Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124.248
Filter
1.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824148

ABSTRACT

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glycine max , Nitrogen , Oryza , Phosphorus , Plant Roots , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Phosphorus/metabolism , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hot Temperature , Nitrate Transporters , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Temperature , Basic-Leucine Zipper Transcription Factors
2.
Glob Chang Biol ; 30(6): e17358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822590

ABSTRACT

Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.


Subject(s)
Climate Change , Salinity , Stress, Physiological , Zooplankton , Animals , Zooplankton/physiology , Time Factors , Fresh Water , Hot Temperature/adverse effects , Ecosystem
3.
Food Res Int ; 188: 114439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823829

ABSTRACT

Tropane alkaloids (TAs) are secondary metabolites from weeds that can contaminate cereals and vegetables during harvest. Due to their toxicity, the Regulation (EC) 2023/915 sets maximum levels for atropine and scopolamine in cereal-based foods for infants containing millet, sorghum, buckwheat or their derived products. The aim of this study was to evaluate the effect of pH and temperature on the stability of TAs, as possible parameters in thermal processing to mitigate this chemical hazard in cereal-based infant food. The effect of pH (4 and 7) and temperature (80 °C and 100 °C) was assessed in buffer solutions. Also, treatment at 180 °C was performed in spiked and naturally incurred millet flour to assess the effect of high temperature, simulating cooking or drying, on the stability of TAs in the cereal matrix. The fate of 24 TAs was assessed by UHPLC-MS/MS. TAs showed high thermostability, although it was variable depending on the specific compound, pH, temperature and treatment time. In buffer solutions, higher degradation was found at 100 °C and pH 7. In spiked millet flour at 180 °C for 10 min, scopolamine and atropine contents decreased by 25 % and 22 %, similarly to other TAs which also showed a slow thermal degradation. Atropine, scopolamine, anisodamine, norscopolamine, scopine and scopoline were found in naturally contaminated millet flour. Interestingly, naturally incurred atropine was more thermostable than when spiked, showing a protective effect of the cereal matrix on TAs degradation. The present results highlight the need for an accurate monitorization of TAs in raw materials, as this chemical hazard may remain in infant cereal-based food even after intense thermal processing.


Subject(s)
Edible Grain , Food Contamination , Infant Food , Tandem Mass Spectrometry , Edible Grain/chemistry , Hydrogen-Ion Concentration , Infant Food/analysis , Food Contamination/prevention & control , Tropanes/chemistry , Tropanes/analysis , Temperature , Alkaloids/analysis , Humans , Food Handling/methods , Hot Temperature , Atropine/analysis , Atropine/chemistry , Infant , Chromatography, High Pressure Liquid
4.
Food Res Int ; 188: 114454, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823832

ABSTRACT

The Amadori rearrangement products are an important flavor precursor in the Maillard reaction. Its thermal decomposition products usually contribute good flavors in foods. Therefore, investigating the thermal breakdown of Amadori products is significant for understanding the flavor forming mechanism in the Maillard reaction. In this study, volatiles from thermal decomposition of Amadori products in cysteine and glucose Maillard reaction was investigated by a thermal desorption cryo-trapping system combined with gas chromatography-mass spectrometry (GC-MS). A total of 60 volatiles were detected and identified. Meanwhile, the forming mechanism of 2-methylthiophene, a major decomposition product, was also investigated by using density functional theory. Seventeen reactions, 12 transition states, energy barrier and rate constant of each reaction were finally obtained. Results reveal that it is more likely for Amadori products of cysteine and glucose to undergo decomposition under neutral or weakly alkaline conditions.


Subject(s)
Cysteine , Gas Chromatography-Mass Spectrometry , Glucose , Maillard Reaction , Volatile Organic Compounds , Cysteine/chemistry , Glucose/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Density Functional Theory , Hot Temperature
5.
Food Res Int ; 188: 114393, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823852

ABSTRACT

After successfully addressing to mitigate bitterness of naringin through construction Pickering emulsion using pea protein (PP) and naringin (NG) in our previous study, we now probed thermal stability, antioxidant efficacy, and bioavailability. FTIR analysis and UV-vis spectroscopy indicated predominant interactions between PP and NG were hydrogen and hydrophobic bonds. TGA and DSC analyses demonstrated that PP-NG complexes exhibited superior heat-resistance compared to pure PP and NG. Thermal stability assessments indicated a significant retention of NG in the PP-NG Pickering emulsion than the control NG across varied temperatures (4 °C, 25 °C, 37 °C, and 65 °C). Moreover, the antioxidant activity of PP-NG emulsion was dependent on the concentration of NG, as evidenced by DPPH and ABTS free radicals scavenging abilities, ferric reducing power, and lipid peroxidation resistance. Additionally, PP-NG Pickering emulsion exhibited substantially high bioavailability (92.01 ± 3.91%). These results suggest a promising avenue for the application of NG with improved characteristics.


Subject(s)
Antioxidants , Biological Availability , Emulsions , Flavanones , Pea Proteins , Flavanones/chemistry , Antioxidants/chemistry , Pea Proteins/chemistry , Hot Temperature , Spectroscopy, Fourier Transform Infrared , Lipid Peroxidation/drug effects , Pisum sativum/chemistry
6.
Food Res Int ; 188: 114415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823855

ABSTRACT

Several scientific studies have warned that the ingestion of dietary lipid oxidation products (LOPs) may initiate or exacerbate the development of several chronic non-communicable diseases in humans. Indeed, the constantly increasing consumption of culinary oils by larger global populations indicates the need for scientific techniques to suppress the evolution of LOPs in thermo-oxidised oils. This study employed a 600.13 MHz frequency NMR spectrometer in evaluating the effect of 10, 50, and 100 ppm concentrations of chemical compounds reported to have antioxidant properties in continuously-stirred and thermally stressed polyunsaturated fatty acid (PUFA)-rich hemp seed oil at a frying temperature of 180℃ for 180 min. Research data acquired showed that the antioxidants α- and γ-tocopherol, γ-oryzanol, ß-carotene, eugenol, resveratrol, ascorbyl palmitate, gentisic acid, and L-ascorbic acid all played a vital role in suppressing the evolution of secondary aldehydic lipid oxidation products in hemp seed oil. However, the most ineffective LOP-suppressing agent was L-lysine, an observation which may be accountable by its poor oil solubility. Nonetheless, trends deduced for compounds acting as antioxidants were mainly unique for each class of agent tested. Conversely, the antioxidant capacity of resveratrol was consistently higher, and this effect was found to be independent of its added amounts. This report provides a direct approach in developing scientific methods for the suppression of LOPs in thermo-oxidatively susceptible PUFA-rich cooking oils.


Subject(s)
Antioxidants , Cannabis , Hot Temperature , Lipid Peroxidation , Plant Oils , Antioxidants/chemistry , Plant Oils/chemistry , Cannabis/chemistry , Lipid Peroxidation/drug effects , Cooking , Seeds/chemistry , Resveratrol/chemistry , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/chemistry , Magnetic Resonance Spectroscopy , Ascorbic Acid/chemistry , Plant Extracts
7.
Food Res Int ; 188: 114429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823856

ABSTRACT

Among the emerging prebiotics, galactooligosaccharide (GOS) has a remarkable value with health-promoting properties confirmed by several studies. In addition, the application of ohmic heating has been gaining prominence in food processing, due to its various technological and nutritional benefits. This study focuses on the transformative potential of ohmic heating processing (OH, voltage values 30 and 60 V, frequencies 100, 300, and 500 Hz, respectively) in prebiotic chocolate milk beverage (3.0 %w/v galactooligosaccharide) processing. Chemical stability of GOS was assessed along all the ohmic conditions. In addition, microbiological analysis (predictive modeling), physical analysis (color and rheology), thermal load indicators assessment, bioactivity values, and volatile compound was performed. HPAEC-PAD analysis confirmed GOS stability and volatile compound evaluation supported OH's ability to preserve flavor-associated compounds. Besides, OH treatments demonstrated superior microbial reduction and decreased thermal load indicators as well as the assessment of the bioactivity. In conclusion, OH presented was able to preserve the GOS chemical stability on chocolate milk beverages processing with positive effects of the intrinsic quality parameters of the product.


Subject(s)
Chocolate , Food Handling , Milk , Oligosaccharides , Oligosaccharides/chemistry , Oligosaccharides/analysis , Chocolate/analysis , Food Handling/methods , Milk/chemistry , Animals , Prebiotics/analysis , Hot Temperature , Beverages/analysis , Rheology , Cacao/chemistry , Volatile Organic Compounds/analysis
8.
Food Res Int ; 188: 114503, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823881

ABSTRACT

The aim of this work was to investigate wheat gluten protein network structure throughout the deep-frying process and evaluate its contribution to frying-induced micro- and macrostructure development. Gluten polymerization, gluten-water interactions, and molecular mobility were assessed as a function of the deep-frying time (0 - 180 s) for gluten-water model systems of differing hydration levels (40 - 60 % moisture content). Results showed that gluten protein extractability decreased considerably upon deep frying (5 s) mainly due to glutenin polymerization by disulfide covalent cross-linking. Stronger gliadin and glutenin protein-protein interactions were attributed to the formation of covalent linkages and evaporation of water interacting with protein chains. Longer deep-frying (> 60 s) resulted in progressively lower protein extractabilities, mainly due to the loss in gliadin protein extractability, which was associated with gliadin co-polymerization with glutenin by thiol-disulfide exchange reactions. The mobility of gluten polymers was substantially reduced during deep-frying (based on the lower T2 relaxation time of the proton fraction representing the non-exchanging protons of gluten) and gluten proteins gradually transitioned from the rubbery to the glassy state (based on the increased area of said protons). The sample volume during deep-frying was strongly correlated to the reduced protein extractability (r = -0.792, p < 0.001) and T2 relaxation time of non-exchanging protons of gluten proteins (r = -0.866, p < 0.001) thus demonstrating that the extent of gluten structural expansion as a result of deep-frying is dictated both by the polymerization of proteins and the reduction in their molecular mobility.


Subject(s)
Cooking , Gliadin , Glutens , Hot Temperature , Triticum , Glutens/chemistry , Triticum/chemistry , Cooking/methods , Gliadin/chemistry , Polymerization , Water/chemistry
9.
Food Res Int ; 188: 114513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823886

ABSTRACT

This study reports the effect of thermal pretreatment and the use of different commercial proteolytic enzymes (Protamex, Flavourzyme, Protana prime, and Alcalase) on the free amino acid content (FAA), peptide profile, and antioxidant, antidiabetic, antihypertensive, and anti-inflammatory potential (DPPH, FRAP, and ABTS assay, DPP-IV, ACE-I, and NEP inhibitory activities) of dry-cured ham bone hydrolyzates. The effect of in vitro digestion was also determined. Thermal pretreatment significantly increased the degree of hydrolysis, the FAA, and the DPP-IV and ACE-I inhibitory activities. The type of peptidase used was the most significant factor influencing antioxidant activity and neprilysin inhibitory activity. Protana prime hydrolyzates failed to inhibit DPP-IV and neprilysin enzymes and had low values of ACE-I inhibitory activity. After in vitro digestion, bioactivities kept constant in most cases or even increased in ACE-I inhibitory activity. Therefore, hydrolyzates from dry-cured ham bones could serve as a potential source of functional food ingredients for health benefits.


Subject(s)
Antioxidants , Digestion , Animals , Hydrolysis , Antioxidants/metabolism , Antioxidants/analysis , Bone and Bones/metabolism , Swine , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Food Handling/methods , Hot Temperature , Amino Acids/metabolism , Amino Acids/analysis , Meat Products/analysis , Hypoglycemic Agents/pharmacology , Antihypertensive Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Peptide Hydrolases/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Endopeptidases
10.
Food Res Int ; 188: 114525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823888

ABSTRACT

As a kind of green tea with unique multiple baking processes, the flavor code of Lu'an Guapian (LAGP) has recently been revealed. To improve and stabilize the quality of LAGP, further insight into the dynamic changes in odorants during the whole processing is required. In this study, 50 odorants were identified in processing tea leaves, 14 of which were selected for absolute quantification to profile the effect of processes. The results showed that spreading is crucial for key aroma generation and accumulation, while these odorants undergo significant changes at the deep baking stage. By adjusting the conditions of the spreading and deep baking, it was found that low-temperature (4 °C) spreading for 6 h and low-temperature with long-time baking (final leaf temperature: 102 °C, 45 min) could improve the overall aroma quality. These results provide a new direction for enhancing the quality of LAGP green tea.


Subject(s)
Odorants , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Plant Leaves/chemistry , Food Handling/methods , Cooking/methods , Camellia sinensis/chemistry , Gas Chromatography-Mass Spectrometry , Hot Temperature
11.
Multimedia | Multimedia Resources, MULTIMEDIA-SMS-SP | ID: multimedia-13178

ABSTRACT

O Programa em Saúde Ambiental relacionado a populações expostas à poluição do ar do Município de São Paulo (VIGIAR) tem por objetivo desenvolver ações de vigilância em saúde ambiental, para populações expostas aos poluentes atmosféricos, de forma a orientar medidas de prevenção, promoção da saúde e de atenção integral, conforme preconizado pelo Sistema Único de Saúde (SUS).


Subject(s)
Air Pollutants , Air Pollution/statistics & numerical data , Hot Temperature , Sentinel Surveillance
12.
Sci Rep ; 14(1): 12418, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816453

ABSTRACT

Body core temperature (Tc) monitoring is crucial for minimizing heat injury risk. However, validated strategies are invasive and expensive. Although promising, aural canal temperature (Tac) is susceptible to environmental influences. This study investigated whether incorporation of external auricle temperature (Tea) into an ear-based Tc algorithm enhances its accuracy during multiple heat stress conditions. Twenty males (mean ± SD; age = 25 ± 3 years, BMI = 21.7 ± 1.8, body fat = 12 ± 3%, maximal aerobic capacity (VO2max) = 64 ± 7 ml/kg/min) donned an ear-based wearable and performed a passive heating (PAH), running (RUN) and brisk walking trial (WALK). PAH comprised of immersion in hot water (42.0 ± 0.3 °C). RUN (70 ± 3%VO2max) and WALK (50 ± 10%VO2max) were conducted in an environmental chamber (Tdb = 30.0 ± 0.2 °C, RH = 71 ± 2%). Several Tc models, developed using Tac, Tea and heart rate, were validated against gastrointestinal temperature. Inclusion of Tea as a model input improved the accuracy of the ear-based Tc algorithm. Our best performing model (Trf3) displayed good group prediction errors (mean bias error = - 0.02 ± 0.26 °C) but exhibited individual prediction errors (percentage target attainment ± 0.40 °C = 88%) that marginally exceeded our validity criterion. Therefore, Trf3 demonstrates potential utility for group-based Tc monitoring, with additional refinement needed to extend its applicability to personalized heat strain monitoring.


Subject(s)
Body Temperature , Ear Auricle , Hot Temperature , Wearable Electronic Devices , Humans , Male , Adult , Body Temperature/physiology , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Ear Auricle/physiology , Young Adult , Heart Rate/physiology , Algorithms
13.
Plant Signal Behav ; 19(1): 2357367, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38775124

ABSTRACT

Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.


Subject(s)
Gene Expression Regulation, Plant , Photosynthesis , Ziziphus , Ziziphus/genetics , Ziziphus/physiology , Photosynthesis/genetics , Heat-Shock Response/genetics , Hot Temperature , Plant Leaves/genetics , Plant Leaves/metabolism , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/physiology , Plant Stomata/genetics
14.
PLoS One ; 19(5): e0304358, 2024.
Article in English | MEDLINE | ID: mdl-38820403

ABSTRACT

Osteoporosis is an important health problem that occurs due to an imbalance between bone formation and resorption. Hormonal deficiency post-menopause is a significant risk factor. The probiotic Limosilactobacillus reuteri has been reported to prevent ovariectomy (Ovx)-induced bone loss in mice and reduce bone loss in postmenopausal women. Despite the numerous health benefits of probiotics, as they are live bacteria, the administration is not risk-free for certain groups (e.g., neonates and immunosuppressed patients). We evaluated the effects of L. reuteri (ATCC PTA 6475) and its heat-killed (postbiotic) form on Ovx-induced bone loss. Adult female mice (BALB/c) were randomly divided into four groups: group C-control (sham); group OVX-C-Ovx; group OVX-POS-Ovx + heat-killed probiotic; group OVX-PRO-Ovx + probiotic. L. reuteri or the postbiotic was administered to the groups (1.3x109 CFU/day) by gavage. Bacterial morphology after heat treatment was accessed by scanning electron microscopy (SEM). The treatment started one week after Ovx and lasted 28 days (4 weeks). The animals were euthanized at the end of the treatment period. Bone microarchitecture and ileum Occludin and pro-inflammatory cytokines gene expression were evaluated by computed microtomography and qPCR techniques, respectively. The Ovx groups had lower percentage of bone volume (BV/TV) and number of bone trabeculae as well as greater total porosity compared to the control group. Treatment with live and heat-killed L. reuteri resulted in higher BV/TV and trabecular thickness than the Ovx group. The heat treatment caused some cell surface disruptions, but its structure resembled that of the live probiotic in SEM analysis. There were no statistical differences in Occludin, Il-6 and Tnf-α gene expression. Both viable and heat-killed L. reuteri prevented bone loss on ovariectomized mice, independently of gut Occludin and intestinal Il-6 and Tnf-α gene expression.


Subject(s)
Limosilactobacillus reuteri , Osteoporosis , Ovariectomy , Probiotics , Animals , Female , Limosilactobacillus reuteri/physiology , Probiotics/administration & dosage , Probiotics/pharmacology , Mice , Osteoporosis/prevention & control , Mice, Inbred BALB C , Hot Temperature
15.
Waste Manag ; 183: 143-152, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38754182

ABSTRACT

In the present study, press mud (PM), a major waste by-product from sugar industries, was subjected to hydrothermal pretreatment (HTP) to create resource recovery opportunities. The HTP process was performed with the PM samples in a laboratory scale high pressure batch reactor (capacity = 0.7 L) at 160 °C and 200 °C temperatures (solids content = 5 % and 30 %). The pretreatment resulted in separation of solid and liquid phases which are termed as solid hydrochar (HC) and process water (PW), respectively. High heating value (HHV) of HC was âˆ¼14-18 MJ kg-1, slightly higher than that of PM (14 MJ kg-1). The thermogravimetric analysis showed about 1.5-1.7 times higher heat release from HC burning compared to that observed from combustion of PM. Apart from this, the HC and PM showed no phytotoxicity during germination of mung bean (Vigna radiata). Moreover, the biochemical methane potential test on the PW showed a generation of 167-245 mL biogas per gram of chemical oxygen demand added. Hence, the HTP offers several resource recovery opportunities from PM which may also reduce the risks of environmental degradation.


Subject(s)
Hot Temperature , Water/chemistry , Industrial Waste/analysis , Biofuels/analysis , Biological Oxygen Demand Analysis , Thermogravimetry
16.
J Texture Stud ; 55(3): e12835, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778604

ABSTRACT

Texture deterioration of meat products upon high-temperature sterilization is a pressing issue in the meat industry. This study evaluated the effect of different thermal sterilization temperatures on the textural and juiciness of ready-to-eat (RTE) chicken breast. In this study, by dynamically monitoring the texture and juiciness of chicken meat products during the process of thermal sterilization, it has been observed that excessively high sterilization temperatures (above 100°C) significantly diminish the shear force, springiness and water-holding capacity of the products. Furthermore, from the perspective of myofibrillar protein degradation, molecular mechanisms have been elucidated, unveiling that the thermal sterilization treatment at 121°C/10 min triggers the degradation of myosin heavy chains and F-actin, disrupting the lattice arrangement of myofilaments, compromising the integrity of sarcomeres, and resulting in an increase of approximately 40.66% in the myofibrillar fragmentation index, thus diminishing the quality characteristics of the products. This study unravels the underlying mechanisms governing the dynamic changes in quality of chicken meat products during the process of thermal sterilization, thereby providing theoretical guidance for the development of high-quality chicken products.


Subject(s)
Chickens , Sterilization , Animals , Sterilization/methods , Hot Temperature , Meat Products/analysis , Food Handling/methods , Proteolysis , Meat/analysis , Actins , Myofibrils/chemistry , Muscle Proteins
17.
PeerJ ; 12: e17197, 2024.
Article in English | MEDLINE | ID: mdl-38708341

ABSTRACT

Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.


Subject(s)
Heat-Shock Response , Legionella pneumophila , Legionella pneumophila/genetics , Heat-Shock Response/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hot Temperature , Evolution, Molecular
18.
Glob Chang Biol ; 30(5): e17336, 2024 May.
Article in English | MEDLINE | ID: mdl-38775780

ABSTRACT

Climate change and land-use change are widely altering freshwater ecosystem functioning and there is an urgent need to understand how these broad stressor categories may interact in future. While much research has focused on mean temperature increases, climate change also involves increasing variability of both water temperature and flow regimes and increasing concentrations of atmospheric CO2, all with potential to alter stream invertebrate communities. Deposited fine sediment is a pervasive land-use stressor with widespread impacts on stream invertebrates. Sedimentation may be managed at the catchment scale; thus, uncovering interactions with these three key climate stressors may assist mitigation of future threats. This is the first experiment to investigate the individual and combined effects of enriched CO2, heatwaves, flow velocity variability, and fine sediment on realistic stream invertebrate communities. Using 128 mesocosms simulating small stony-bottomed streams in a 7-week experiment, we manipulated dissolved CO2 (ambient; enriched), fine sediment (no sediment; 300 g dry sediment), temperature (ambient; two 7-day heatwaves), and flow velocity (constant; variable). All treatments changed community composition. CO2 enrichment reduced abundances of Orthocladiinae and Chironominae and increased Copepoda abundance. Variable flow velocity had only positive effects on invertebrate abundances (7 of 13 common taxa and total abundance), in contrast to previous experiments showing negative impacts of reduced velocity. CO2 was implicated in most stressor interactions found, with CO2 × sediment interactions being most common. Communities forming under enriched CO2 conditions in sediment-impacted mesocosms had ~20% fewer total invertebrates than those with either treatment alone. Copepoda abundances doubled in CO2-enriched mesocosms without sediment, whereas no CO2 effect occurred in mesocosms with sediment. Our findings provide new insights into potential future impacts of climate change and land use in running freshwaters, in particular highlighting the potential for elevated CO2 to interact with fine sediment deposition in unpredictable ways.


Subject(s)
Carbon Dioxide , Climate Change , Geologic Sediments , Invertebrates , Rivers , Animals , Carbon Dioxide/analysis , Geologic Sediments/analysis , Invertebrates/physiology , Hot Temperature , Water Movements , Ecosystem
19.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731439

ABSTRACT

The production of peanut oil in the industrial sector necessitates the utilization of diverse raw materials to generate consistent batches with stable flavor profiles, thereby leading to an increased focus on understanding the correlation between raw materials and flavor characteristics. In this study, sensory evaluations, headspace solid-phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) calculations, and correlation analysis were employed to investigate the flavors and main contributing amino acids of hot-pressed oils derived from different peanut varieties. The results confirmed that the levels of alcohols, aldehydes, and heterocyclic compounds in peanut oil varied among nine different peanut varieties under identical processing conditions. The OAVs of 25 key aroma compounds, such as methylthiol, 3-ethyl-2,5-dimethylpyrazine, and 2,3-glutarone, exceeded a value of 1. The sensory evaluations and flavor content analysis demonstrated that pyrazines significantly influenced the flavor profile of the peanut oil. The concentrations of 11 amino acids showed a strong correlation with the levels of pyrazines. Notably, phenylalanine, lysine, glutamic acid, arginine, and isoleucine demonstrated significant associations with both pyrazine and nut flavors. These findings will provide valuable insights for enhancing the sensory attributes of peanut oil and selecting optimal raw peanuts for its production.


Subject(s)
Amino Acids , Arachis , Gas Chromatography-Mass Spectrometry , Odorants , Peanut Oil , Amino Acids/analysis , Amino Acids/chemistry , Arachis/chemistry , Odorants/analysis , Peanut Oil/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry , Flavoring Agents/analysis , Pyrazines/chemistry , Pyrazines/analysis , Solid Phase Microextraction , Taste , Hot Temperature
20.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731513

ABSTRACT

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Subject(s)
Aluminum Oxide , Fibroins , Nanoparticles , Ultraviolet Rays , Fibroins/chemistry , Nanoparticles/chemistry , Aluminum Oxide/chemistry , Animals , Bombyx , Hot Temperature , Humans , Silk/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...