Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.188
Filter
1.
Acta Neuropathol Commun ; 12(1): 88, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840253

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.


Subject(s)
Disease Models, Animal , Huntington Disease , Imaging, Three-Dimensional , Mitochondria , Animals , Huntington Disease/pathology , Huntington Disease/genetics , Huntington Disease/metabolism , Mitochondria/ultrastructure , Mitochondria/pathology , Mitochondria/metabolism , Imaging, Three-Dimensional/methods , Mice , Mice, Transgenic , Brain/pathology , Brain/ultrastructure , Brain/metabolism , Microscopy, Electron/methods , Male , Neurons/pathology , Neurons/ultrastructure , Neurons/metabolism
2.
BMC Prim Care ; 25(1): 155, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714964

ABSTRACT

BACKGROUND: Huntington's disease (HD) has substantial impact on patients and carers' lives. Managing patients in the advanced phase of HD may be challenging to primary health care professionals. The aim of this study is to elicit health care professionals' experiences of managing the challenges with patients with advanced HD in primary health care. METHODS: We did a qualitative study, collecting data from four focus group interviews with 22 primary health care professionals who had experience with caring for patients with HD in Norway. The data were analysed using a qualitative content analysis method, systematic text condensation. RESULTS: We found that health care professionals who care for patients with HD in primary health care experience challenges related to patients' behaviour, family members and caregivers, professionals' individual competency, and the organizational context. They conveyed that successful care and management of patients with advanced HD was dependent on individuals' competency and "everyday tactics", well-functioning teams, and leadership and organizational support. CONCLUSION: In addition to individual competencies, including being personally suitable for the job, well-functioning primary care teams, and organization support and training is important for health care professionals' ability to manage patients with advanced HD in primary health care.


Subject(s)
Focus Groups , Health Personnel , Huntington Disease , Primary Health Care , Qualitative Research , Humans , Huntington Disease/therapy , Huntington Disease/psychology , Male , Female , Norway , Adult , Health Personnel/psychology , Middle Aged , Attitude of Health Personnel , Caregivers/psychology , Clinical Competence
3.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759629

ABSTRACT

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Subject(s)
Amyloid , Autophagosomes , Autophagy , Huntingtin Protein , Huntington Disease , Peptides , Protein Aggregates , Sequestosome-1 Protein , Peptides/metabolism , Peptides/chemistry , Peptides/genetics , Humans , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/chemistry , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Amyloid/metabolism , Amyloid/chemistry , Amyloid/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Cryoelectron Microscopy , Animals , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/genetics
4.
Cell Death Dis ; 15(5): 337, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744826

ABSTRACT

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.


Subject(s)
Huntingtin Protein , Huntington Disease , Animals , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Mice , Humans , Disease Models, Animal , Ubiquitination , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Mutation , Protein Aggregates , Mice, Transgenic , Corpus Striatum/metabolism , Corpus Striatum/pathology , Neurons/metabolism , Neurons/pathology
5.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758800

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Subject(s)
Corpus Striatum , Huntingtin Protein , Huntington Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Animals , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Corpus Striatum/metabolism , Corpus Striatum/pathology , Mice , Humans , Disease Models, Animal , Neurons/metabolism , Neurons/pathology , Proteolysis , Primates
6.
BMC Biol ; 22(1): 121, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783261

ABSTRACT

BACKGROUND: Huntington disease (HD) is a neurodegenerative disorder with complex motor and behavioural manifestations. The Q175 knock-in mouse model of HD has gained recent popularity as a genetically accurate model of the human disease. However, behavioural phenotypes are often subtle and progress slowly in this model. Here, we have implemented machine-learning algorithms to investigate behaviour in the Q175 model and compare differences between sexes and disease stages. We explore distinct behavioural patterns and motor functions in open field, rotarod, water T-maze, and home cage lever-pulling tasks. RESULTS: In the open field, we observed habituation deficits in two versions of the Q175 model (zQ175dn and Q175FDN, on two different background strains), and using B-SOiD, an advanced machine learning approach, we found altered performance of rearing in male manifest zQ175dn mice. Notably, we found that weight had a considerable effect on performance of accelerating rotarod and water T-maze tasks and controlled for this by normalizing for weight. Manifest zQ175dn mice displayed a deficit in accelerating rotarod (after weight normalization), as well as changes to paw kinematics specific to males. Our water T-maze experiments revealed response learning deficits in manifest zQ175dn mice and reversal learning deficits in premanifest male zQ175dn mice; further analysis using PyMouseTracks software allowed us to characterize new behavioural features in this task, including time at decision point and number of accelerations. In a home cage-based lever-pulling assessment, we found significant learning deficits in male manifest zQ175dn mice. A subset of mice also underwent electrophysiology slice experiments, revealing a reduced spontaneous excitatory event frequency in male manifest zQ175dn mice. CONCLUSIONS: Our study uncovered several behavioural changes in Q175 mice that differed by sex, age, and strain. Our results highlight the impact of weight and experimental protocol on behavioural results, and the utility of machine learning tools to examine behaviour in more detailed ways than was previously possible. Specifically, this work provides the field with an updated overview of behavioural impairments in this model of HD, as well as novel techniques for dissecting behaviour in the open field, accelerating rotarod, and T-maze tasks.


Subject(s)
Behavior, Animal , Body Weight , Disease Models, Animal , Huntington Disease , Phenotype , Animals , Huntington Disease/physiopathology , Huntington Disease/genetics , Mice , Male , Female , Behavior, Animal/physiology , Sex Factors , Age Factors , Machine Learning , Maze Learning
7.
Biomolecules ; 14(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786006

ABSTRACT

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


Subject(s)
3-Hydroxyanthranilic Acid , Amyloid beta-Peptides , Caenorhabditis elegans , Paralysis , Peptides , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Peptides/pharmacology , 3-Hydroxyanthranilic Acid/metabolism , Paralysis/chemically induced , Paralysis/metabolism , Paralysis/genetics , Disease Models, Animal , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Dioxygenases/metabolism , Dioxygenases/genetics
8.
EBioMedicine ; 103: 105124, 2024 May.
Article in English | MEDLINE | ID: mdl-38701619

ABSTRACT

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Subject(s)
Clofazimine , Disease Models, Animal , Huntingtin Protein , Leprostatic Agents , PPAR gamma , Peptides , Zebrafish , Clofazimine/pharmacology , PPAR gamma/metabolism , PPAR gamma/genetics , Animals , Humans , Peptides/pharmacology , Leprostatic Agents/pharmacology , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism
9.
Biochem Biophys Res Commun ; 716: 150010, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704892

ABSTRACT

Calcium (Ca2+) in mitochondria plays crucial roles in neurons including modulating metabolic processes. Moreover, excessive Ca2+ in mitochondria can lead to cell death. Thus, altered mitochondrial Ca2+ regulation has been implicated in several neurodegenerative diseases including Huntington's disease (HD). HD is a progressive hereditary neurodegenerative disorder that results from abnormally expanded cytosine-adenine-guanine trinucleotide repeats in the huntingtin gene. One neuropathological hallmark of HD is neuronal loss in the striatum and cortex. However, mechanisms underlying selective loss of striatal and cortical neurons in HD remain elusive. Here, we measured the basal Ca2+ levels and Ca2+ uptake in single presynaptic mitochondria during 100 external electrical stimuli using highly sensitive mitochondria-targeted Ca2+ indicators in cultured cortical and striatal neurons of a knock-in mouse model of HD (zQ175 mice). We observed elevated presynaptic mitochondrial Ca2+ uptake during 100 electrical stimuli in HD cortical neurons compared with wild-type (WT) cortical neurons. We also found the highly elevated presynaptic mitochondrial basal Ca2+ level and Ca2+ uptake during 100 stimuli in HD striatal neurons. The elevated presynaptic mitochondrial basal Ca2+ level in HD striatal neurons and Ca2+ uptake during stimulation in HD striatal and cortical neurons can disrupt neurotransmission and induce mitochondrial Ca2+ overload, eventually leading to neuronal death in the striatum and cortex of HD.


Subject(s)
Calcium , Cerebral Cortex , Corpus Striatum , Disease Models, Animal , Gene Knock-In Techniques , Huntington Disease , Mitochondria , Presynaptic Terminals , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Calcium/metabolism , Mitochondria/metabolism , Mice , Corpus Striatum/metabolism , Corpus Striatum/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Presynaptic Terminals/metabolism , Cells, Cultured , Neurons/metabolism , Neurons/pathology , Mice, Transgenic
10.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731912

ABSTRACT

Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.


Subject(s)
Brain , Huntington Disease , Life Style , Huntington Disease/metabolism , Huntington Disease/pathology , Humans , Brain/metabolism , Brain/pathology , Exercise , Animals , Huntingtin Protein/metabolism , Huntingtin Protein/genetics
11.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786052

ABSTRACT

Huntington's disease (HD) arises from expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. The resultant misfolded HTT protein accumulates within neuronal cells, negatively impacting their function and survival. Ultimately, HTT accumulation results in cell death, causing the development of HD. A nonhuman primate (NHP) HD model would provide important insight into disease development and the generation of novel therapies due to their genetic and physiological similarity to humans. For this purpose, we tested CRISPR/Cas9 and a single-stranded DNA (ssDNA) containing expanded CAG repeats in introducing an expanded CAG repeat into the HTT gene in rhesus macaque embryos. Analyses were conducted on arrested embryos and trophectoderm (TE) cells biopsied from blastocysts to assess the insertion of the ssDNA into the HTT gene. Genotyping results demonstrated that 15% of the embryos carried an expanded CAG repeat. The integration of an expanded CAG repeat region was successfully identified in five blastocysts, which were cryopreserved for NHP HD animal production. Some off-target events were observed in biopsies from the cryopreserved blastocysts. NHP embryos were successfully produced, which will help to establish an NHP HD model and, ultimately, may serve as a vital tool for better understanding HD's pathology and developing novel treatments.


Subject(s)
Huntingtin Protein , Macaca mulatta , Animals , Macaca mulatta/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Blastocyst/metabolism , Trinucleotide Repeat Expansion/genetics , Embryo, Mammalian/metabolism , CRISPR-Cas Systems/genetics , Female , Disease Models, Animal
12.
Expert Opin Investig Drugs ; 33(5): 451-467, 2024 May.
Article in English | MEDLINE | ID: mdl-38758356

ABSTRACT

INTRODUCTION: Huntington's Disease (HD) is a genetic neurodegenerative disease for which there is currently no disease-modifying treatment. One of several underlying mechanisms proposed to be involved in HD pathogenesis is inflammation; there is now accumulating evidence that the immune system may play an integral role in disease pathology and progression. As such, modulation of the immune system could be a potential therapeutic target for HD. AREAS COVERED: To date, the number of trials targeting immune aspects of HD has been limited. However, targeting it, may have great advantages over other therapeutic areas, given that many drugs already exist that have actions in this system coupled to the fact that inflammation can be measured both peripherally and, to some extent, centrally using CSF and PET imaging. In this review, we look at evidence that the immune system and the newly emerging area of the microbiome are altered in HD patients, and then present and discuss clinical trials that have targeted different parts of the immune system. EXPERT OPINION: We then conclude by discussing how this field might develop going forward, focusing on the role of imaging and other biomarkers to monitor central immune activation and response to novel treatments in HD.


Subject(s)
Biomarkers , Huntington Disease , Inflammation , Huntington Disease/drug therapy , Huntington Disease/physiopathology , Huntington Disease/immunology , Humans , Animals , Inflammation/drug therapy , Inflammation/immunology , Biomarkers/metabolism , Molecular Targeted Therapy , Disease Progression , Drug Development , Immune System/drug effects , Microbiota
13.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771878

ABSTRACT

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Subject(s)
Huntington Disease , Organoids , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Organoids/pathology , Organoids/metabolism , Substantia Nigra/pathology , Substantia Nigra/metabolism , Corpus Striatum/pathology , Corpus Striatum/metabolism , Neurons/metabolism , Neurons/pathology , Cell Differentiation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Pluripotent Stem Cells/metabolism , Optogenetics
14.
Chembiochem ; 25(11): e202400152, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38695673

ABSTRACT

Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.


Subject(s)
Huntingtin Protein , Positron-Emission Tomography , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/chemistry , Ligands , Humans , Protein Aggregates/drug effects , Mutation , Huntington Disease/diagnostic imaging , Huntington Disease/metabolism , Huntington Disease/genetics , Radiopharmaceuticals/chemistry
15.
Health Qual Life Outcomes ; 22(1): 33, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627749

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disease with a devastating impact on patients and their families. Quantifying how treatments affect patient outcomes is critical for informing reimbursement decisions. Many countries mandate a formal value assessment in which the treatment benefit is measured as quality-adjusted life-years, calculated with the use of utility estimates that reflect respondents' preferences for health states. OBJECTIVE: To summarize published health state utility data in HD and identify gaps and uncertainties in the data available that could be used to inform value assessments. METHODS: We conducted a systematic literature review of studies that used preference-based instruments (e.g., EQ-5D and SF-6D) to estimate utility values for people with HD. The studies were published between January 2012 and December 2022. RESULTS: Of 383 articles screened, 16 articles reported utility values estimated in 11 distinct studies. The utility measure most frequently reported was EQ-5D (9/11 studies). Two studies reported SF-6D data; one used time trade-off methods to value health state descriptions (vignettes). Although utility scores generally worsened to a lower value with increased HD severity, the estimates varied considerably across studies. The EQ-5D index range was 0.89 - 0.72 for mild/prodromal HD and 0.71 - 0.37 for severe/late-stage disease. CONCLUSIONS: This study uncovered high variability in published utility estimates, indicating substantial uncertainty in existing data. Further research is needed to better understand preferences and valuation across all stages and domains of HD symptoms and the degree to which generic utility measures capture the impact of cognitive changes on quality of life.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Humans , Quality of Life , Huntington Disease/therapy , Quality-Adjusted Life Years , Cost-Benefit Analysis , Surveys and Questionnaires , Health Status
16.
J Biomed Sci ; 31(1): 37, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627751

ABSTRACT

BACKGROUND: Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF). To assess whether whole-brain changes in CBF are present and follow a pattern of progression, we investigated both resting-state brain perfusion and vascular reactivity longitudinally in the zQ175DN mouse model of HD. METHODS: Using pseudo-continuous arterial spin labelling (pCASL) MRI in the zQ175DN model of HD and age-matched wild-type (WT) mice, we assessed whole-brain, resting-state perfusion at 3, 6 and 9 and 13 months of age, and assessed hypercapnia-induced cerebrovascular reactivity (CVR), at 4.5, 6, 9 and 15 months of age. RESULTS: We found increased perfusion in cortical regions of zQ175DN HET mice at 3 months of age, and a reduction of this anomaly at 6 and 9 months, ages at which behavioural deficits have been reported. On the other hand, under hypercapnia, CBF was reduced in zQ175DN HET mice as compared to the WT: for multiple brain regions at 6 months of age, for only somatosensory and retrosplenial cortices at 9 months of age, and brain-wide by 15 months. CVR impairments in cortical regions, the thalamus and globus pallidus were observed in zQ175DN HET mice at 9 months, with whole brain reactivity diminished at 15 months of age. Interestingly, blood vessel density was increased in the motor cortex at 3 months, while average vessel length was reduced in the lateral portion of the caudate putamen at 6 months of age. CONCLUSION: Our findings reveal early cortical resting-state hyperperfusion and impaired CVR at ages that present motor anomalies in this HD model, suggesting that further characterization of brain perfusion alterations in animal models is warranted as a potential therapeutic target in HD.


Subject(s)
Huntington Disease , Humans , Mice , Animals , Infant , Huntington Disease/genetics , Cross-Sectional Studies , Hypercapnia , Brain , Disease Models, Animal , Perfusion
17.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38607933

ABSTRACT

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Subject(s)
Huntington Disease , MicroRNAs , Humans , 3' Untranslated Regions/genetics , Endodeoxyribonucleases , Exodeoxyribonucleases/genetics , Genome-Wide Association Study , Huntington Disease/genetics , MicroRNAs/genetics , Multifunctional Enzymes
18.
Transl Neurodegener ; 13(1): 17, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561866

ABSTRACT

Huntington's disease (HD) is a devastating neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein, resulting from a CAG repeat expansion in the huntingtin gene HTT. HD is characterized by a variety of debilitating symptoms including involuntary movements, cognitive impairment, and psychiatric disturbances. Despite considerable efforts, effective disease-modifying treatments for HD remain elusive, necessitating exploration of novel therapeutic approaches, including lifestyle modifications that could delay symptom onset and disease progression. Recent studies suggest that time-restricted eating (TRE), a form of intermittent fasting involving daily caloric intake within a limited time window, may hold promise in the treatment of neurodegenerative diseases, including HD. TRE has been shown to improve mitochondrial function, upregulate autophagy, reduce oxidative stress, regulate the sleep-wake cycle, and enhance cognitive function. In this review, we explore the potential therapeutic role of TRE in HD, focusing on its underlying physiological mechanisms. We discuss how TRE might enhance the clearance of mHTT, recover striatal brain-derived neurotrophic factor levels, improve mitochondrial function and stress-response pathways, and synchronize circadian rhythm activity. Understanding these mechanisms is critical for the development of targeted lifestyle interventions to mitigate HD pathology and improve patient outcomes. While the potential benefits of TRE in HD animal models are encouraging, future comprehensive clinical trials will be necessary to evaluate its safety, feasibility, and efficacy in persons with HD.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Humans , Huntington Disease/genetics , Huntington Disease/therapy , Huntington Disease/metabolism , Fasting , Oxidative Stress
19.
Neurobiol Dis ; 195: 106488, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565397

ABSTRACT

Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.


Subject(s)
Disease Models, Animal , Huntington Disease , Polyribosomes , Ribosomes , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Mice , Polyribosomes/metabolism , Ribosomes/metabolism , Corpus Striatum/metabolism , Corpus Striatum/pathology , Mice, Transgenic , Disease Progression , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics
20.
Sci Rep ; 14(1): 9243, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649395

ABSTRACT

A crucial step in the clinical adaptation of an AI-based tool is an external, independent validation. The aim of this study was to investigate brain atrophy in patients with confirmed, progressed Huntington's disease using a certified software for automated volumetry and to compare the results with the manual measurement methods used in clinical practice as well as volume calculations of the caudate nuclei based on manual segmentations. Twenty-two patients were included retrospectively, consisting of eleven patients with Huntington's disease and caudate nucleus atrophy and an age- and sex-matched control group. To quantify caudate head atrophy, the frontal horn width to intercaudate distance ratio and the intercaudate distance to inner table width ratio were obtained. The software mdbrain was used for automated volumetry. Manually measured ratios and automatically measured volumes of the groups were compared using two-sample t-tests. Pearson correlation analyses were performed. The relative difference between automatically and manually determined volumes of the caudate nuclei was calculated. Both ratios were significantly different between the groups. The automatically and manually determined volumes of the caudate nuclei showed a high level of agreement with a mean relative discrepancy of - 2.3 ± 5.5%. The Huntington's disease group showed significantly lower volumes in a variety of supratentorial brain structures. The highest degree of atrophy was shown for the caudate nucleus, putamen, and pallidum (all p < .0001). The caudate nucleus volume and the ratios were found to be strongly correlated in both groups. In conclusion, in patients with progressed Huntington's disease, it was shown that the automatically determined caudate nucleus volume correlates strongly with measured ratios commonly used in clinical practice. Both methods allowed clear differentiation between groups in this collective. The software additionally allows radiologists to more objectively assess the involvement of a variety of brain structures that are less accessible to standard semiquantitative methods.


Subject(s)
Caudate Nucleus , Deep Learning , Huntington Disease , Humans , Huntington Disease/pathology , Huntington Disease/diagnostic imaging , Male , Female , Middle Aged , Caudate Nucleus/diagnostic imaging , Caudate Nucleus/pathology , Retrospective Studies , Brain/pathology , Brain/diagnostic imaging , Atrophy/pathology , Magnetic Resonance Imaging/methods , Adult , Aged , Software , Organ Size , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...