Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.222
Filter
1.
Stem Cell Res Ther ; 15(1): 180, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902824

ABSTRACT

BACKGROUND: Telomeres consist of repetitive DNA sequences at the chromosome ends to protect chromosomal stability, and primarily maintained by telomerase or occasionally by alternative telomere lengthening of telomeres (ALT) through recombination-based mechanisms. Additional mechanisms that may regulate telomere maintenance remain to be explored. Simultaneous measurement of telomere length and transcriptome in the same human embryonic stem cell (hESC) revealed that mRNA expression levels of UBQLN1 exhibit linear relationship with telomere length. METHODS: In this study, we first generated UBQLN1-deficient hESCs and compared with the wild-type (WT) hESCs the telomere length and molecular change at RNA and protein level by RNA-seq and proteomics. Then we identified the potential interacting proteins with UBQLN1 using immunoprecipitation-mass spectrometry (IP-MS). Furthermore, the potential mechanisms underlying the shortened telomeres in UBQLN1-deficient hESCs were analyzed. RESULTS: We show that Ubiquilin1 (UBQLN1) is critical for telomere maintenance in human embryonic stem cells (hESCs) via promoting mitochondrial function. UBQLN1 deficiency leads to oxidative stress, loss of proteostasis, mitochondria dysfunction, DNA damage, and telomere attrition. Reducing oxidative damage and promoting mitochondria function by culture under hypoxia condition or supplementation with N-acetylcysteine partly attenuate the telomere attrition induced by UBQLN1 deficiency. Moreover, UBQLN1 deficiency/telomere shortening downregulates genes for neuro-ectoderm lineage differentiation. CONCLUSIONS: Altogether, UBQLN1 functions to scavenge ubiquitinated proteins, preventing their overloading mitochondria and elevated mitophagy. UBQLN1 maintains mitochondria and telomeres by regulating proteostasis and plays critical role in neuro-ectoderm differentiation.


Subject(s)
Autophagy-Related Proteins , Human Embryonic Stem Cells , Mitochondria , Proteostasis , Telomere Homeostasis , Telomere , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Mitochondria/metabolism , Telomere/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Oxidative Stress , DNA Damage
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167232, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759814

ABSTRACT

Focal malformations of cortical development (FMCDs) are brain disorders mainly caused by hyperactive mTOR signaling due to both inactivating and activating mutations of genes in the PI3K-AKT-mTOR pathway. Among them, mosaic and somatic activating mutations of the mTOR pathway activators are more frequently linked to severe form of FMCDs. A human stem cell-based FMCDs model to study these activating mutations is still lacking. Herein, we genetically engineer human embryonic stem cell lines carrying these activating mutations to generate cortical organoids. Mosaic and somatic expression of AKT3 activating mutations in cortical organoids mimicking the disease presentation with overproliferation and the formation of dysmorphic neurons. In parallel comparison of various AKT3 activating mutations reveals that stronger mutation is associated with more severe neuronal migratory and overgrowth defects. Together, we have established a feasible human stem cell-based model for FMCDs that could help to better understand pathogenic mechanism and develop novel therapeutic strategy.


Subject(s)
Malformations of Cortical Development , Organoids , Proto-Oncogene Proteins c-akt , Humans , Organoids/metabolism , Organoids/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Malformations of Cortical Development/metabolism , Human Embryonic Stem Cells/metabolism , Signal Transduction/genetics , Cerebral Cortex/pathology , Cerebral Cortex/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Mutation , Neurons/metabolism , Neurons/pathology , Cell Line
3.
Stem Cell Res ; 77: 103427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696852

ABSTRACT

The DNAJC19 gene, a member of DNAJ heat shock protein (Hsp40) family, is localized within the inner mitochondrial membrane (IMM) and plays a crucial role in regulating the function and localization of mitochondrial Hsp70 (MtHsp70). Mutations in the DNAJC19 gene cause Dilated Cardiomyopathy with Ataxia Syndrome (DCMA). The precise mechanisms underlying the DCMA phenotype caused by DNAJC19 mutations remain poorly understood, and effective treatment modalities were lacking unitl recently. By using CRISPR-Cas9 gene editing technology, this study generated a DNAJC19-knockout (DNAJC19-KO) human embryonic stem cell line (hESC), which will be a useful tool in studying the pathogenesis of DCMA.


Subject(s)
CRISPR-Cas Systems , HSP40 Heat-Shock Proteins , Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Gene Knockout Techniques , Cell Line , Homozygote
4.
Stem Cell Res ; 77: 103436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733811

ABSTRACT

Y chromosome deletion and karyotype abnormalities are commonly associated with congenital non-obstructive azoospermia, impairing spermatogenesis. Specifically, the deletion of the Y chromosome Azoospermia factor a (AZFa) has been identified in infertile males with severely impaired spermatogenesis. AZFa, encompassing megabase-scale of the Y chromosome region, poses challenges in modeling AZFa deletion-related male infertility using gene editing tools. Here, we successfully created an AZFa-deleted human embryonic stem cell line utilizing the CRISPR/Cas9 gene editing tool. Our analysis indicates the AZFa-deleted stem cell line holds promise for differentiation into ectoderm, mesoderm, and endoderm, highlighting its potential for further comprehensive study.


Subject(s)
Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Male , Cell Line , Chromosomes, Human, Y/genetics , Cell Differentiation , CRISPR-Cas Systems , Chromosome Deletion , Gene Editing
5.
Cell Rep Med ; 5(5): 101570, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38749422

ABSTRACT

While an association between Parkinson's disease (PD) and viral infections has been recognized, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on PD progression remains unclear. Here, we demonstrate that SARS-CoV-2 infection heightens the risk of PD using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons and a human angiotensin-converting enzyme 2 (hACE2) transgenic (Tg) mouse model. Our findings reveal that SARS-CoV-2 infection exacerbates PD susceptibility and cellular toxicity in DA neurons pre-treated with human preformed fibrils (hPFFs). Additionally, nasally delivered SARS-CoV-2 infects DA neurons in hACE2 Tg mice, aggravating the damage initiated by hPFFs. Mice infected with SARS-CoV-2 display persisting neuroinflammation even after the virus is no longer detectable in the brain. A comprehensive analysis suggests that the inflammatory response mediated by astrocytes and microglia could contribute to increased PD susceptibility associated with SARS-CoV-2. These findings advance our understanding of the potential long-term effects of SARS-CoV-2 infection on the progression of PD.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Disease Models, Animal , Dopaminergic Neurons , Mice, Transgenic , Parkinson Disease , SARS-CoV-2 , Animals , Dopaminergic Neurons/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/virology , Humans , COVID-19/pathology , COVID-19/virology , Parkinson Disease/pathology , Parkinson Disease/virology , Mice , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Microglia/pathology , Microglia/metabolism , Microglia/virology , Human Embryonic Stem Cells/metabolism , Astrocytes/pathology , Astrocytes/virology , Astrocytes/metabolism , Brain/pathology , Brain/virology
6.
Environ Int ; 188: 108748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763096

ABSTRACT

INTRODUCTION: Endocrine disruptors are compounds of manmade origin able to interfere with the endocrine system and constitute an important environmental concern. Indeed, detrimental effects on thyroid physiology and functioning have been described. Differences exist in the susceptibility of human sexes to the incidence of thyroid disorders, like autoimmune diseases or cancer. METHODS: To study how different hormonal environments impact the thyroid response to endocrine disruptors, we exposed human embryonic stem cell-derived thyroid organoids to physiological concentrations of sex hormones resembling the serum levels of human females post-ovulation or males of reproductive age for three days. Afterwards, we added 10 µM benzo[a]pyrene or PCB153 for 24 h and analyzed the transcriptome changes via single-cell RNA sequencing with differential gene expression and gene ontology analysis. RESULTS: The sex hormones receptors genes AR, ESR1, ESR2 and PGR were expressed at low levels. Among the thyroid markers, only TG resulted downregulated by benzo[a]pyrene or benzo[a]pyrene with the "male" hormones mix. Both hormone mixtures and benzo[a]pyrene alone upregulated ribosomal genes and genes involved in oxidative phosphorylation, while their combination decreased the expression compared to benzo[a]pyrene alone. The "male" mix and benzo[a]pyrene, alone or in combination, upregulated genes involved in lipid transport and metabolism (APOA1, APOC3, APOA4, FABP1, FABP2, FABP6). The combination of "male" hormones and benzo[a]pyrene induced also genes involved in inflammation and NFkB targets. Benzo[a]pyrene upregulated CYP1A1, CYP1B1 and NQO1 irrespective of the hormonal context. The induction was stronger in the "female" mix. Benzo[a]pyrene alone upregulated genes involved in cell cycle regulation, response to reactive oxygen species and apoptosis. PCB153 had a modest effect in presence of "male" hormones, while we did not observe any changes with the "female" mix. CONCLUSION: This work shows how single cell transcriptomics can be applied to selectively study the in vitro effects of endocrine disrupters and their interaction with different hormonal contexts.


Subject(s)
Benzo(a)pyrene , Endocrine Disruptors , Gonadal Steroid Hormones , Polychlorinated Biphenyls , Thyroid Gland , Transcriptome , Humans , Benzo(a)pyrene/toxicity , Polychlorinated Biphenyls/toxicity , Endocrine Disruptors/toxicity , Transcriptome/drug effects , Thyroid Gland/drug effects , Female , Male , Single-Cell Analysis , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism
7.
PLoS One ; 19(5): e0298274, 2024.
Article in English | MEDLINE | ID: mdl-38753762

ABSTRACT

The membrane peroxisomal proteins PEX11, play a crucial role in peroxisome proliferation by regulating elongation, membrane constriction, and fission of pre-existing peroxisomes. In this study, we evaluated the function of PEX11B gene in neural differentiation of human embryonic stem cell (hESC) by inducing shRNAi-mediated knockdown of PEX11B expression. Our results demonstrate that loss of PEX11B expression led to a significant decrease in the expression of peroxisomal-related genes including ACOX1, PMP70, PEX1, and PEX7, as well as neural tube-like structures and neuronal markers. Inhibition of SIRT1 using pharmacological agents counteracted the effects of PEX11B knockdown, resulting in a relative increase in PEX11B expression and an increase in differentiated neural tube-like structures. However, the neuroprotective effects of SIRT1 were eliminated by PPAR inhibition, indicating that PPARÉ£ may mediate the interaction between PEX11B and SIRT1. Our findings suggest that both SIRT1 and PPARÉ£ have neuroprotective effects, and also this study provides the first indication for a potential interaction between PEX11B, SIRT1, and PPARÉ£ during hESC neural differentiation.


Subject(s)
Cell Differentiation , Human Embryonic Stem Cells , Membrane Proteins , PPAR gamma , Sirtuin 1 , Humans , Sirtuin 1/metabolism , Sirtuin 1/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Cell Differentiation/drug effects , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neurons/metabolism , Neurons/cytology , Neurons/drug effects , Cell Line , Peroxisomes/metabolism
8.
Nature ; 629(8014): 1165-1173, 2024 May.
Article in English | MEDLINE | ID: mdl-38720076

ABSTRACT

The nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies1,2. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing3. What functional role, if any, speckles might play in the process of mRNA splicing is unclear4,5. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs and higher co-transcriptional splicing levels than genes that are located farther from nuclear speckles. Gene organization around nuclear speckles is dynamic between cell types, and changes in speckle proximity lead to differences in splicing efficiency. Finally, directed recruitment of a pre-mRNA to nuclear speckles is sufficient to increase mRNA splicing levels. Together, our results integrate the long-standing observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a crucial role for dynamic three-dimensional spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.


Subject(s)
Genome , Nuclear Speckles , RNA Precursors , RNA Splicing , RNA, Messenger , Spliceosomes , Animals , Humans , Male , Mice , Genes , Genome/genetics , Human Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Nuclear Speckles/genetics , Nuclear Speckles/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spliceosomes/metabolism , Transcription, Genetic
9.
Stem Cell Res ; 78: 103445, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820864

ABSTRACT

Forkhead box protein J1 (FOXJ1), a member of the forkhead family, is an important transcription factor regulating multiciliated cell differentiation and motile ciliogenic program. Here, we established a FOXJ1- EGFP knock-in human embryonic stem cell (hESC) line by inserting a P2A-EGFP gene cassette of FOXJ1 using CRISPR/Cas9 system. The reporter cell line retained a normal karyotype, expressed comparable pluripotent marker genes, and maintained differentiation potential. This reporter cell line enables live identification of multiciliated cells during the general lung differentiation and will be a valuable tool for studying the multiciliated cell differentiation, ciliogenesis and mechanism of related pulmonary diseases.


Subject(s)
CRISPR-Cas Systems , Forkhead Transcription Factors , Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Cell Line , Cell Differentiation , Gene Knock-In Techniques/methods , Gene Targeting/methods , Genes, Reporter
10.
Stem Cell Reports ; 19(6): 830-838, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38759646

ABSTRACT

The differentiation of human pluripotent stem cells into ventral mesencephalic dopaminergic (DA) fate is relevant for the treatment of Parkinson's disease. Shortcuts to obtaining DA cells through direct reprogramming often include forced expression of the transcription factor LMX1A. Although reprogramming with LMX1A can generate tyrosine hydroxylase (TH)-positive cells, their regional identity remains elusive. Using an in vitro model of early human neural tube patterning, we report that forced LMX1A expression induced a ventral-to-dorsal fate shift along the entire neuroaxis with the emergence of roof plate fates despite the presence of ventralizing molecules. The LMX1A-expressing progenitors gave rise to grafts containing roof plate-derived choroid plexus cysts as well as ectopically induced TH-positive neurons of a forebrain identity. Early activation of LMX1A prior to floor plate specification was necessary for the dorsalizing effect. Our work suggests using caution in employing LMX1A for the induction of DA fate, as this factor may generate roof plate rather than midbrain fates.


Subject(s)
Cell Differentiation , Dopaminergic Neurons , Human Embryonic Stem Cells , LIM-Homeodomain Proteins , Mesencephalon , Transcription Factors , Humans , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/cytology , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Mesencephalon/cytology , Mesencephalon/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Body Patterning/genetics , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , Animals , Gene Expression Regulation, Developmental
11.
STAR Protoc ; 5(2): 103089, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38795356

ABSTRACT

Generating stable human embryonic stem cells (hESCs) with targeted genetic mutations allows for the interrogation of protein function in numerous cellular contexts while maintaining a relatively high degree of isogenicity. We describe a step-by-step protocol for generating knockout hESC lines with mutations in genes involved in synaptic transmission using CRISPR-Cas9. We describe steps for gRNA design, cloning, stem cell transfection, and clone isolation. We then detail procedures for gene knockout validation and differentiation of stem cells into functional induced neurons.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Human Embryonic Stem Cells , Neurons , Humans , CRISPR-Cas Systems/genetics , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Gene Editing/methods , Cell Differentiation/genetics , Gene Knockout Techniques/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Synapses/metabolism , Synapses/genetics
12.
Cell Commun Signal ; 22(1): 300, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816763

ABSTRACT

Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.


Subject(s)
Benzodioxoles , Cell Differentiation , Endoderm , Quinazolines , Signal Transduction , Humans , Cell Differentiation/drug effects , Endoderm/drug effects , Endoderm/cytology , Endoderm/metabolism , Benzodioxoles/pharmacology , Signal Transduction/drug effects , Quinazolines/pharmacology , Transcription Factors/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Adaptor Proteins, Signal Transducing/metabolism , YAP-Signaling Proteins/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Activins/metabolism , Molecular Docking Simulation
13.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38739758

ABSTRACT

The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.


Subject(s)
Biomarkers , Brain , Gene Regulatory Networks , Human Embryonic Stem Cells , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Brain/metabolism , Brain/embryology , Brain/cytology , Biomarkers/metabolism , Neurons/metabolism , Neurons/cytology , Cell Differentiation/genetics , RNA-Seq , Neurogenesis/genetics , Gene Expression Regulation, Developmental , Gene Expression Profiling , Sequence Analysis, RNA/methods , Single-Cell Gene Expression Analysis
14.
Cell Genom ; 4(5): 100556, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38697123

ABSTRACT

The ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expression of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector genes and influences neurodevelopment and survival.


Subject(s)
3' Untranslated Regions , Apoptosis Regulatory Proteins , Membrane Proteins , Pediatric Obesity , Child , Humans , 3' Untranslated Regions/genetics , Alleles , Cell Differentiation/genetics , Chromosomes, Human, Pair 12/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Human Embryonic Stem Cells/metabolism , Neurons/metabolism , Pediatric Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Membrane Proteins/genetics , Apoptosis Regulatory Proteins/genetics
15.
Stem Cell Res ; 77: 103438, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776701

ABSTRACT

Here we present the generation of a human embryonic stem cell line with the potential to escape immune rejection upon transplantation to an alternate species, in this case sus scrofa. For in vivo detection the cells were modified by CRISPR-Cas9 to express human secreted alkaline phosphatase. To avoid immune recognition and subsequent rejection by host, genes encoding hB2M and hCIITA were knocked out and the porcine gene for CD47 was introduced. Upon editing and subsequent culture, cells maintained molecular and phenotypic pluripotent charactaristics and a normal karyotype supporting viability and functionality of the engineered cell line.


Subject(s)
CRISPR-Cas Systems , Human Embryonic Stem Cells , Animals , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Swine , Cell Line
16.
Nat Cell Biol ; 26(6): 903-916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702503

ABSTRACT

Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.


Subject(s)
Cell Differentiation , Cell Lineage , Human Embryonic Stem Cells , Proto-Oncogene Proteins c-ets , Transcription Factors , Humans , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Endocytosis , Cell Proliferation , Integrins/metabolism , Integrins/genetics , Signal Transduction , Mechanotransduction, Cellular
17.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Article in English | MEDLINE | ID: mdl-38711334

ABSTRACT

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Myocardial Infarction , Myocytes, Cardiac , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Humans , Animals , Mice , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Male , Myocardial Reperfusion Injury/therapy , Myocardial Reperfusion Injury/metabolism , Disease Models, Animal , Neovascularization, Physiologic , Cells, Cultured
18.
Genome Biol ; 25(1): 122, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741214

ABSTRACT

BACKGROUND: Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS: By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS: Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.


Subject(s)
Pluripotent Stem Cells , Single-Cell Analysis , Humans , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Genome, Human , Euchromatin/genetics , Euchromatin/metabolism , Chromatin/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Heterochromatin/metabolism , Embryonic Stem Cells/metabolism , Chromatin Assembly and Disassembly
19.
Stem Cell Reports ; 19(5): 729-743, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701777

ABSTRACT

Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.


Subject(s)
Cell Proliferation , Homeostasis , Human Embryonic Stem Cells , Ribosomes , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Ribosomes/metabolism , Cell Differentiation/genetics , Protein Biosynthesis
20.
Nat Commun ; 15(1): 3745, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702304

ABSTRACT

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Subject(s)
Cell Differentiation , DNA Copy Number Variations , N-Myc Proto-Oncogene Protein , Neural Crest , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neural Crest/metabolism , Neural Crest/pathology , Female , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Chromosome Aberrations , Human Embryonic Stem Cells/metabolism , Transcriptome , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...