIONS: The rate of sex chromosomal abnormalities we identified was almost double that reported in previous population studies that used classical chromosome staining techniques. FISH allowed the detection of aneuploid cell lines which had a very low incidence. The FISH technique is a faster and more precise method for karyotype examination; however, it is usually focused on only one or two chromosomes while banding karyotyping includes the entire chromosome set.


Subject(s)
Sex Chromosome Aberrations , Animals , Horses/genetics , Female , Male , Sex Chromosome Aberrations/veterinary , Horse Diseases/genetics , Horse Diseases/diagnosis , Cytogenetic Analysis/veterinary , In Situ Hybridization, Fluorescence/veterinary
20.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38805182

ABSTRACT

The Przewalski's horse (Equus ferus przewalskii) is an endangered equid native to the steppes of central Asia. After becoming extinct in the wild multiple conservation efforts convened to preserve the species, including captive breeding programs, reintroduction and monitoring systems, protected lands, and cloning. Availability of a highly contiguous reference genome is essential to support these continued efforts. We used Oxford Nanopore sequencing to produce a scaffold-level 2.5 Gb nuclear assembly and 16,002 bp mitogenome from a captive Przewalski's mare. All assembly drafts were generated from 111 Gb of sequence from a single PromethION R10.4.1 flow cell. The mitogenome contained 37 genes in the standard mammalian configuration and was 99.63% identical to the domestic horse (Equus caballus). The nuclear assembly, EquPr2, contained 2,146 scaffolds with an N50 of 85.1 Mb, 43X mean depth, and BUSCO quality score of 98.92%. EquPr2 successfully improves upon the existing Przewalski's horse reference genome (Burgud), with 25-fold fewer scaffolds, a 166-fold larger N50, and phased pseudohaplotypes. Modified basecalls revealed 79.5% DNA methylation and 2.1% hydroxymethylation globally. Allele-specific methylation analysis between pseudohaplotypes revealed 226 differentially methylated regions in known imprinted genes and loci not previously reported as imprinted. The heterozygosity rate of 0.165% matches previous estimates for the species and compares favorably to other endangered animals. This improved Przewalski's horse assembly will serve as a valuable resource for conservation efforts and comparative genomics investigations.


Subject(s)
Genome , Animals , Horses/genetics , Genome, Mitochondrial , Genomics/methods , Molecular Sequence Annotation , Endangered Species
SELECTION OF CITATIONS
SEARCH DETAIL