Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 378(6617): 290-295, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264814

ABSTRACT

Adaptations to infectious and dietary pressures shape mammalian physiology and disease risk. How such adaptations affect sex-biased diseases remains insufficiently studied. In this study, we show that sex-dependent hepatic gene programs confer a robust (~300%) survival advantage for male mice during lethal bacterial infection. The transcription factor B cell lymphoma 6 (BCL6), which masculinizes hepatic gene expression at puberty, is essential for this advantage. However, protection by BCL6 protein comes at a cost during conditions of dietary excess, which result in overt fatty liver and glucose intolerance in males. Deleting hepatic BCL6 reverses these phenotypes but markedly lowers male survival during infection, thus establishing a sex-dependent trade-off between host defense and metabolic systems. Our findings offer strong evidence that some current sex-biased diseases are rooted in ancient evolutionary trade-offs between immunity and metabolism.


Subject(s)
Bacterial Infections , Biological Evolution , Fatty Liver , Host Adaptation , Liver , Proto-Oncogene Proteins c-bcl-6 , Animals , Male , Mice , Fatty Liver/genetics , Fatty Liver/metabolism , Gene Expression Regulation , Liver/metabolism , Host Adaptation/genetics , Host Adaptation/immunology , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/physiology , Gene Deletion , Sex Factors , Bacterial Infections/genetics , Bacterial Infections/immunology
2.
Dev Growth Differ ; 63(3): 219-227, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33595856

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a pandemic as of early 2020. Upon infection, SARS-CoV-2 attaches to its receptor, that is, angiotensin-converting enzyme 2 (ACE2), on the surface of host cells and is then internalized into host cells via enzymatic machineries. This subsequently stimulates immune response factors. Since the host immune response and severity of COVID-19 vary among individuals, genetic risk factors for severe COVID-19 cases have been investigated. Our research group recently conducted a survey of genetic variants among SARS-CoV-2-interacting molecules across populations, noting near absence of difference in allele frequency spectrum between populations in these genes. Recent genome-wide association studies have identified genetic risk factors for severe COVID-19 cases in a segment of chromosome 3 that involves six genes encoding three immune-regulatory chemokine receptors and another three molecules. The risk haplotype seemed to be inherited from Neanderthals, suggesting genetic adaptation against pathogens in modern human evolution. Therefore, SARS-CoV-2 uses highly conserved molecules as its virion interaction, whereas its immune response appears to be genetically biased in individuals to some extent. We herein review the molecular process of SARS-CoV-2 infection as well as our further survey of genetic variants of its related immune effectors. We also discuss aspects of modern human evolution.


Subject(s)
Adaptive Immunity , COVID-19 , Evolution, Molecular , Genetic Variation , Host-Pathogen Interactions , SARS-CoV-2/genetics , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Animals , COVID-19/epidemiology , COVID-19/genetics , COVID-19/immunology , Conserved Sequence , Genome-Wide Association Study , Host Adaptation/genetics , Host Adaptation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Pandemics , SARS-CoV-2/immunology , Sequence Analysis, RNA
3.
PLoS Pathog ; 16(12): e1009177, 2020 12.
Article in English | MEDLINE | ID: mdl-33370400

ABSTRACT

HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.


Subject(s)
Antigenic Variation/immunology , HIV Infections , HIV-1 , Immune Evasion/genetics , T-Lymphocytes, Cytotoxic/immunology , Cells, Cultured , Clonal Evolution/immunology , Epitopes, T-Lymphocyte/genetics , HIV Infections/immunology , HIV Infections/virology , HIV Seropositivity , HIV-1/classification , HIV-1/genetics , HIV-1/immunology , HeLa Cells , Host Adaptation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Molecular Typing , Mutation , T-Lymphocytes, Cytotoxic/metabolism , Viral Load/immunology , Virus Replication/genetics , Virus Replication/immunology
4.
Front Immunol ; 11: 793, 2020.
Article in English | MEDLINE | ID: mdl-32477336

ABSTRACT

Starting at birth, newborn infants are exposed to numerous microorganisms. Adaptation of the innate immune system to them is a delicate process, with potentially advantageous and harmful implications for health development. Cytomegaloviruses (CMVs) are highly adapted to their specific mammalian hosts, with which they share millions of years of co-evolution. Throughout the history of mankind, human CMV has infected most infants in the first months of life without overt implications for health. Thus, CMV infections are intertwined with normal immune development. Nonetheless, CMV has retained substantial pathogenicity following infection in utero or in situations of immunosuppression, leading to pathology in virtually any organ and particularly the central nervous system (CNS). CMVs enter the host through mucosal interfaces of the gastrointestinal and respiratory tract, where macrophages (MACs) are the most abundant immune cell type. Tissue MACs and their potential progenitors, monocytes, are established target cells of CMVs. Recently, several discoveries have revolutionized our understanding on the pre- and postnatal development and site-specific adaptation of tissue MACs. In this review, we explore experimental evidences and concepts on how CMV infections may impact on MAC development and activation as part of host-virus co-adaptation.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Immunity, Innate , Immunity, Mucosal , Macrophages/immunology , Animals , Cytomegalovirus Infections/virology , Host Adaptation/immunology , Humans , Immunomodulation , Infant , Infant, Newborn , Mice , Monocytes/immunology
5.
Front Immunol ; 11: 26, 2020.
Article in English | MEDLINE | ID: mdl-32117225

ABSTRACT

In recent years, viruses similar to those that cause serious disease in humans and other mammals have been detected in apparently healthy bats. These include filoviruses, paramyxoviruses, and coronaviruses that cause severe diseases such as Ebola virus disease, Marburg haemorrhagic fever and severe acute respiratory syndrome (SARS) in humans. The evolution of flight in bats seem to have selected for a unique set of antiviral immune responses that control virus propagation, while limiting self-damaging inflammatory responses. Here, we summarize our current understanding of antiviral immune responses in bats and discuss their ability to co-exist with emerging viruses that cause serious disease in other mammals. We highlight how this knowledge may help us to predict viral spillovers into new hosts and discuss future directions for the field.


Subject(s)
Chiroptera/immunology , Chiroptera/virology , DNA Viruses/immunology , Host Adaptation/immunology , Immune System/virology , RNA Viruses/immunology , Adaptive Immunity , Animals , Disease Reservoirs/virology , Evolution, Molecular , Immunity, Innate , Interferons/metabolism , Viral Zoonoses/immunology , Viral Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...