Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.699
Filter
1.
Reprod Domest Anim ; 59(5): e14582, 2024 May.
Article in English | MEDLINE | ID: mdl-38715452

ABSTRACT

Crossbred cattle are commonly used for milk production in the tropics, combining the potential benefits of pure breeds with the heterosis effects of the offspring. However, no comprehensive assessment of lifetime productivity for crossbred versus purebred cattle in low-altitude tropical environments has been carried out. The present study compares the lifetime productivity of purebred Holstein (HO, n = 17,269), Gyr (GY4, n = 435), and Brahman (BR4, n = 622) with crossbreds Gyr × Holstein (GY × HO, n = 5521) and Brahman×Holstein (BR × HO, n = 5429) cows from dairy farms located in low and medium altitude tropical regions in Costa Rica. The production traits of interest were age at first calving (AFC), days open (DO), milk production per lactation (TMP), lactation length (LLEN), age at culling (ACUL), and number of lactations (NLAC). Estimates of heterosis were also calculated. The AFC for GY × HO crosses (33-34 months) was not significantly different (p > .05) from HO (33.8 months). For BR × HO crosses, a significant (p < .05) decrease in AFC (BR3HO1 35.6 months, BR2HO2 34.5 months, and BR1H03 33.3 months) was observed as the fraction of HO breed increased. Estimates of heterosis for AFC were favourable for both crosses, of a magnitude close to 3%. The DO for F1 crosses (GY2HO2 94 days; BR2HO2 96 days) was significantly (p < .05) lower than HO (123 days). Estimates of heterosis for DO were also favourable and above 15% for both crosses. The TMP and LLEN were higher for HO (TMP = 5003 kg; LLEN = 324 days) compared with GY × HO (TMP = 4428 to 4773 kg; LLEN = 298 to 312 days) and BR × HO (TMP = 3950 to 4761 kg; LLEN = 273 to 313 days) crosses. Heterosis for TMP was favourable but low for both crosses, with a magnitude below 3.0%. The NLAC for HO (4.6 lactations) was significantly (p < .05) lower than F1 (GY2HO2, 5.8 lactations; BR2HO2, 5.4 lactations). Heterosis for NLAC was above 6.0% for both crosses. Overall, estimates of lifetime income over feed costs per cow on average were USD 2637 (30.3%) and USD 734 (8.4%) higher in F1 GY × HO and BR × HO, respectively, compared to HO. In conclusion, crossbred animals, specifically those with Gyr and Brahman genetics, extend the productive lifespan, increasing economic returns.


Subject(s)
Hybrid Vigor , Lactation , Milk , Tropical Climate , Animals , Cattle/genetics , Cattle/physiology , Lactation/genetics , Lactation/physiology , Female , Costa Rica , Breeding , Hybridization, Genetic , Altitude , Crosses, Genetic
2.
J Morphol ; 285(5): e21704, 2024 May.
Article in English | MEDLINE | ID: mdl-38702980

ABSTRACT

Fancy breeds of Japanese indigenous chicken display extensive morphological diversity, particularly in tail feathers. Although marked differences in tail and bone traits have been reported between Tosa-jidori (wild type) and Minohikichabo (rich type) breeds, little is known about the pattern of genetic inheritance in cross experiments. Therefore, this study aimed to investigate the strain and sex effects, and inheritance patterns, in the morphometric variation of pygostyle bones among Tosa-jidori, Minohikichabo, and their F1 hybrids. Five morphological traits, angle of the apex of the pygostyle, pygostyle length, margo cranialis length, tail feather number, and body weight, were evaluated at the adult stage. A significant strain difference was detected in all traits, whereas significant sex differences were observed in only three traits, but not in the angle of the apex of the pygostyle and tail feather number. In F1 hybrids, the angle of the apex of the pygostyle was significantly different to that of Tosa-jidori but not that of Minohikichabo, whereas the pygostyle length and tail number of F1 hybrids were significantly different from those of Minohikichabo but not those of Tosa-jidori. A significant heterosis effect was found in the margo cranialis length and body weight. All five traits showed nonadditive inheritance patterns but varied in each trait between partial dominance (angle of the apex of pygostyle), full dominance (pygostyle length and tail feather number), and over-dominance (margo cranialis length and body weight). Interestingly, different patterns of genetic inheritance in the F1 hybrid were observed at different locations, even within the same pygostyle bone. Using the Japanese indigenous chicken model, these results provide a substantial step toward understanding the genetic architecture of morphology in chickens.


Subject(s)
Chickens , Feathers , Tail , Animals , Chickens/anatomy & histology , Chickens/genetics , Tail/anatomy & histology , Male , Female , Feathers/anatomy & histology , Bone and Bones/anatomy & histology , Body Weight , Breeding , Hybrid Vigor
3.
BMC Genomics ; 25(1): 476, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745122

ABSTRACT

BACKGROUND: Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS: In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS: The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.


Subject(s)
Alleles , Gene Expression Regulation, Plant , Hybrid Vigor , Promoter Regions, Genetic , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/metabolism , Hybrid Vigor/genetics , Gene Expression Profiling , Genetic Variation , Transcriptome
4.
Theor Appl Genet ; 137(6): 141, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789698

ABSTRACT

KEY MESSAGE: Stable and novel QTLs that affect seed vigor under different storage durations were discovered, and BnaOLE4, located in the interval of cqSW-C2-3, increased seed vigor after aging. Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions. A total of 229 quantitative trait loci (QTLs) were identified and were found to explain 3.78%-17.22% of the phenotypic variance for seed vigor-related traits after aging. We further demonstrated that seed vigor-related traits were positively correlated with oil content (OC) but negatively correlated with unsaturated fatty acids (FAs). Some pleiotropic QTLs that collectively regulate OC, FAs, and seed vigor, such as uq.A8, uq.A3-2, uq.A9-2, and uq.C3-1, were identified. The transcriptomic results from extreme pools of DH lines with distinct seed vigor phenotypes during accelerated aging revealed that various biological pathways and metabolic processes (such as glutathione metabolism and reactive oxygen species) were involved in seed vigor. Through integration of QTL analysis and RNA-Seq, a regulatory network for the control of seed vigor was constructed. Importantly, a candidate (BnaOLE4) from cqSW-C2-3 was selected for functional analysis, and transgenic lines overexpressing BnaOLE4 showed increased seed vigor after artificial aging. Collectively, these results provide novel information on QTL and potential candidate genes for molecular breeding for improved seed storability.


Subject(s)
Brassica napus , Phenotype , Quantitative Trait Loci , Seeds , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/physiology , Seeds/growth & development , Seeds/genetics , Chromosome Mapping , Hybrid Vigor , Haploidy , Gene Expression Regulation, Plant , Plant Breeding
5.
Mol Biol Rep ; 51(1): 537, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642174

ABSTRACT

BACKGROUND: Hexaploid bread wheat underwent a series of polyploidization events through interspecific hybridizations that conferred adaptive plasticity and resulted in duplication and neofunctionalization of major agronomic genes. The genetic architecture of polyploid wheat not only confers adaptive plasticity but also offers huge genetic diversity. However, the contribution of different gene copies (homeologs) encoded from different subgenomes (A, B, D) at different growth stages remained unexplored. METHODS: In this study, hybrid of elite cultivars of wheat were developed via reciprocal crosses (cytoplasm swapping) and phenotypically evaluated. We assessed differential expression profiles of yield-related negative regulators in these cultivars and their F1 hybrids and identified various cis-regulatory signatures by employing bioinformatics tools. Furthermore, the preferential expression patterns of the syntenic triads encoded from A, B, and D subgenomes were assessed to decipher their functional redundancy at six different growth stages. RESULTS: Hybrid progenies showed better heterosis such as up to 17% increase in the average number of grains and up to 50% increase in average thousand grains weight as compared to mid-parents. Based on the expression profiling, our results indicated significant dynamic transcriptional expression patterns, portraying the different homeolog-dominance at the same stage in the different cultivars and their hybrids. Albeit belonging to same syntenic triads, a dynamic trend was observed in the regulatory signatures of these genes that might be influencing their expression profiles. CONCLUSION: These findings can substantially contribute and provide insights for the selective introduction of better cultivars into traditional and hybrid breeding programs which can be harnessed for the improvement of future wheat.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Hybridization, Genetic , Hybrid Vigor/genetics
6.
Am J Bot ; 111(4): e16317, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634444

ABSTRACT

PREMISE: With the global atmospheric CO2 concentration on the rise, developing crops that can thrive in elevated CO2 has become paramount. We investigated the potential of hybridization as a strategy for creating crops with improved growth in predicted elevated atmospheric CO2. METHODS: We grew parent accessions and their F1 hybrids of Arabidopsis thaliana in ambient and elevated atmospheric CO2 and analyzed numerous growth traits to assess their productivity and underlying mechanisms. RESULTS: The heterotic increase in total dry mass, relative growth rate and leaf net assimilation rate was significantly greater in elevated CO2 than in ambient CO2. The CO2 response of net assimilation rate was positively correlated with the CO2 response of leaf nitrogen productivity and with that of leaf traits such as leaf size and thickness, suggesting that hybridization-induced changes in leaf traits greatly affected the improved performance in elevated CO2. CONCLUSIONS: Vegetative growth of hybrids seems to be enhanced in elevated CO2 due to improved photosynthetic nitrogen-use efficiency compared with parents. The results suggest that hybrid crops should be well-suited for future conditions, but hybrid weeds may also be more competitive.


Subject(s)
Arabidopsis , Atmosphere , Carbon Dioxide , Hybridization, Genetic , Nitrogen , Plant Leaves , Carbon Dioxide/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Nitrogen/metabolism , Atmosphere/chemistry , Photosynthesis , Hybrid Vigor
7.
BMC Plant Biol ; 24(1): 259, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594635

ABSTRACT

BACKGROUND: Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS: A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION: The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.


Subject(s)
Chrysanthemum , Transcriptome , Hybrid Vigor/genetics , Chrysanthemum/genetics , Plant Breeding , Gene Expression Profiling/methods , Gene Expression Regulation, Plant
8.
mSystems ; 9(5): e0000424, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38591897

ABSTRACT

Seed endophytic microbiomes are shaped by host and environmental factors and play a crucial role in their host growth and health. Studies have demonstrated that host genotype, including hybridization, affects seed microbiomes. Heterosis features are also observed in root-associated microbiomes. It remains unclear, however, whether heterosis exists in seed endophytic microbiomes and whether hybrid microbiota provide noticeable advantages to host plant growth, especially to seed germination. Here, we investigated the structure of seed endophytic bacterial and fungal communities from three hybrid rice varieties and their respective parents using amplicon sequencing targeting 16S rRNA and ITS2 genes. Heterosis was found in diversity and composition of seed endophytic microbiomes in hybrids, which hosted more diverse communities and significantly higher abundances of plant growth-promoting taxa, such as Pseudomonas and Rhizobium genera compared with their parental lines. Co-occurrence network analysis revealed that there are potentially tighter microbial interactions in the hybrid seeds compared with their parent seeds. Finally, inoculation of seed-cultivable endophytes, isolated from hybrids, resulted in a greater promotion of seed germination compared with those isolated from parent lines. These findings suggest that heterosis exists not only in plant traits but also in seed endophytic microbiota, the latter in turn promotes seed germination, which offers valuable guidance for microbiome-assisted rice breeding.IMPORTANCEGenetic and physiological changes associated with plant hybridization have been studied for many crop species. Still, little is known about the impact of hybridization on the seed microbiota. In this study, we indicate that hybridization has a significant impact on the endophytic bacterial and fungal communities in rice seeds. The seed endophytic microbiomes of hybrids displayed distinct characteristics from those of their parental lines and exhibited potential heterosis features. Furthermore, the inoculation of seed-cultivable endophytes isolated from hybrids exhibited a greater promotion effect on seed germination compared with those isolated from the parents. Our findings make a valuable contribution to the emerging field of microbiome-assisted plant breeding, highlighting the potential for a targeted approach that aims to achieve not only desired plant traits but also plant-beneficial microbial communities on the seeds.


Subject(s)
Endophytes , Germination , Hybrid Vigor , Microbiota , Oryza , Seeds , Oryza/microbiology , Oryza/genetics , Oryza/growth & development , Endophytes/genetics , Seeds/microbiology , Seeds/genetics , Seeds/growth & development , Hybrid Vigor/genetics , Microbiota/genetics , Hybridization, Genetic , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Fungi/genetics , Fungi/isolation & purification , Fungi/classification
9.
Article in English | MEDLINE | ID: mdl-38688047

ABSTRACT

Heterosis has been utilized in aquaculture for many years, yet its molecular basis remains elusive. Therefore, a comprehensive analysis of heterosis was conducted by comparing growth, digestion and biochemistry indices, as well as the intestinal gene expression profiles of Nile tilapia, blue tilapia and their hybrids. The results revealed that hybrid tilapia demonstrated an enhanced growth traits and elevated digestive enzyme activity compared to Nile and blue tilapia. Additionally, the hybrid tilapia displayed superior antioxidants and non-specific immune levels, with increased levels of catalase (CAT), alkaline phosphatase (AKP), acid phosphatase (ACP), glutathione (GSH), superoxide dismutase (SOD), total antioxidant capacity (TAOC), lysozyme, and immunoglobulin M (IgM) relative to Nile and blue tilapia. Moreover, 3392, 2470 and 1261 differentially expressed genes (DEGs) were identified in the intestinal tissues when comparing Nile tilapia to blue tilapia, hybrid tilapia to blue tilapia, and hybrid tilapia to Nile tilapia. Upon classifying the differentially expressed genes (DEGs), non-additively expressed DEGs accounted for 68.1 % of the total DEGs, with dominant and over-dominant expressed DEGs comprising 63.7 % and 4.4 % in the intestines, respectively. These non-additively expressed DEGs were primarily associated with metabolic, digestive, growth, and developmental pathways. This enrichment enhances our comprehension of the molecular underpinnings of growth heterosis in aquatic species.


Subject(s)
Hybrid Vigor , Tilapia , Animals , Hybrid Vigor/genetics , Tilapia/genetics , Tilapia/growth & development , Intestines , Hybridization, Genetic , Cichlids/genetics , Cichlids/growth & development , Transcriptome , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Profiling , Antioxidants/metabolism
10.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612398

ABSTRACT

Pak choi exhibits a diverse color range and serves as a rich source of flavonoids and terpenoids. However, the mechanisms underlying the heterosis and coordinated regulation of these compounds-particularly isorhamnetin-remain unclear. This study involved three hybrid combinations and the detection of 528 metabolites from all combinations, including 26 flavonoids and 88 terpenoids, through untargeted metabolomics. Analysis of differential metabolites indicated that the heterosis for the flavonoid and terpenoid contents was parent-dependent, and positive heterosis was observed for isorhamnetin in the two hybrid combinations (SZQ, 002 and HMG, ZMG). Moreover, there was a high transcription level of flavone 3'-O-methyltransferase, which is involved in isorhamnetin biosynthesis. The third group was considered the ideal hybrid combination for investigating the heterosis of flavonoid and terpenoid contents. Transcriptome analysis identified a total of 12,652 DEGs (TPM > 1) in various groups that were used for comparison, and DEGs encoding enzymes involved in various categories, including "carotenoid bio-synthesis" and "anthocyanin biosynthesis", were enriched in the hybrid combination (SZQ, 002). Moreover, the category of anthocyanin biosynthesis also was enriched in the hybrid combination (HMG, ZMG). The flavonoid pathway demonstrated more differential metabolites than the terpenoid pathway did. The WGCNA demonstrated notable positive correlations between the dark-green modules and many flavonoids and terpenoids. Moreover, there were 23 ERF genes in the co-expression network (r ≥ 0.90 and p < 0.05). Thus, ERF genes may play a significant role in regulating flavonoid and terpenoid biosynthesis. These findings enhance our understanding of the heterosis and coordinated regulation of flavonoid and terpenoid biosynthesis in pak choi, offering insights for genomics-based breeding improvements.


Subject(s)
Flavonoids , Terpenes , Anthocyanins , Hybrid Vigor/genetics , Gene Expression Profiling
11.
Front Endocrinol (Lausanne) ; 15: 1373623, 2024.
Article in English | MEDLINE | ID: mdl-38596226

ABSTRACT

Hybridization and polyploid breeding are the main approaches used to obtain new aquaculture varieties. Allotriploid crucian carp (3n) with rapid growth performance was generated by mating red crucian carp (RCC) with allotetraploids (4n). Fish growth is controlled by the growth hormone (GH)/insulin-like growth factor (IGF) axis. In the present study, we examined the expression characteristics of GH/IGF axis genes in hybrids F1, 4n, 3n, RCC and common carp (CC). The results showed that GHRa, GHRb, IGF1, IGF2, and IGF-1Ra were highly expressed in 3n compared with RCC and CC, whereas IGF3 was undetectable in the liver in RCC, CC and 3n. GHRa and GHRb had low expression in the 4n group. In hybrid F1, GHRa expression was low, whereas GHRb was highly expressed compared to the levels in RCC and CC. Moreover, in hybrid F1, the expression of IGF3 was higher, and the expression of IGF1 and IGF2 was lower than that in the RCC and CC, whereas the expression of IGF-1Ra was similar to that in RCC and CC. For the IGFBP genes, IGFBP1 had higher expression in 3n compared than that in RCC and CC, while other IGFBP genes were not high expressed in 3n. Among the genes detected in this study, 11 genes were nonadditively expressed in 3n, with 5 genes in the transgressive upregulation model. We proposed that the 11 nonadditive expression of GH/IGF axis genes is related to growth heterosis in 3n. This evidence provides new insights into hybridization and polyploid breeding from the perspective of hormone regulation.


Subject(s)
Carcinoma, Renal Cell , Carps , Human Growth Hormone , Kidney Neoplasms , Animals , Carps/genetics , Carps/metabolism , Triploidy , Growth Hormone/genetics , Growth Hormone/metabolism , Hybrid Vigor/genetics , Insulin-Like Peptides , Human Growth Hormone/metabolism , Insulin-Like Growth Factor Binding Proteins , Gene Expression Profiling
12.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473815

ABSTRACT

Heterosis plays a significant role in enhancing variety, boosting yield, and raising economic value in crops, but the molecular mechanism is still unclear. We analyzed the transcriptomes and 3D genomes of a hybrid (F1) and its parents (w30 and 082). The analysis of the expression revealed a total of 485 specially expressed genes (SEGs), 173 differentially expressed genes (DEGs) above the parental expression level, more actively expressed genes, and up-regulated DEGs in the F1. Further study revealed that the DEGs detected in the F1 and its parents were mainly involved in the response to auxin, plant hormone signal transduction, DNA metabolic process, purine metabolism, starch, and sucrose metabolism, which suggested that these biological processes may play a crucial role in the heterosis of Brassica rapa. The analysis of 3D genome data revealed that hybrid F1 plants tend to contain more transcriptionally active A chromatin compartments after hybridization. Supplementaryly, the F1 had a smaller TAD (topologically associated domain) genome length, but the number was the highest, and the expression change in activated TAD was higher than that of repressed TAD. More specific TAD boundaries were detected between the parents and F1. Subsequently, 140 DEGs with genomic structural variants were selected as potential candidate genes. We found two DEGs with consistent expression changes in A/B compartments and TADs. Our findings suggested that genomic structural variants, such as TADs and A/B chromatin compartments, may affect gene expression and contribute to heterosis in Brassica rapa. This study provides further insight into the molecular mechanism of heterosis in Brassica rapa.


Subject(s)
Brassica rapa , Chromatin , Hybrid Vigor , Hybridization, Genetic , Gene Expression , Gene Expression Regulation, Plant , Gene Expression Profiling
13.
Plant Biotechnol J ; 22(6): 1669-1680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450899

ABSTRACT

The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.


Subject(s)
Genes, Dominant , Hybrid Vigor , Oryza , Plant Breeding , Oryza/genetics , Oryza/growth & development , Hybrid Vigor/genetics , Plant Breeding/methods , CRISPR-Cas Systems , Gene Editing/methods , Hybridization, Genetic , Plants, Genetically Modified/genetics , Genes, Plant/genetics , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Nat Commun ; 15(1): 2262, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480732

ABSTRACT

The inter-subspecific indica-japonica hybrid rice confer potential higher yield than the widely used indica-indica intra-subspecific hybrid rice. Nevertheless, the utilization of this strong heterosis is currently hindered by asynchronous diurnal floret opening time (DFOT) of indica and japonica parental lines. Here, we identify OsMYB8 as a key regulator of rice DFOT. OsMYB8 induces the transcription of JA-Ile synthetase OsJAR1, thereby regulating the expression of genes related to cell osmolality and cell wall remodeling in lodicules to promote floret opening. Natural variations of OsMYB8 promoter contribute to its differential expression, thus differential transcription of OsJAR1 and accumulation of JA-Ile in lodicules of indica and japonica subspecies. Furthermore, introgression of the indica haplotype of OsMYB8 into japonica effectively promotes DFOT in japonica. Our findings reveal an OsMYB8-OsJAR1 module that regulates differential DFOT in indica and japonica, and provide a strategy for breeding early DFOT japonica to facilitate breeding of indica-japonica hybrids.


Subject(s)
Genes, Plant , Isoleucine/analogs & derivatives , Oryza , Plant Breeding , Hybrid Vigor , Cyclopentanes/metabolism , Oryza/metabolism
15.
J Integr Plant Biol ; 66(4): 709-730, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483018

ABSTRACT

Hybrid rice (Oryza sativa) generally outperforms its inbred parents in yield and stress tolerance, a phenomenon termed heterosis, but the underlying mechanism is not completely understood. Here, we combined transcriptome, proteome, physiological, and heterosis analyses to examine the salt response of super hybrid rice Chaoyou1000 (CY1000). In addition to surpassing the mean values for its two parents (mid-parent heterosis), CY1000 exhibited a higher reactive oxygen species scavenging ability than both its parents (over-parent heterosis or heterobeltiosis). Nonadditive expression and allele-specific gene expression assays showed that the glutathione S-transferase gene OsGSTU26 and the amino acid transporter gene OsAAT30 may have major roles in heterosis for salt tolerance, acting in an overdominant fashion in CY1000. Furthermore, we identified OsWRKY72 as a common transcription factor that binds and regulates OsGSTU26 and OsAAT30. The salt-sensitive phenotypes were associated with the OsWRKY72paternal genotype or the OsAAT30maternal genotype in core rice germplasm varieties. OsWRKY72paternal specifically repressed the expression of OsGSTU26 under salt stress, leading to salinity sensitivity, while OsWRKY72maternal specifically repressed OsAAT30, resulting in salinity tolerance. These results suggest that the OsWRKY72-OsAAT30/OsGSTU26 module may play an important role in heterosis for salt tolerance in an overdominant fashion in CY1000 hybrid rice, providing valuable clues to elucidate the mechanism of heterosis for salinity tolerance in hybrid rice.


Subject(s)
Hybrid Vigor , Oryza , Hybrid Vigor/genetics , Reactive Oxygen Species/metabolism , Oryza/genetics , Oryza/metabolism , Salt Tolerance/genetics , Phenotype
16.
Sci Rep ; 14(1): 7333, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538706

ABSTRACT

Application of machine learning in plant breeding is a recent concept, that has to be optimized for precise utilization in the breeding program of high yielding crop plants. Identification and efficient utilization of heterotic grouping pattern aided with machine learning approaches is of utmost importance in hybrid cultivar breeding as it can save time and resources required to breed a new plant hybrid/variety. In the present study, 109 genotypes of sunflower were investigated at morphological, biochemical (SDS-PAGE) and molecular levels (through micro-satellites (SSR) markers) for heterotic grouping. All the three datasets were combined, scaled, and subjected to unsupervised machine learning algorithms, i.e., Hierarchical clustering, K-means clustering and hybrid clustering algorithm (hierarchical + K-means) for assessment of efficiency and resolution power of these algorithms in practical plant breeding for heterotic grouping identification. Following the application of machine learning unsupervised clustering approach, two major groups were identified in the studied sunflower germplasm, and further classification revealed six smaller classes in each major group through hierarchical and hybrid clustering approach. Due to high resolution, obtained in hierarchical clustering, classification achieved through this algorithm was further used for selection of potential parents. One genotype from each smaller group was selected based on the maximum seed yield potential and hybridized in a line × tester mating design producing 36 F1 cross combinations. These F1s along with their parents were studied in open field conditions for validating the efficacy of identified heterotic groups in sunflowers genetic material under study. Data for 11 agronomic and qualitative traits were recorded. These 36 F1 combinations were tested for their combining ability (General/Specific), heterosis, genotypic and phenotypic correlation and path analysis. Results suggested that F1 hybrids performed better for all the traits under investigation than their respective parents. Findings of the study validated the use of machine learning approaches in practical plant breeding; however, more accurate and robust clustering algorithms need to be developed to handle the data noisiness of open field experiments.


Subject(s)
Asteraceae , Helianthus , Hybrid Vigor , Hybridization, Genetic , Helianthus/genetics , Genotype , Plant Breeding , Machine Learning
17.
J Integr Plant Biol ; 66(2): 208-227, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326968

ABSTRACT

In plants, the genome structure of hybrids changes compared with their parents, but the effects of these changes in hybrids remain elusive. Comparing reciprocal crosses between Col × C24 and C24 × Col in Arabidopsis using high-throughput chromosome conformation capture assay (Hi-C) analysis, we found that hybrid three-dimensional (3D) chromatin organization had more long-distance interactions relative to parents, and this was mainly located in promoter regions and enriched in genes with heterosis-related pathways. The interactions between euchromatin and heterochromatin were increased, and the compartment strength decreased in hybrids. In compartment domain (CD) boundaries, the distal interactions were more in hybrids than their parents. In the hybrids of CURLY LEAF (clf) mutants clfCol × clfC24 and clfC24 × clfCol , the heterosis phenotype was damaged, and the long-distance interactions in hybrids were fewer than in their parents with lower H3K27me3. ChIP-seq data revealed higher levels of H3K27me3 in the region adjacent to the CD boundary and the same interactional homo-trans sites in the wild-type (WT) hybrids, which may have led to more long-distance interactions. In addition, the differentially expressed genes (DEGs) located in the boundaries of CDs and loop regions changed obviously in WT, and the functional enrichment for DEGs was different between WT and clf in the long-distance interactions and loop regions. Our findings may therefore propose a new epigenetic explanation of heterosis in the Arabidopsis hybrids and provide new insights into crop breeding and yield increase.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Histones/metabolism , Transcriptome , Plant Breeding , Hybrid Vigor/genetics
18.
Plant Physiol ; 195(2): 1214-1228, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38319651

ABSTRACT

The parent-of-origin effect on seeds can result from imprinting (unequal expression of paternal and maternal alleles) or combinational effects between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding factors, we produced cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in Arabidopsis (Arabidopsis thaliana) ecotypes Col-0 and C24. These CNS lines differed only in the nuclear genome (imprinting) or cytoplasm. The CNS reciprocal hybrids with the same cytoplasm displayed ∼20% seed size difference, whereas the seed size was similar between the reciprocal hybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection identified 104 maternally expressed genes (MEGs) and 90 paternally expressed genes (PEGs). These imprinted genes were involved in pectin catabolism and cell wall modification in the endosperm. Homeodomain Glabrous9 (HDG9), an epiallele and one of 11 cross-specific imprinted genes, affected seed size. In the embryo, there were a handful of imprinted genes in the CNS hybrids but only 1 was expressed at higher levels than in the endosperm. AT4G13495 was found to encode a long-noncoding RNA (lncRNA), but no obvious seed phenotype was observed in lncRNA knockout lines. Nuclear RNA Polymerase D1 (NRPD1), encoding the largest subunit of RNA Pol IV, was involved in the biogenesis of small interfering RNAs. Seed size and embryos were larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross, supporting a role of the maternal NRPD1 allele in seed development. Although limited ecotypes were tested, these results suggest that imprinting and the maternal NRPD1-mediated small RNA pathway play roles in seed size heterosis in plant hybrids.


Subject(s)
Arabidopsis , Genomic Imprinting , Hybrid Vigor , Seeds , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Genomic Imprinting/genetics , Seeds/genetics , Seeds/growth & development , Hybrid Vigor/genetics , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Gene Expression Regulation, Plant , Cell Nucleus/metabolism , Cell Nucleus/genetics , Hybridization, Genetic , Cytoplasm/metabolism , Cytoplasm/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
19.
Am Nat ; 203(3): 411-431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358807

ABSTRACT

AbstractThe fitness of immigrants and their descendants produced within recipient populations fundamentally underpins the genetic and population dynamic consequences of immigration. Immigrants can in principle induce contrasting genetic effects on fitness across generations, reflecting multifaceted additive, dominance, and epistatic effects. Yet full multigenerational and sex-specific fitness effects of regular immigration have not been quantified within naturally structured systems, precluding inference on underlying genetic architectures and population outcomes. We used four decades of song sparrow (Melospiza melodia) life history and pedigree data to quantify fitness of natural immigrants, natives, and their F1, F2, and backcross descendants and test for evidence of nonadditive genetic effects. Values of key fitness components (including adult lifetime reproductive success and zygote survival) of F1 offspring of immigrant-native matings substantially exceeded their parent mean, indicating strong heterosis. Meanwhile, F2 offspring of F1-F1 matings had notably low values, indicating surprisingly strong epistatic breakdown. Furthermore, magnitudes of effects varied among fitness components and differed between female and male descendants. These results demonstrate that strong nonadditive genetic effects on fitness can arise within weakly structured and fragmented populations experiencing frequent natural immigration. Such effects will substantially affect the net degree of effective gene flow and resulting local genetic introgression and adaptation.


Subject(s)
Animals, Wild , Hybrid Vigor , Animals , Female , Male , Birds , Emigration and Immigration
20.
Plant Cell Rep ; 43(3): 79, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400858

ABSTRACT

KEY MESSAGE: High-frequency clonal seeds and near-normal fertility were obtained by engineering synthetic apomixis in hybrid rice. The one-line strategy, with the advantage of unnecessary seed production, is the final stage for the hybrid rice development and can be achieved through the fixation of heterosis via artificially inducing apomixis. Recently, synthetic apomixis has been generated in rice by combining MiMe (Mitosis instead of Meiosis) with either the ectopic expression of BABY BOOM (BBM1 or BBM4) or mutation of MATRILINEAL (MTL), resulting in over 95.00% of clonal seeds. However, the frequency of clonal seeds was only 29.20% when AtDD45 promoter was used to drive BBM1. In addition, achieving both a high frequency of clonal seeds and near-normal fertility simultaneously had been elusive in earlier strategies. In this study, using AtDD45 promoter to drive BBM1 expression in combination with the MiMe mutant resulted in the apomixis frequency as high as 98.70%. Even more, employing fusion promoters (AtMYB98_AtDD1_OsECA1-like1) to drive WUS expression in combination with pAtDD45:BBM1 and MiMe could produce clonal seeds at rates of up to 98.21%, the highest seed setting rate reached to 83.67%. Multiple-embryos were observed in clonal lines at a frequency ranging from 3.37% to 60.99%. Transmission of the high frequency of apomixis through skipped generations (atavism) was identified in two clonal lines, even though it remained stable in the majority of clonal lines. These findings significantly advance the pursuit of fixed heterosis in rice through synthetic apomixis, edging closer to its agricultural application.


Subject(s)
Apomixis , Oryza , Oryza/genetics , Apomixis/genetics , Seeds/genetics , Hybrid Vigor/genetics , Fertility/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...