Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
J Ind Microbiol Biotechnol ; 41(7): 1175-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24865990

ABSTRACT

Huperzine A (HupA), a naturally occurring lycopodium alkaloid, is a potent, highly specific and reversible inhibitor of acetylcholinesterase and is a potential treatment for Alzheimer's disease. However, isolating HupA from Huperziaceae plants is inefficient; thus, extracting this compound from endophytic fungi may be more controllable and sustainable. However, the large-scale production of this chemical from endophytes is limited by the innate instability of endophytic fungi. In this study, we maintained the stability and viability of the HupA-producing endophytic fungus Shiraia sp. Slf14 and enhanced the HupA titers during fermentation by adding Huperzia serrata extracts (HSE), L-lysine, and acetic acid into the culture as inducers. Adding trace amounts of HupA clearly improved the HupA production of Shiraia sp. Slf14, reaching a maximum content of approximately 40 µg g(-1). Moreover, the addition of HSE and L-lysine promoted HupA production in the flask fermentation. The aforementioned bioprocessing strategy may be potentially applied to other endophytic fungal culture systems for the efficient production of plant secondary metabolites.


Subject(s)
Alkaloids/biosynthesis , Ascomycota/drug effects , Ascomycota/metabolism , Alkaloids/isolation & purification , Alzheimer Disease/drug therapy , Cell Extracts/pharmacology , Endophytes/drug effects , Endophytes/metabolism , Fermentation/drug effects , Huperzia/chemistry , Huperzia/cytology , Lysine/metabolism , Lysine/pharmacology , Microbial Viability/drug effects , Secondary Metabolism , Sesquiterpenes/isolation & purification
2.
Mini Rev Med Chem ; 11(10): 836-42, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21762104

ABSTRACT

Cholinesterase enzyme family consisting of acetylcholinesterase (AChE) and butrylcholinesterase (BChE) is important in pathogenesis of Alzheimer's disease (AD), explained by "cholinergic hypothesis". Accordingly, deficiency of the neuromediator called "acetylcholine" excessive amount of BChE has been well-described in the brains of AD patients. Consequently, cholinesterase inhibition has become one of the most-prescribed treatment strategies for AD. In fact, cholinesterase inhibitors have been also reported for their effectiveness in some other diseases including glaucoma, myasthenia gravies, as well as Down syndrome, lately. They play a role in the action of mechanism of insecticidal drugs such as carbamate derivatives as well as nerve gases such as malathion and parathion. All these utilizations can make them a multi-targeted drug class putting a special emphasis on AD therapy in the first place. Several inhibitors of cholinesterases with synthetic and natural origins are available in drug market; however, the reasons including side effects, relatively low bioavailability, etc. limit their uses in medicine and there is still a great demand to discover new cholinesterase inhibitors. Galanthamine, an alkaloid derivative isolated from snowdrop (Galanthus nivalis L.), is the latest anticholinesterase drug used against AD. Huperzine A, isolated from Huperzia serrata (Thunb.) Trev. is the most-promising drug candidate with potent anticholinesterase effect and it is a licensed anti-AD drug in China. In this review, a short introduction will be given on known cholinesterase inhibitors and, then, galanthamine and huperzine A will be covered in regard with their cholinesterase inhibitory potentials and mass productions by organic synthesis and in vitro culture techniques.


Subject(s)
Cholinesterase Inhibitors/chemistry , Alkaloids/biosynthesis , Alkaloids/chemistry , Alkaloids/pharmacology , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/therapeutic use , Galantamine/biosynthesis , Galantamine/chemistry , Galantamine/pharmacology , Humans , Huperzia/chemistry , Huperzia/cytology , Liliaceae/chemistry , Liliaceae/cytology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology
3.
Rev. biol. trop ; 57(4): 1141-1152, dic. 2009. ilus, tab
Article in Spanish | LILACS | ID: lil-637750

ABSTRACT

Sporangia ontogeny and sporogenesis of the lycopodium Huperzia brevifolia (Lycopodiaceae) from the high mountains of Colombia. Huperzia brevifolia is one of the dominant species of the genus Huperzia living in paramos and superparamos from the Colombian Andes. A detailed study of the sporangium’s ontogeny and sporogenesis was carried out using specimens collected at 4200m above sea level, in Parque Natural Nacional El Cocuy, Colombia. Small pieces of caulinar axis bearing sporangia were fixed, dehydrated, paraffin embedded, sectioned in a rotatory microtome, and stained using the common Safranin O-Fast Green technique; handmade cross sections were also made, stained with aqueous Toluidine Blue (TBO). The sporangia develops basipetally, a condition that allows observation of all the developmental stages taking place throughout the caulinar axis of adult plants. Each sporangium originates from a group of epidermal cells, axilar to the microphylls. These cells undergo active mitosis, and produce new external and internal cellular groups. The sporangium wall and the tapetum originate from the external group of cells, while the internal cellular group leads to the sporogenous tissue. Meiosis occur in the sporocytes and produce simultaneous types tetrads, each one giving rise four trilete spores, with foveolate ornamentation. During the sporangium ripening, the outermost layer of the wall develops anticlinally, and inner periclinal thickenings and the innermost one perform as a secretory tapetum, which persists until the spores are completely mature. All other cellular layers colapse. Rev. Biol. Trop. 57 (4): 1141-1152. Epub 2009 December 01.


Se describe la ontogenia y la esporogénesis en H. brevifolia, en material recolectado en el Parque Nacional Natural El Cocuy (Boyacá-Colombia) a 4200m de altitud. Los esporangios se desarrollan de forma basípeta sobre el eje caulinar: los iniciales y juveniles se localizan en el ápice y los adultos a maduros, en la base. El desarrollo se inicia a partir de un grupo de células epidérmicas localizadas en las axilas que forman los microfilos con el eje caulinar. Estas células se dividen activamente por mitosis formando una masa celular externa y otra interna. La primera da origen a la pared del esporangio, de varios estratos celulares; de éstos, el estrato externo desarrolla engrosamientos en las paredes anticlinales y en la periclinal interna. El estrato celular interno se diferencia para formar el tapete secretor. Los demás estratos celulares de la pared se degradan durante la maduración del esporangio. La masa celular interna da origen al tejido esporógeno que forma los esporocitos, que experimentan la meiosis I hasta la etapa de díada. La meiosis II concluye con la formación de tétradas, constituidas por esporas en disposición tetraédrica. Las esporas son foveoladas con abertura trilete y son liberadas del esporangio a través de la dehiscencia.


Subject(s)
Huperzia/physiology , Spores/growth & development , Colombia , Huperzia/cytology
4.
Rev Biol Trop ; 57(4): 1141-52, 2009 Dec.
Article in Spanish | MEDLINE | ID: mdl-20073340

ABSTRACT

Huperzia brevifolia is one of the dominant species of the genus Huperzia living in paramos and superparamos from the Colombian Andes. A detailed study of the sporangium's ontogeny and sporogenesis was carried out using specimens collected at 4200m above sea level, in Parque Natural Nacional El Cocuy, Colombia. Small pieces of caulinar axis bearing sporangia were fixed, dehydrated, paraffin embedded, sectioned in a rotatory microtome, and stained using the common Safranin O-Fast Green technique; handmade cross sections were also made, stained with aqueous Toluidine Blue (TBO). The sporangia develops basipetally, a condition that allows observation of all the developmental stages taking place throughout the caulinar axis of adult plants. Each sporangium originates from a group of epidermal cells, axilar to the microphylls. These cells undergo active mitosis, and produce new external and internal cellular groups. The sporangium wall and the tapetum originate from the external group of cells, while the internal cellular group leads to the sporogenous tissue. Meiosis occur in the sporocytes and produce simultaneous types tetrads, each one giving rise four trilete spores, with foveolate ornamentation. During the sporangium ripening, the outermost layer of the wall develops anticlinally, and inner periclinal thickenings and the innermost one perform as a secretory tapetum, which persists until the spores are completely mature. All other cellular layers colapse.


Subject(s)
Huperzia/physiology , Spores/growth & development , Colombia , Huperzia/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...