Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.426
Filter
1.
Ecotoxicol Environ Saf ; 278: 116442, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728946

ABSTRACT

Gadolinium (Gd) is among the rare earth elements extensively utilized in both industrial and medical applications. The latter application appears to contribute to the rise in Gd levels in aquatic ecosystems, as it is excreted via urine from patients undergoing MRI scans and often not captured by wastewater treatment systems. The potential environmental and biological hazards posed by gadolinium exposure are still under investigation. This study aimed to assess the teratogenic risk posed by a gadolinium chelate on the freshwater cnidarian Hydra vulgaris. The experimental design evaluated the impact of pure Gadodiamide (25 µg/l, 50 µg/l, 100 µg/l, 500 µg/l) and its commercial counterpart compound (Omniscan®; 100 µg/l, 500 µg/l, 782.7 mg/l) at varying concentrations using the Teratogenic Risk Index (TRI). Here we showed a moderate risk (Class III of TRI) following exposure to both tested formulations at concentrations ≥ 100 µg/l. Given the potential for similar concentrations in aquatic environments, particularly near wastewater discharge points, a teratogenic risk assessment using the Hydra regeneration assay was conducted on environmental samples collected from three rivers (Tiber, Almone, and Sacco) in Central Italy. Additionally, chemical analysis of field samples was performed using ICP-MS. Analysis of freshwater samples revealed low Gd concentrations (≤ 0.1 µg/l), despite localized increases near domestic and/or industrial wastewater discharge sites. Although teratogenic risk in environmental samples ranged from high (Class IV of TRI) to negligible (Class I of TRI), the low Gd concentrations, particularly when compared to higher levels of other contaminants like arsenic and heavy metals, preclude establishing a direct cause-effect relationship between Gd and observed teratogenic risks in environmental samples. Nevertheless, the teratogenic risks observed in laboratory tests warrant further investigation.


Subject(s)
Fresh Water , Hydra , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Animals , Risk Assessment , Hydra/drug effects , Fresh Water/chemistry , Gadolinium/toxicity , Gadolinium/analysis , Italy , Teratogens/toxicity , Gadolinium DTPA/toxicity , Environmental Monitoring/methods , Rivers/chemistry
2.
Article in English | MEDLINE | ID: mdl-38703881

ABSTRACT

Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.


Subject(s)
Amino Acid Sequence , Glutaredoxins , Hydra , Animals , Glutaredoxins/metabolism , Glutaredoxins/genetics , Glutaredoxins/chemistry , Hydra/genetics , Hydra/metabolism , Hydra/enzymology , Humans , Cloning, Molecular , Protein Domains , Phylogeny , Cell Proliferation
3.
Sci Total Environ ; 932: 172868, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714257

ABSTRACT

The use of bioplastics (e.g., polyhydroxybutyrate) emerged as a solution to help reduce plastic pollution caused by conventional plastics. Nevertheless, bioplastics share many characteristics with their conventional counterparts, such as degradation to nano-sized particles and the ability to sorb environmental pollutants, like metals. This study aimed to assess the potential impacts of the interaction of metals (cadmium - Cd, copper - Cu, and zinc - Zn) with polyhydroxybutyrate nanoplastics (PHB-NPLs; ~200 nm) on the freshwater cnidarian Hydra viridissima in terms of mortality rates, morphological alterations, and feeding behavior. The metal concentrations selected for the combined exposures corresponded to concentrations causing 20 %, 50 %, and 80 % of mortality (LC20, LC50, and LC80, respectively) and the PHB-NPLs concentrations ranged from 0.01 to 1000 µg/L. H. viridissima sensitivity to the metals, based on the LC50's, can be ordered as: Zn < Cd < Cu. Combined exposure to metals and PHB-NPLs yielded distinct outcomes concerning mortality, morphological changes, and feeding behavior, uncovering metal- and dose-specific responses. The interaction between Cd-LCx and PHB-NPLs progressed from no effect at LC20,96h to an ameliorative effect at Cd-LC50,96h. Cu-LCx revealed potential mitigation effects (LC20,96h and LC50,96h) but at Cu-LC80,96h the response shifts to a potentiating effect. For Zn-LCx, response patterns across the combinations with PHB-NPLs were like those induced by the metal alone. PHB-NPLs emerged as a key factor capable of modulating the toxicity of metals. This study highlights the context-dependent interactions between metals and PHB-NPLs in freshwater environments while supporting the need for further investigation of the underlying mechanisms and ecological consequences in forthcoming research.


Subject(s)
Hydra , Nanoparticles , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Hydra/drug effects , Hydroxybutyrates/toxicity , Polyesters , Metals, Heavy/toxicity
4.
Sci Rep ; 14(1): 8553, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609434

ABSTRACT

The Notch-signalling pathway plays an important role in pattern formation in Hydra. Using pharmacological Notch inhibitors (DAPT and SAHM1), it has been demonstrated that HvNotch is required for head regeneration and tentacle patterning in Hydra. HvNotch is also involved in establishing the parent-bud boundary and instructing buds to develop feet and detach from the parent. To further investigate the functions of HvNotch, we successfully constructed NICD (HvNotch intracellular domain)-overexpressing and HvNotch-knockdown transgenic Hydra strains. NICD-overexpressing transgenic Hydra showed a pronounced inhibition on the expression of predicted HvNotch-target genes, suggesting a dominant negative effect of ectopic NICD. This resulted in a "Y-shaped" phenotype, which arises from the parent-bud boundary defect seen in polyps treated with DAPT. Additionally, "multiple heads", "two-headed" and "ectopic tentacles" phenotypes were observed. The HvNotch-knockdown transgenic Hydra with reduced expression of HvNotch exhibited similar, but not identical phenotypes, with the addition of a "two feet" phenotype. Furthermore, we observed regeneration defects in both, overexpression and knockdown strains. We integrated these findings into a mathematical model based on long-range gradients of signalling molecules underlying sharply defined positions of HvNotch-signalling cells at the Hydra tentacle and bud boundaries.


Subject(s)
Hydra , Animals , Hydra/genetics , Platelet Aggregation Inhibitors , Signal Transduction , Animals, Genetically Modified , Foot
5.
Bull Environ Contam Toxicol ; 112(4): 56, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565802

ABSTRACT

The aim of this paper was to evaluate whether symbiotic cooperation between green hydra (Hydra viridissima) and photoautotrophic alga gives higher resistance of the preservation of DNA integrity compared to brown hydra (Hydra oligactis). Norflurazon concentrations were 0.061 or 0.61 mg/L and UV-B light 254 nm, 0.023mWcm- 2 applied separately or simultaneously. By alkaline comet assay primary DNA damage was assessed and cytotoxicity by fluorescent staining. Norflurazon at 0.61 mg L- 1 significantly increased DNA damage in brown hydras compared to the control (6.17 ± 0.6 µm, 5.2 ± 1.7% vs. 2.9 ± 0.2 µm, 1.2 ± 0.2%). Cytotoxicity was significantly elevated, being higher in brown hydras (25.7 ± 3.5% vs. 8.2 ± 0.2%). UV-B irradiation induced significant DNA damage in brown hydras (13.5 ± 1.0 µm, 4.1 ± 1.0%). Simultaneous exposure to UV-B and norflurazon led to a synergistic DNA damaging. The frequency of cytotoxicity and hedgehog nucleoids was more pronounced in brown (78.3 ± 9.4%; 56.4 ± 6.0%) than in green hydras (34.7 ± 2.5%; 24.2 ± 0.6%). Evolutionary established symbiotic cooperation proved to provide resistance against cyto/genotoxicity.


Subject(s)
Hydra , Animals , Hydra/genetics , Symbiosis , DNA , DNA Damage
6.
Sci Rep ; 14(1): 5083, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429381

ABSTRACT

The ability to record every spike from every neuron in a behaving animal is one of the holy grails of neuroscience. Here, we report coming one step closer towards this goal with the development of an end-to-end pipeline that automatically tracks and extracts calcium signals from individual neurons in the cnidarian Hydra vulgaris. We imaged dually labeled (nuclear tdTomato and cytoplasmic GCaMP7s) transgenic Hydra and developed an open-source Python platform (TraSE-IN) for the Tracking and Spike Estimation of Individual Neurons in the animal during behavior. The TraSE-IN platform comprises a series of modules that segments and tracks each nucleus over time and extracts the corresponding calcium activity in the GCaMP channel. Another series of signal processing modules allows robust prediction of individual spikes from each neuron's calcium signal. This complete pipeline will facilitate the automatic generation and analysis of large-scale datasets of single-cell resolution neural activity in Hydra, and potentially other model organisms, paving the way towards deciphering the neural code of an entire animal.


Subject(s)
Hydra , Red Fluorescent Protein , Animals , Hydra/physiology , Calcium , Nervous System , Animals, Genetically Modified
7.
Biomol Concepts ; 15(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38502542

ABSTRACT

Opsins play a key role in the ability to sense light both in image-forming vision and in non-visual photoreception (NVP). These modalities, in most animal phyla, share the photoreceptor protein: an opsin-based protein binding a light-sensitive chromophore by a lysine (Lys) residue. So far, visual and non-visual opsins have been discovered throughout the Metazoa phyla, including the photoresponsive Hydra, an eyeless cnidarian considered the evolutionary sister species to bilaterians. To verify whether light influences and modulates opsin gene expression in Hydra, we utilized four expression sequence tags, similar to two classic opsins (SW rhodopsin and SW blue-sensitive opsin) and two non-visual opsins (melanopsin and peropsin), in investigating the expression patterns during both diurnal and circadian time, by means of a quantitative RT-PCR. The expression levels of all four genes fluctuated along the light hours of diurnal cycle with respect to the darkness one and, in constant dark condition of the circadian cycle, they increased. The monophasic behavior in the L12:D12 cycle turned into a triphasic expression profile during the continuous darkness condition. Consequently, while the diurnal opsin-like expression revealed a close dependence on light hours, the highest transcript levels were found in darkness, leading us to novel hypothesis that in Hydra, an "internal" biological rhythm autonomously supplies the opsins expression during the circadian time. In conclusion, in Hydra, both diurnal and circadian rhythms apparently regulate the expression of the so-called visual and non-visual opsins, as already demonstrated in higher invertebrate and vertebrate species. Our data confirm that Hydra is a suitable model for studying ancestral precursor of both visual and NVP, providing useful hints on the evolution of visual and photosensory systems.


Subject(s)
Cnidaria , Hydra , Animals , Opsins/genetics , Opsins/chemistry , Opsins/metabolism , Cnidaria/genetics , Cnidaria/metabolism , Hydra/genetics , Hydra/metabolism , Phylogeny , Circadian Rhythm/genetics
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230058, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38497265

ABSTRACT

The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Subject(s)
Hydra , Microbiota , Humans , Animals , Hydra/physiology , Peptides , Bacteria , Epithelial Cells
9.
Elife ; 122024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407174

ABSTRACT

The Hydra nervous system is the paradigm of a 'simple nerve net'. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.


Subject(s)
Cnidaria , Hydra , Animals , Nerve Net , Neurons , Neurites
10.
Dev Comp Immunol ; 155: 105139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38325499

ABSTRACT

Gasdermin (GSDM) proteins, as the direct executors of pyroptosis, are structurally and functionally conserved among vertebrates and play crucial roles in host defense against infection, inflammation, and cancer. However, the origin of functional GSDMs remains elusive in the animal kingdom. Here, we found that functional GSDME homologs first appeared in the cnidarian. Moreover, these animal GSDME homologs share evolutionarily conserved apoptotic caspase cleavage sites. Thus, we verified the functional conservation of apoptotic caspase-GSDME cascade in Hydra, a representative species of cnidarian. Unlike vertebrate GSDME homologs, HyGSDME could be cleaved by four Hydra caspase homologs with caspase-3 activity at two sites. Furthermore, in vivo activation of Hydra caspases resulted in HyGSDME cleavage to induce pyroptosis, exacerbating injury and restricting bacterial burden, which protects Hydra from pathogen invasion. In conclusion, these results suggest that GSDME-dependent pyroptosis may be an ancient and conserved host defense mechanism, which may contribute to better understanding on the origin and evolution of GSDMs.


Subject(s)
Hydra , Pyroptosis , Animals , Caspases/genetics , Caspases/metabolism , Hydra/metabolism , Gasdermins , Caspase 3/metabolism
11.
Proc Biol Sci ; 291(2017): 20232123, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378148

ABSTRACT

Hydra has a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other. Hydra lacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowing Hydra to ingest prey larger than itself. While the kinematics of mouth opening are well characterized, the underlying mechanism is unknown. We show that Hydra mouth opening is generated by independent local contractions that require tissue-level coordination. We model the head epithelium as an active viscoelastic nonlinear spring network. The model reproduces the size, timescale and symmetry of mouth opening. It shows that radial contractions, travelling inwards from the outer boundary of the head, pull the mouth open. Nonlinear elasticity makes mouth opening larger and faster, contrary to expectations. The model correctly predicts changes in mouth shape in response to external forces. By generating innervated : nerve-free chimera in experiments and simulations, we show that nearest-neighbour mechanical signalling suffices to coordinate mouth opening. Hydra mouth opening shows that in the absence of long-range chemical or neuronal signals, short-range mechanical coupling is sufficient to produce long-range order in tissue deformations.


Subject(s)
Hydra , Animals , Hydra/physiology , Mouth/physiology , Epithelium , Biomechanical Phenomena , Neurons
12.
Mol Biol Cell ; 35(3): br9, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38265917

ABSTRACT

Cells rely on a diverse array of engulfment processes to sense, exploit, and adapt to their environments. Among these, macropinocytosis enables indiscriminate and rapid uptake of large volumes of fluid and membrane, rendering it a highly versatile engulfment strategy. Much of the molecular machinery required for macropinocytosis has been well established, yet how this process is regulated in the context of organs and organisms remains poorly understood. Here, we report the discovery of extensive macropinocytosis in the outer epithelium of the cnidarian Hydra vulgaris. Exploiting Hydra's relatively simple body plan, we developed approaches to visualize macropinocytosis over extended periods of time, revealing constitutive engulfment across the entire body axis. We show that the direct application of planar stretch leads to calcium influx and the inhibition of macropinocytosis. Finally, we establish a role for stretch-activated channels in inhibiting this process. Together, our approaches provide a platform for the mechanistic dissection of constitutive macropinocytosis in physiological contexts and highlight a potential role for macropinocytosis in responding to cell surface tension.


Subject(s)
Hydra , Animals , Hydra/metabolism , Pinocytosis
13.
Sci Total Environ ; 917: 170282, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38272078

ABSTRACT

The accumulation of increasingly smaller plastic particles in aquatic ecosystems is a prominent environmental issue and is causing a significant impact on aquatic biota. In response to this challenge, biodegradable plastics have emerged as a potential ecological alternative. Nevertheless, despite recent progress in polymer toxicology, there is still limited understanding of the ecological implications of biodegradable plastics in freshwater ecosystems. This study evaluated the toxicity of polyhydroxybutyrate nano-sized particles (PHB-NPLs) on the freshwater cnidarian Hydra viridissima assessing individual and population-level effects. Data revealed low toxicity of PHB-NPLs to H. viridissima in the short-term, as evidenced by the absence of significant malformations and mortality after the 96-h assays. In addition, hydras exhibited rapid and complete regeneration after 96 h of exposure to PHB-NPLs. Feeding assays revealed no significant alterations in prey consumption behavior in the 96-h mortality and malformations assay and the regeneration assay. However, significantly increased feeding rates were observed after long-term exposure, across all tested concentrations of PHB-NPLs. This increase may be attributed to the organisms' heightened energetic demand, stemming from prolonged activation of detoxification mechanisms. These changes may have a cascading effect within the food web, influencing community dynamics and ecosystem stability. Furthermore, a dose-dependent response on the hydras' populational growth was found, with an estimated 20 % effect concentration (EC20,8d) on this endpoint of 10.9 mg PHB-NPLs/L that suggests potential long-term impacts on the population's reproductive output and potential depression and local extinction upon long-term exposure to PHB-NPLs on H. viridissima. The obtained data emphasizes the importance of evaluating sublethal effects and supports the adoption of long-term assays when assessing the toxicity of novel polymers, providing crucial data for informed regulation to safeguard freshwater ecosystems. Future research should aim to unravel the underlying mechanisms behind these sublethal effects, as well as the impact of the generated degradation products.


Subject(s)
Biodegradable Plastics , Cnidaria , Hydra , Water Pollutants, Chemical , Animals , Hydra/physiology , Ecosystem , Polyhydroxybutyrates , Fresh Water , Polymers , Water Pollutants, Chemical/toxicity , Plastics
14.
Curr Biol ; 33(24): R1304-R1306, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38113845

ABSTRACT

Cnidarians (corals, hydras, jellyfish, sea anemones) are prey-devouring creatures with a simple nervous system, the function of which is largely unknown. A new study on the freshwater polyp Hydra has now uncovered the neuronal circuits that control its feeding behavior.


Subject(s)
Anthozoa , Hydra , Scyphozoa , Sea Anemones , Animals , Sea Anemones/physiology , Mouth
15.
Sci Rep ; 13(1): 19825, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963956

ABSTRACT

The inability to control cell proliferation results in the formation of tumors in many multicellular lineages. Nonetheless, little is known about the extent of conservation of the biological traits and ecological factors that promote or inhibit tumorigenesis across the metazoan tree. Particularly, changes in food availability have been linked to increased cancer incidence in humans, as an outcome of evolutionary mismatch. Here, we apply evolutionary oncology principles to test whether food availability, regardless of the multicellular lineage considered, has an impact on tumorigenesis. We used two phylogenetically unrelated model systems, the cnidarian Hydra oligactis and the fish Danio rerio, to investigate the impact of resource availability on tumor occurrence and progression. Individuals from healthy and tumor-prone lines were placed on four diets that differed in feeding frequency and quantity. For both models, frequent overfeeding favored tumor emergence, while lean diets appeared more protective. In terms of tumor progression, high food availability promoted it, whereas low resources controlled it, but without having a curative effect. We discuss our results in light of current ideas about the possible conservation of basic processes governing cancer in metazoans (including ancestral life history trade-offs at the cell level) and in the framework of evolutionary medicine.


Subject(s)
Cnidaria , Hydra , Neoplasms , Animals , Humans , Biological Evolution , Carcinogenesis , Neoplasms/etiology
16.
Curr Biol ; 33(24): 5288-5303.e6, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37995697

ABSTRACT

Although recent studies indicate the impact of microbes on the central nervous systems and behavior, it remains unclear how the relationship between the functionality of the nervous system, behavior, and the microbiota evolved. In this work, we analyzed the eating behavior of Hydra, a host that has a simple nervous system and a low-complexity microbiota. To identify the neuronal subpopulations involved, we used a subpopulation-specific cell ablation system and calcium imaging. The role of the microbiota was uncovered by manipulating the diversity of the natural microbiota. We show that different neuronal subpopulations are functioning together to control eating behavior. Animals with a drastically reduced microbiome had severe difficulties in mouth opening due to a significantly increased level of glutamate. This could be reversed by adding a full complement of the microbiota. In summary, we provide a mechanistic explanation of how Hydra's nervous system controls eating behavior and what role microbes play in this.


Subject(s)
Hydra , Microbiota , Animals , Hydra/physiology , Nervous System , Feeding Behavior
17.
Anim Cogn ; 26(6): 1799-1816, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37540280

ABSTRACT

The small freshwater cnidarian Hydra has been the subject of scientific inquiry for over 300 years due to its remarkable regenerative capacities and apparent immortality. More recently, Hydra has been recognized as an excellent model system within neuroscience because of its small size, transparency, and simple nervous system, which allow high-resolution imaging of its entire nerve net while behaving. In less than a decade, studies of Hydra's nervous system have yielded insights into the activity of neural circuits in vivo unobtainable in most other animals. In addition to these unique attributes, there is yet another lesser-known feature of Hydra that makes it even more intriguing: it does not require its neural hardware to live. The extraordinary ability to survive the removal and replacement of its entire nervous system makes Hydra uniquely suited to address the question of what neurons add to an extant organism. Here, I will review what early work on nerve-free Hydra reveals about the potential role of the nervous system in these animals and point towards future directions for this work.


Subject(s)
Hydra , Animals , Hydra/physiology , Nervous System , Neurons
18.
Dev Comp Immunol ; 149: 104904, 2023 12.
Article in English | MEDLINE | ID: mdl-37543221

ABSTRACT

Pyroptosis, an inflammatory form of programmed cell death, is directly executed by gasdermin (GSDM) depending on its N-terminal pore-forming fragment-mediated membrane-disrupting, triggering intracellular contents release, which plays important roles in mammalian anti-infection and anti-tumor immune responses. However, whether pyroptosis engages in the regulation of tissue regeneration remains largely unknown. Here, utilizing Hydra vulgaris as the research model, we found that an HyCARD2-HyGSDME-mediated pyroptosis signalling is activated in both head and foot regenerated tips after amputation. Impeding pyroptosis by knocking down the expression of either HyGSDME or HyCARD2 significantly hampered both head and foot regeneration in Hydra. Mechanistically, the activation of HyCARD2-HyGSDME axis at wound sites is dependent of intracellular mitochondrial reactive oxygen species (mtROS), the removing of which hindered Hydra head regeneration. Moreover, the HyCARD2-HyGSDME axis-gated pyroptosis was found to enhance the initial secretion and upregulated expression of Wnt3. Collectively, these findings indicate that gasdermin-gated pyroptosis is critical for the evoking of Wnt signalling to facilitate Hydra tissue regeneration, which provides insights into functional diversification within the gasdermin family in the animal kingdom.


Subject(s)
Hydra , Pyroptosis , Animals , Hydra/metabolism , Gasdermins , Apoptosis , Wnt Signaling Pathway , Inflammasomes/metabolism , Mammals
19.
Elife ; 122023 07 03.
Article in English | MEDLINE | ID: mdl-37399060

ABSTRACT

The freshwater polyp Hydra is a popular biological model system; however, we still do not understand one of its most salient behaviors, the generation of spontaneous body wall contractions. Here, by applying experimental fluid dynamics analysis and mathematical modeling, we provide functional evidence that spontaneous contractions of body walls enhance the transport of chemical compounds from and to the tissue surface where symbiotic bacteria reside. Experimentally, a reduction in the frequency of spontaneous body wall contractions is associated with a changed composition of the colonizing microbiota. Together, our findings suggest that spontaneous body wall contractions create an important fluid transport mechanism that (1) may shape and stabilize specific host-microbe associations and (2) create fluid microhabitats that may modulate the spatial distribution of the colonizing microbes. This mechanism may be more broadly applicable to animal-microbe interactions since research has shown that rhythmic spontaneous contractions in the gastrointestinal tracts are essential for maintaining normal microbiota.


Subject(s)
Hydra , Microbiota , Animals , Bacteria , Symbiosis , Microbial Interactions
20.
STAR Protoc ; 4(3): 102453, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37515760

ABSTRACT

The introduction of calcium imaging has rendered cnidarians, such as Hydra vulgaris, valuable model organisms for investigating neuronal activity and behavior. Here, we present a comprehensive protocol to image and manipulate neuronal activity and behavior of Hydra. We describe steps for wide-field imaging and two-photon simulation and ablation of neurons. We then detail imaging behavior and post-ablation analysis. We address challenges that may arise during the preparation and execution of the experiments.


Subject(s)
Hydra , Animals , Hydra/physiology , Calcium , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...