Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.822
Filter
1.
Front Immunol ; 15: 1370255, 2024.
Article in English | MEDLINE | ID: mdl-38803499

ABSTRACT

Theileria equi (T. equi) is an apicomplexan parasite that causes severe hemolytic anemia in equids. Presently, there is inadequate knowledge of the immune responses induced by T. equi in equid hosts impeding understanding of the host parasite relationship and development of potent vaccines for control of T. equi infections. The objective of this study was to evaluate the host-parasite dynamics between T. equi merozoites and infected horses by assessing cytokine expression during primary and secondary parasite exposure, and to determine whether the pattern of expression correlated with clinical indicators of disease. Our findings showed that the expression of pro-inflammatory cytokines was very low and inconsistent during both primary and secondary infection. There was also no correlation between the symptoms observed during primary infection and expression of the cytokines. This suggests that the symptoms might have occurred primarily due to hemolysis and likely not the undesirable effects of pro-inflammatory responses. However, IL-10 and TGF-ß1 were highly expressed in both phases of infection, and their expression was linked to antibody production but not moderation of pro-inflammatory cytokine responses.


Subject(s)
Horse Diseases , Interleukin-10 , Theileria , Theileriasis , Transforming Growth Factor beta1 , Animals , Horses , Theileriasis/immunology , Theileriasis/parasitology , Interleukin-10/metabolism , Interleukin-10/immunology , Theileria/immunology , Transforming Growth Factor beta1/metabolism , Horse Diseases/immunology , Horse Diseases/parasitology , Merozoites/immunology , Antibodies, Protozoan/immunology , Antibody Formation/immunology , Cytokines/metabolism , Host-Parasite Interactions/immunology
2.
Front Cell Infect Microbiol ; 14: 1369615, 2024.
Article in English | MEDLINE | ID: mdl-38803570

ABSTRACT

Introduction: Little is known about the proteomic changes at the portals of entry in rainbow trout after infection with the myxozoan parasites, Myxobolus cerebralis, and Tetracapsuloides bryosalmonae. Whirling disease (WD) is a severe disease of salmonids, caused by the myxosporean M. cerebralis, while, proliferative kidney disease (PKD) is caused by T. bryosalmonae, which instead belongs to the class Malacosporea. Climate change is providing more suitable conditions for myxozoan parasites lifecycle, posing a high risk to salmonid aquaculture and contributing to the decline of wild trout populations in North America and Europe. Therefore, the aim of this study was to provide the first proteomic profiles of the host in the search for evasion strategies during single and coinfection with M. cerebralis and T. bryosalmonae. Methods: One group of fish was initially infected with M. cerebralis and another group with T. bryosalmonae. After 30 days, half of the fish in each group were co-infected with the other parasite. Using a quantitative proteomic approach, we investigated proteomic changes in the caudal fins and gills of rainbow trout before and after co-infection. Results: In the caudal fins, 16 proteins were differentially regulated post exposure to M. cerebralis, whereas 27 proteins were differentially modulated in the gills of the infected rainbow trout post exposure to T. bryosalmonae. After co-infection, 4 proteins involved in parasite recognition and the regulation of host immune responses were differentially modulated between the groups in the caudal fin. In the gills, 11 proteins involved in parasite recognition and host immunity, including 4 myxozoan proteins predicted to be virulence factors, were differentially modulated. Discussion: The results of this study increase our knowledge on rainbow trout co-infections by myxozoan parasites and rainbow trout immune responses against myxozoans at the portals of entry, supporting a better understanding of these host-parasite interactions.


Subject(s)
Coinfection , Fish Diseases , Myxobolus , Myxozoa , Oncorhynchus mykiss , Parasitic Diseases, Animal , Proteomics , Animals , Oncorhynchus mykiss/parasitology , Oncorhynchus mykiss/immunology , Fish Diseases/parasitology , Fish Diseases/immunology , Parasitic Diseases, Animal/immunology , Parasitic Diseases, Animal/parasitology , Coinfection/parasitology , Coinfection/veterinary , Coinfection/immunology , Host-Parasite Interactions/immunology , Proteome , Gills/parasitology , Gills/immunology , Gills/metabolism
3.
Parasit Vectors ; 17(1): 203, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711063

ABSTRACT

BACKGROUND: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.


Subject(s)
Genotype , Mice, Inbred BALB C , Mice, Inbred C57BL , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosoma mansoni/immunology , Schistosoma mansoni/genetics , Mice , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Female , Host-Parasite Interactions/immunology , Host-Parasite Interactions/genetics , Cytokines/genetics , Cytokines/blood , Cytokines/immunology
4.
Adv Parasitol ; 124: 1-55, 2024.
Article in English | MEDLINE | ID: mdl-38754926

ABSTRACT

Intestinal trematodes constitute a major group of helminths that parasitize humans and animals with relevant morbidity and mortality. Despite the importance of the intestinal trematodes in medical and veterinary sciences, immunology and pathology of these helminth infections have been neglected for years. Apart from the work focused on the members of the family Echnistomatidae, there are only very isolated and sporadic studies on the representatives of other families of digeneans, which makes a compilation of all these studies necessary. In the present review, the most salient literature on the immunology and pathology of intestinal trematodes in their definitive hosts in examined. Emphasis will be placed on members of the echinostomatidae family, since it is the group in which the most work has been carried out. However, we also review the information on selected species of the families Brachylaimidae, Diplostomidae, Gymnophallidae, and Heterophyidae. For most of these families, coverage is considered under the following headings: (i) Background; (ii) Pathology of the infection; (iii) Immunology of the infection; and (iv) Human infections.


Subject(s)
Intestinal Diseases, Parasitic , Trematoda , Trematode Infections , Animals , Humans , Trematoda/physiology , Trematoda/immunology , Trematode Infections/parasitology , Trematode Infections/immunology , Trematode Infections/veterinary , Intestinal Diseases, Parasitic/immunology , Intestinal Diseases, Parasitic/parasitology , Intestines/parasitology , Intestines/pathology , Intestines/immunology , Host-Parasite Interactions/immunology
5.
PeerJ ; 12: e17348, 2024.
Article in English | MEDLINE | ID: mdl-38770098

ABSTRACT

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions. Here we show that leeches Baicalobdella torquata (Grube, 1871) found on gills of Eulimnogammarus verrucosus (Gerstfeldt, 1858), one of the most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their host. However, the leech infection had no effect on immune parameters such as hemocyte concentration or phenoloxidase activity and also did not affect glycogen content. The intensity of hemocyte reaction to foreign bodies in a primary culture was identical between leech-free and leech-infected animals. Artificial infection with leeches also had only a subtle effect on the course of a model microbial infection in terms of hemocyte concentration and composition. Despite we cannot fully exclude deleterious effects of the parasites, our study indicates a low influence of a few leeches on E. verrucosus and shows that leech-infected amphipods can be used at least for some types of ecophysiological experiments.


Subject(s)
Amphipoda , Hemocytes , Hemolymph , Lakes , Leeches , Animals , Amphipoda/immunology , Amphipoda/parasitology , Hemolymph/immunology , Hemolymph/parasitology , Leeches/immunology , Lakes/parasitology , Hemocytes/immunology , Immunity, Cellular , Siberia , Host-Parasite Interactions/immunology
6.
Bull Math Biol ; 86(6): 62, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662120

ABSTRACT

Hosts can evolve a variety of defences against parasitism, including resistance (which prevents or reduces the spread of infection) and tolerance (which protects against virulence). Some organisms have evolved different levels of tolerance at different life-stages, which is likely to be the result of coevolution with pathogens, and yet it is currently unclear how coevolution drives patterns of age-specific tolerance. Here, we use a model of tolerance-virulence coevolution to investigate how age structure influences coevolutionary dynamics. Specifically, we explore how coevolution unfolds when tolerance and virulence (disease-induced mortality) are age-specific compared to when these traits are uniform across the host lifespan. We find that coevolutionary cycling is relatively common when host tolerance is age-specific, but cycling does not occur when tolerance is the same across all ages. We also find that age-structured tolerance can lead to selection for higher virulence in shorter-lived than in longer-lived hosts, whereas non-age-structured tolerance always leads virulence to increase with host lifespan. Our findings therefore suggest that age structure can have substantial qualitative impacts on host-pathogen coevolution.


Subject(s)
Biological Evolution , Host-Pathogen Interactions , Mathematical Concepts , Virulence , Animals , Age Factors , Models, Biological , Host-Parasite Interactions/immunology , Biological Coevolution , Humans , Longevity
7.
Trends Parasitol ; 40(5): 386-400, 2024 May.
Article in English | MEDLINE | ID: mdl-38609741

ABSTRACT

Obesity is a worldwide pandemic and major risk factor for the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). T2D requires lifelong medical support to limit complications and is defined by impaired glucose tolerance, insulin resistance (IR), and chronic low-level systemic inflammation initiating from adipose tissue. The current preventative strategies include a healthy diet, controlled physical activity, and medication targeting hyperglycemia, with underexplored underlying inflammation. Studies suggest a protective role for helminth infection in the prevention of T2D. The mechanisms may involve induction of modified type 2 and regulatory immune responses that suppress inflammation and promote insulin sensitivity. In this review, the roles of helminths in counteracting MetS, and prospects for harnessing these protective mechanisms for the development of novel anti-diabetes drugs are discussed.


Subject(s)
Diabetes Mellitus, Type 2 , Helminths , Metabolic Syndrome , Animals , Humans , Helminths/immunology , Helminths/physiology , Metabolic Syndrome/immunology , Metabolic Syndrome/metabolism , Metabolic Syndrome/parasitology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Helminthiasis/immunology , Helminthiasis/parasitology , Obesity/immunology , Obesity/metabolism , Host-Parasite Interactions/immunology , Insulin Resistance
8.
Fish Shellfish Immunol ; 149: 109580, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663464

ABSTRACT

Wild organisms are regularly exposed to a wide range of parasites, requiring the management of an effective immune response while avoiding immunopathology. Currently, our knowledge of immunoparasitology primarily derives from controlled laboratory studies, neglecting the genetic and environmental diversity that contribute to immune phenotypes observed in wild populations. To gain insight into the immunologic variability in natural settings, we examined differences in immune gene expression of two Alaskan stickleback (Gasterosteus aculeatus) populations with varying susceptibility to infection by the cestode Schistocephalus solidus. Between these two populations, we found distinct immune gene expression patterns at the population level in response to infection with fish from the high-infection population displaying signs of parasite-driven immune manipulation. Further, we found significant differences in baseline immune gene profiles between the populations, with uninfected low-infection population fish showing signatures of inflammation compared to uninfected high-infection population fish. These results shed light on divergent responses of wild populations to the same parasite, providing valuable insights into host-parasite interactions in natural ecosystems.


Subject(s)
Cestoda , Cestode Infections , Fish Diseases , Smegmamorpha , Animals , Smegmamorpha/immunology , Smegmamorpha/genetics , Smegmamorpha/parasitology , Fish Diseases/immunology , Fish Diseases/parasitology , Cestode Infections/veterinary , Cestode Infections/immunology , Cestode Infections/parasitology , Cestoda/immunology , Cestoda/physiology , Host-Parasite Interactions/immunology , Alaska , Immunity, Innate/genetics
9.
Front Immunol ; 15: 1342431, 2024.
Article in English | MEDLINE | ID: mdl-38655255

ABSTRACT

Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.


Subject(s)
Chagas Disease , Genetic Variation , Trypanosoma cruzi , Trypanosoma cruzi/genetics , Humans , Chagas Disease/immunology , Chagas Disease/parasitology , Animals , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology
10.
BMC Biol ; 22(1): 89, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644510

ABSTRACT

BACKGROUND: Innate immune responses can be activated by pathogen-associated molecular patterns (PAMPs), danger signals released by damaged tissues, or the absence of self-molecules that inhibit immunity. As PAMPs are typically conserved across broad groups of pathogens but absent from the host, it is unclear whether they allow hosts to recognize parasites that are phylogenetically similar to themselves, such as parasitoid wasps infecting insects. RESULTS: Parasitoids must penetrate the cuticle of Drosophila larvae to inject their eggs. In line with previous results, we found that the danger signal of wounding triggers the differentiation of specialized immune cells called lamellocytes. However, using oil droplets to mimic infection by a parasitoid wasp egg, we found that this does not activate the melanization response. This aspect of the immune response also requires exposure to parasite molecules. The unidentified factor enhances the transcriptional response in hemocytes and induces a specific response in the fat body. CONCLUSIONS: We conclude that a combination of danger signals and the recognition of nonself molecules is required to activate Drosophila's immune response against parasitic insects.


Subject(s)
Hemocytes , Host-Parasite Interactions , Immunity, Innate , Wasps , Animals , Wasps/physiology , Host-Parasite Interactions/immunology , Hemocytes/immunology , Drosophila melanogaster/parasitology , Drosophila melanogaster/immunology , Drosophila melanogaster/physiology , Larva/immunology , Larva/parasitology , Drosophila/parasitology , Drosophila/immunology
11.
Mamm Genome ; 35(2): 186-200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480585

ABSTRACT

Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Rhipicephalus , Tick Infestations , Animals , Cattle , Rhipicephalus/genetics , Rhipicephalus/physiology , Tick Infestations/veterinary , Tick Infestations/genetics , Tick Infestations/parasitology , Tick Infestations/immunology , Disease Resistance/genetics , Systems Biology , Cattle Diseases/genetics , Cattle Diseases/immunology , Cattle Diseases/parasitology , Quantitative Trait Loci , Female , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology
12.
Nature ; 623(7985): 149-156, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880367

ABSTRACT

Host factors that mediate Leishmania genetic exchange are not well defined. Here we demonstrate that natural IgM (IgMn)1-4 antibodies mediate parasite genetic exchange by inducing the transient formation of a spherical parasite clump that promotes parasite fusion and hybrid formation. We establish that IgMn from Leishmania-free animals binds to the surface of Leishmania parasites to induce significant changes in the expression of parasite transcripts and proteins. Leishmania binding to IgMn is partially lost after glycosidase treatment, although parasite surface phosphoglycans, including lipophosphoglycan, are not required for IgMn-induced parasite clumping. Notably, the transient formation of parasite clumps is essential for Leishmania hybridization in vitro. In vivo, we observed a 12-fold increase in hybrid formation in sand flies provided a second blood meal containing IgMn compared with controls. Furthermore, the generation of recombinant progeny from mating hybrids and parental lines were only observed in sand flies provided with IgMn. Both in vitro and in vivo IgM-induced Leishmania crosses resulted in full genome hybrids that show equal patterns of biparental contribution. Leishmania co-option of a host natural antibody to facilitate mating in the insect vector establishes a new paradigm of parasite-host-vector interdependence that contributes to parasite diversity and fitness by promoting genetic exchange.


Subject(s)
Host-Parasite Interactions , Immunoglobulin M , Leishmania , Psychodidae , Reproduction , Animals , Hybridization, Genetic , Immunoglobulin M/immunology , Leishmania/genetics , Leishmania/immunology , Psychodidae/immunology , Psychodidae/parasitology , Reproduction/genetics , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Gene Expression Regulation , Glycoside Hydrolases/metabolism
13.
Science ; 379(6628): eabl3837, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36634189

ABSTRACT

Ancestral signaling pathways serve critical roles in metazoan development, physiology, and immunity. We report an evolutionary interspecies communication pathway involving a central Ixodes scapularis tick receptor termed Dome1, which acquired a mammalian cytokine receptor motif exhibiting high affinity for interferon-gamma (IFN-γ). Host-derived IFN-γ facilitates Dome1-mediated activation of the Ixodes JAK-STAT pathway. This accelerates tick blood meal acquisition and development while upregulating antimicrobial components. The Dome1-JAK-STAT pathway, which exists in most Ixodid tick genomes, regulates the regeneration and proliferation of gut cells-including stem cells-and dictates metamorphosis through the Hedgehog and Notch-Delta networks, ultimately affecting Ixodes vectorial competence. We highlight the evolutionary dependence of I. scapularis on mammalian hosts through cross-species signaling mechanisms that dually influence arthropod immunity and development.


Subject(s)
Arachnid Vectors , Host-Parasite Interactions , Ixodes , Janus Kinases , Receptors, Cytokine , STAT Transcription Factors , Animals , Interferon-gamma/metabolism , Ixodes/genetics , Ixodes/immunology , Janus Kinases/genetics , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Host-Parasite Interactions/immunology , Receptors, Cytokine/metabolism , Arachnid Vectors/immunology
14.
Parasit Vectors ; 15(1): 454, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471417

ABSTRACT

BACKGROUND: Toxoplasma gondii is known as the most successful parasite, which can regulate the host immune response through a variety of ways to achieve immune escape. We previously reported that a novel gene wx2 of T. gondii may be a virulence-related molecule. The objective of this study was to explore the mechanism of wx2 regulating host immune response. METHODS: The wx2 knockout strain (RHwx2-/- strain) and complementary strain (RHwx2+/+ strain) were constructed by the CRISPR/Cas9 technique, and the virulence of the wx2 gene was detected and changes in pyroptosis-related molecules were observed. RESULTS: Compared with the wild RH and RHwx2+/+ strain groups, the survival time for mice infected with the RHwx2-/- strain was prolonged to a certain extent. The mRNA levels of pyroptosis-related molecules of caspase-1, NLRP3, and GSDMD and et al. in mouse lymphocytes in vivo and RAW267.4 cells in vitro infected with RHwx2-/- strain increased to different degrees, compared with infected with wild RH strain and RHwx2+/+ strain. As with the mRNA level, the protein level of caspase-1, caspase-1 p20, IL-1ß, NLRP3, GSDMD-FL, GSDMD-N, and phosphorylation level of NF-κB (p65) were also significantly increased. These data suggest that wx2 may regulate the host immune response through the pyroptosis pathway. In infected RAW264.7 cells at 48 h post-infection, the levels of Th1-type cytokines of IFN-γ, Th2-type cytokines such as IL-13, Th17-type cytokine of IL-17 in cells infected with RHwx2-/- were significantly higher than those of RH and RHwx2+/+ strains, suggesting that the wx2 may inhibit the host's immune response. CONCLUSION: wx2 is a virulence related gene of T. gondii, and may be involved in host immune regulation by inhibiting the pyroptosis pathway.


Subject(s)
Host-Parasite Interactions , Pyroptosis , Toxoplasma , Animals , Mice , Caspase 1/metabolism , Cytokines/genetics , Cytokines/metabolism , Immunity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger/metabolism , Toxoplasma/genetics , Toxoplasma/pathogenicity , Virulence , Host-Parasite Interactions/immunology
15.
Nature ; 611(7936): 563-569, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36352220

ABSTRACT

Malaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development at the molecular level remain unknown. Here we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host and parasite temporal expression programmes in a zonally controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, including potentially co-adaptive programmes related to iron and fatty acid metabolism. We find that parasites develop more rapidly in the pericentral lobule zones and identify a subpopulation of periportally biased hepatocytes that harbour abortive infections, reduced levels of Plasmodium transcripts and parasitophorous vacuole breakdown. These 'abortive hepatocytes', which appear predominantly with high parasite inoculum, upregulate immune recruitment and key signalling programmes. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights the heterogeneous behaviour of both the parasite and the host hepatocyte.


Subject(s)
Gene Expression Regulation , Hepatocytes , Liver , Malaria , Parasites , Plasmodium berghei , Single-Cell Analysis , Animals , Hepatocytes/cytology , Hepatocytes/immunology , Hepatocytes/metabolism , Hepatocytes/parasitology , Liver/anatomy & histology , Liver/cytology , Liver/immunology , Liver/parasitology , Malaria/genetics , Malaria/immunology , Malaria/parasitology , Parasites/genetics , Parasites/immunology , Parasites/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Plasmodium berghei/metabolism , Single Molecule Imaging , Sequence Analysis, RNA , Iron/metabolism , Fatty Acids/metabolism , Transcription, Genetic , Genes, Protozoan/genetics , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology
16.
Nat Commun ; 13(1): 977, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190553

ABSTRACT

Some snails act as intermediate hosts (vectors) for parasitic flatworms (flukes) that cause neglected tropical diseases, such as schistosomiases. Schistosoma haematobium is a blood fluke that causes urogenital schistosomiasis and induces bladder cancer and increased risk of HIV infection. Understanding the molecular biology of the snail and its relationship with the parasite could guide development of an intervention approach that interrupts transmission. Here, we define the genome for a key intermediate host of S. haematobium-called Bulinus truncatus-and explore protein groups inferred to play an integral role in the snail's biology and its relationship with the schistosome parasite. Bu. truncatus shared many orthologous protein groups with Biomphalaria glabrata-the key snail vector for S. mansoni which causes hepatointestinal schistosomiasis in people. Conspicuous were expansions in signalling and membrane trafficking proteins, peptidases and their inhibitors as well as gene families linked to immune response regulation, such as a large repertoire of lectin-like molecules. This work provides a sound basis for further studies of snail-parasite interactions in the search for targets to block schistosomiasis transmission.


Subject(s)
Bulinus/genetics , Cell Nucleus/genetics , Disease Vectors , Schistosomiasis haematobia/transmission , Animals , Bulinus/parasitology , Genome , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Schistosoma haematobium/immunology , Schistosomiasis haematobia/parasitology
17.
Front Immunol ; 13: 801120, 2022.
Article in English | MEDLINE | ID: mdl-35154114

ABSTRACT

An increase in mast cells (MCs) and MCs mediators has been observed in malaria-associated bacteremia, however, the role of these granulocytes in malarial immunity is poorly understood. Herein, we studied the role of mouse MC protease (Mcpt) 4, an ortholog of human MC chymase, in malaria-induced bacteremia using Mcpt4 knockout (Mcpt4-/-) mice and Mcpt4+/+ C57BL/6J controls, and the non-lethal mouse parasite Plasmodium yoelii yoelii 17XNL. Significantly lower parasitemia was observed in Mcpt4-/- mice compared with Mcpt4+/+ controls by day 10 post infection (PI). Although bacterial 16S DNA levels in blood were not different between groups, increased intestinal permeability to FITC-dextran and altered ileal adherens junction E-cadherin were observed in Mcpt4-/- mice. Relative to infected Mcpt4+/+ mice, ileal MC accumulation in Mcpt4-/- mice occurred two days earlier and IgE levels were higher by days 8-10 PI. Increased levels of circulating myeloperoxidase were observed at 6 and 10 days PI in Mcpt4+/+ but not Mcpt4-/- mice, affirming a role for neutrophil activation that was not predictive of parasitemia or bacterial 16S copies in blood. In contrast, early increased plasma levels of TNF-α, IL-12p40 and IL-3 were observed in Mcpt4-/- mice, while levels of IL-2, IL-10 and MIP1ß (CCL4) were increased over the same period in Mcpt4+/+ mice, suggesting that the host response to infection was skewed toward a type-1 immune response in Mcpt4-/- mice and type-2 response in Mcpt4+/+ mice. Spearman analysis revealed an early (day 4 PI) correlation of Mcpt4-/- parasitemia with TNF-α and IFN-γ, inflammatory cytokines known for their roles in pathogen clearance, a pattern that was observed in Mcpt4+/+ mice much later (day 10 PI). Transmission success of P. y. yoelii 17XNL to Anopheles stephensi was significantly higher from infected Mcpt4-/- mice compared with infected Mcpt4+/+ mice, suggesting that Mcpt4 also impacts transmissibility of sexual stage parasites. Together, these results suggest that early MCs activation and release of Mcpt4 suppresses the host immune response to P. y. yoelii 17XNL, perhaps via degradation of TNF-α and promotion of a type-2 immune response that concordantly protects epithelial barrier integrity, while limiting the systemic response to bacteremia and parasite transmissibility.


Subject(s)
Anopheles/parasitology , Cell Membrane Permeability/immunology , Chymases/genetics , Chymases/immunology , Host-Parasite Interactions/immunology , Malaria/immunology , Mast Cells/enzymology , Plasmodium yoelii/immunology , Animals , Female , Ileum/cytology , Ileum/pathology , Mast Cells/immunology , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
18.
PLoS One ; 17(2): e0263517, 2022.
Article in English | MEDLINE | ID: mdl-35180232

ABSTRACT

Endoparasitism is a common disease in dogs throughout their lifetime despite the widespread availability of inexpensive diagnostic tests and effective treatments. The consequences of host parasite interactions in otherwise apparently healthy dogs remains largely unknown. This cross-sectional study used complete blood count, serum biochemistry, and fecal flotation data collected from 3,018 young dogs (<3 years of age) enrolled within the Morris Animal Foundation Golden Retriever Lifetime Study (GRLS) to determine the prevalence of endoparasitism and compare bloodwork values of parasite positive and negative participants using logistic regression. Variables including age, gender, reproductive status, and geographic region at the time of evaluation were assessed to identify potential associations. To the authors' knowledge, a comprehensive assessment of clinicopathological changes associated with endoparasite infection in a large cohort has not been completed in the recent decade. The overall prevalence of endoparasitism was 6.99% (211/3018). Dogs who were parasite positive had statistically lower albumin (P = 0.004), lower RBC count (P = 0.01), higher neutrophil count (P = 0.002), and higher platelet count (P <0.001) as compared to parasite negative dogs. It was also concluded that dogs living in rural areas were more likely to have endoparasites than those living in suburban areas. Epidemiological data is crucial for the design and monitoring of prevention and control strategies. Identification of endoparasites by fecal testing is an essential tool to identify susceptible and resistant animals that can act as spreaders and reservoirs of intestinal parasites thereby enabling appropriate therapy and reducing the risk of new infection to animals and humans. Further epidemiological studies are needed to prevent, monitor, and develop new strategies to control endoparasites.


Subject(s)
Dog Diseases/blood , Dog Diseases/epidemiology , Helminths/isolation & purification , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/veterinary , Parasites/isolation & purification , Animals , Cohort Studies , Cross-Sectional Studies , Dog Diseases/diagnosis , Dog Diseases/parasitology , Dogs , Feces/parasitology , Female , Helminths/classification , Host-Parasite Interactions/immunology , Intestinal Diseases, Parasitic/blood , Intestinal Diseases, Parasitic/diagnosis , Leukocyte Count , Logistic Models , Male , Neutrophils/immunology , Odds Ratio , Parasites/classification , Platelet Count , Prevalence , Risk Factors
19.
Infect Immun ; 90(1): e0037721, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34694918

ABSTRACT

Plasmodium falciparum cysteine-rich protective antigen (CyRPA) is a conserved component of an essential erythrocyte invasion complex (RH5/Ripr/CyRPA) and a target of potent cross-strain parasite-neutralizing antibodies. While naturally acquired human RH5 antibodies have been functionally characterized, there are no similar reports on CyRPA. Thus, we analyzed the parasite-neutralizing activity of naturally acquired human CyRPA antibodies. In this regard, CyRPA human antibodies were measured and purified from malaria-infected plasma obtained from patients in central India and analyzed for their parasite neutralizing activity via in vitro growth inhibition assays (GIA). We report that, despite being susceptible to antibodies, CyRPA is a highly conserved antigen that does not appear to be under substantial immune selection pressure, as a very low acquisition rate for anti-CyRPA antibodies was reported in malaria-exposed Indians. We demonstrate for the first time that the small amounts of natural CyRPA antibodies exhibited functional parasite-neutralizing activity and that a CyRPA-based vaccine formulation induces highly potent antibodies in rabbits. Importantly, the vaccine-induced CyRPA antibodies exhibited a robust 50% inhibitory concentration (IC50) of 21.96 µg/ml, which is comparable to the IC50 of antibodies against the leading blood-stage vaccine candidate, reticulocyte-binding-like homologous protein 5 (RH5). Our data support CyRPA as a unique vaccine target that is highly susceptible to immune attack but is highly conserved compared to other leading candidates such as MSP-1 and AMA-1, further substantiating its promise as a leading blood-stage vaccine candidate.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Host-Parasite Interactions/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Antibodies, Neutralizing/immunology , Antibody Specificity/immunology , Disease Resistance/immunology , Enzyme-Linked Immunosorbent Assay , Erythrocytes/immunology , Erythrocytes/parasitology , Humans , Malaria Vaccines/immunology , Malaria, Falciparum/parasitology , Recombinant Proteins/immunology
20.
Int Immunopharmacol ; 102: 108400, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34890999

ABSTRACT

Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.


Subject(s)
Leishmania/immunology , Leishmaniasis/immunology , Animals , Host-Parasite Interactions/immunology , Humans , Immunity, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL
...