Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 660488, 2021.
Article in English | MEDLINE | ID: mdl-34326835

ABSTRACT

T cell infiltration into tumors is essential for successful immunotherapy against solid tumors. Herein, we found that the expression of hyaluronic acid synthases (HAS) was negatively correlated with patient survival in multiple types of solid tumors including gastric cancer. HA impeded in vitro anti-tumor activities of anti-mesothelin (MSLN) chimeric antigen receptor T cells (CAR-T cells) against gastric cancer cells by restricting CAR-T cell mobility in vitro. We then constructed a secreted form of the human hyaluronidase PH20 (termed sPH20-IgG2) by replacing the PH20 signal peptide with a tPA signal peptide and attached with IgG2 Fc fragments. We found that overexpression of sPH20-IgG2 promoted CAR-T cell transmigration through an HA-containing matrix but did not affect the cytotoxicity or cytokine secretion of the CAR-T cells. In BGC823 and MKN28 gastric cancer cell xenografts, sPH20-IgG2 promoted anti-mesothelin CAR-T cell infiltration into tumors. Furthermore, mice infused with sPH20-IgG2 overexpressing anti-MSLN CAR-T cells had smaller tumors than mice injected with anti-MSLN CAR-T cells. Thus, we demonstrated that sPH20-IgG2 can enhance the antitumor activity of CAR-T cells against solid tumors by promoting CAR-T cell infiltration.


Subject(s)
GPI-Linked Proteins/immunology , Hyaluronan Synthases/genetics , Hyaluronan Synthases/immunology , Stomach Neoplasms/immunology , T-Lymphocytes/classification , Animals , Cell Line, Tumor , Cytokines/metabolism , Female , HEK293 Cells , Humans , Immunotherapy, Adoptive , Mesothelin , Mice , Receptors, Chimeric Antigen/immunology , Specific Pathogen-Free Organisms , Stomach Neoplasms/pathology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/physiology , Xenograft Model Antitumor Assays
2.
Front Immunol ; 12: 770305, 2021.
Article in English | MEDLINE | ID: mdl-35069543

ABSTRACT

HAS2 is a member of the gene family encoding the hyaluronan synthase 2, which can generate high-molecular-weight hyaluronan (HMW-HA). Our previous study identified HAS2 as a candidate gene for increased susceptibility to adult asthma. However, whether HAS2 dysfunction affects airway remodeling and steroid insensitivity is still limited. Therefore, this study aimed to clarify the Has2 dysfunction, triggering severe airway remodeling and steroid insensitivity in a murine model of asthma. Has2 heterozygous-deficient (Has2+/-) mice and their wild-type littermates have been evaluated in a model of chronic ovalbumin (OVA) sensitization and challenge. Mice present a higher sensitivity to OVA and higher IL-17 release as well as eosinophilic infiltration. RNA sequencing demonstrated the downregulation of EIF2 signaling pathways, TGF-ß signaling pathways, and heat shock proteins with Th17 bias in Has2+/--OVA mice. The combined treatment with anti-IL-17A antibody and dexamethasone reduces steroid insensitivity in Has2+/--OVA mice. Has2 attenuation worsens eosinophilic airway inflammation, airway remodeling, and steroid insensitivity. These data highlight that HAS2 and HMW-HA are important for controlling intractable eosinophilic airway inflammation and remodeling and could potentially be exploited for their therapeutic benefits in patients with asthma.


Subject(s)
Airway Remodeling/immunology , Asthma/immunology , Drug Resistance/immunology , Hyaluronan Synthases/immunology , Airway Remodeling/drug effects , Airway Remodeling/genetics , Animals , Asthma/chemically induced , Asthma/genetics , Drug Resistance/genetics , Hyaluronan Synthases/genetics , Mice , Mice, Knockout , Ovalbumin/toxicity , Steroids/pharmacology
3.
PLoS One ; 14(7): e0218736, 2019.
Article in English | MEDLINE | ID: mdl-31260471

ABSTRACT

LL-37 is the only human cathelicidin-family host defense peptide and has been reported to interact with invading pathogens causing inflammation at various body sites. Recent studies showed high levels of LL-37 in the synovial-lining membrane of patients with rheumatoid arthritis, a common type of inflammatory arthritis. The present study aims to investigate the role of LL-37 on mechanisms associated with pathogenesis of inflammatory arthritis. The effects of LL-37 on the expression of proinflammatory cytokines, hyaluronan (HA) metabolism-related genes, cell death-related pathways, and cell invasion were investigated in SW982, a human synovial sarcoma cell line. Time-course measurements of proinflammatory cytokines and mediators showed that LL-37 significantly induced IL6 and IL17A mRNA levels at early time points (3-6 hr). HA-metabolism-related genes (i.e., HA synthase 2 (HAS2), HAS3, hyaluronidase 1 (HYAL1), HYAL2, and CD44) were co-expressed in parallel. In combination, LL-37 and IL17A significantly enhanced PTGS2, TNF, and HAS3 gene expression concomitantly with the elevation of their respective products, PGE2, TNF, and HA. Cell invasion rates and FN1 gene expression were also significantly enhanced. However, LL-37 alone or combined with IL17A did not affect cell mortality or cell cycle. Treatment of SW982 cells with both LL-37 and IL17A significantly enhanced IKK and p65 phosphorylation. These findings suggest that the chronic production of a high level of LL-37 may synchronize with its downstream proinflammatory cytokines, especially IL17A, contributing to the co-operative enhancement of pathogenesis mechanisms of inflammatory arthritis, such as high production of proinflammatory cytokines and mediators together with the activation of HA-metabolism-associated genes and cell invasion.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Hyaluronic Acid/metabolism , Interleukin-17/pharmacology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/immunology , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 2/genetics , Cyclooxygenase 2/immunology , Drug Combinations , Drug Synergism , Fibroblasts/immunology , Fibroblasts/pathology , Fibronectins/genetics , Fibronectins/immunology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation/immunology , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/immunology , Hyaluronan Synthases/genetics , Hyaluronan Synthases/immunology , Hyaluronic Acid/immunology , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/immunology , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Inflammation , Interleukin-6/genetics , Interleukin-6/immunology , Signal Transduction , Synovial Membrane/immunology , Synovial Membrane/pathology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Cathelicidins
4.
Am J Physiol Lung Cell Mol Physiol ; 313(6): L1069-L1086, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28912382

ABSTRACT

Growing evidence suggests that versican is important in the innate immune response to lung infection. Our goal was to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. We first defined the signaling events that regulate versican expression, using bone marrow-derived macrophages (BMDMs) from mice lacking specific Toll-like receptors (TLRs), TLR adaptor molecules, or the type I interferon receptor (IFNAR1). We show that LPS and polyinosinic-polycytidylic acid [poly(I:C)] trigger a signaling cascade involving TLR3 or TLR4, the Trif adaptor, type I interferons, and IFNAR1, leading to increased expression of versican by macrophages and implicating versican as an interferon-stimulated gene. The signaling events regulating versican are distinct from those for hyaluronan synthase 1 (HAS1) and syndecan-4 in macrophages. HAS1 expression requires TLR2 and MyD88. Syndecan-4 requires TLR2, TLR3, or TLR4 and both MyD88 and Trif. Neither HAS1 nor syndecan-4 is dependent on type I interferons. The importance of macrophage-derived versican in lungs was determined with LysM/Vcan-/- mice. These studies show increased recovery of inflammatory cells in the bronchoalveolar lavage fluid of poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. IFN-ß and IL-10, two important anti-inflammatory molecules, are significantly decreased in both poly(I:C)-treated BMDMs from LysM/Vcan-/- mice and bronchoalveolar lavage fluid from poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. In short, type I interferon signaling regulates versican expression, and versican is necessary for type I interferon production. These findings suggest that macrophage-derived versican is an immunomodulatory molecule with anti-inflammatory properties in acute pulmonary inflammation.


Subject(s)
Adaptor Proteins, Vesicular Transport/immunology , Immunity, Innate , Interferon-beta/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Versicans/immunology , Adaptor Proteins, Vesicular Transport/genetics , Animals , Hyaluronan Synthases/genetics , Hyaluronan Synthases/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Lipopolysaccharides/toxicity , Mice , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Syndecan-4/genetics , Syndecan-4/immunology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Versicans/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...