Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
Proc Natl Acad Sci U S A ; 119(29): e2203257119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858299

ABSTRACT

How did cells of early metazoan organisms first organize themselves to form a body axis? The canonical Wnt pathway has been shown to be sufficient for induction of axis in Cnidaria, a sister group to Bilateria, and is important in bilaterian axis formation. Here, we provide experimental evidence that in cnidarian Hydra the Hippo pathway regulates the formation of a new axis during budding upstream of the Wnt pathway. The transcriptional target of the Hippo pathway, the transcriptional coactivator YAP, inhibits the initiation of budding in Hydra and is regulated by Hydra LATS. In addition, we show functions of the Hippo pathway in regulation of actin organization and cell proliferation in Hydra. We hypothesize that the Hippo pathway served as a link between continuous cell division, cell density, and axis formation early in metazoan evolution.


Subject(s)
Hippo Signaling Pathway , Hydra , Morphogenesis , Animals , Body Patterning , Hydra/genetics , Hydra/growth & development , Hydra/metabolism , Morphogenesis/genetics , Transcription, Genetic , YAP-Signaling Proteins/metabolism
2.
Elife ; 102021 03 29.
Article in English | MEDLINE | ID: mdl-33779545

ABSTRACT

During whole-body regeneration, a bisection injury can trigger two different types of regeneration. To understand the transcriptional regulation underlying this adaptive response, we characterized transcript abundance and chromatin accessibility during oral and aboral regeneration in the cnidarian Hydra vulgaris. We found that the initial response to amputation at both wound sites is identical and includes widespread apoptosis and the activation of the oral-specifying Wnt signaling pathway. By 8 hr post amputation, Wnt signaling became restricted to oral regeneration. Wnt pathway genes were also upregulated in puncture wounds, and these wounds induced the formation of ectopic oral structures if pre-existing organizers were simultaneously amputated. Our work suggests that oral patterning is activated as part of a generic injury response in Hydra, and that alternative injury outcomes are dependent on signals from the surrounding tissue. Furthermore, Wnt signaling is likely part of a conserved wound response predating the split of cnidarians and bilaterians.


Subject(s)
Body Patterning/genetics , Hydra/physiology , Regeneration/genetics , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , Animals , Apoptosis , Gene Expression Regulation , Hydra/genetics , Hydra/growth & development , Up-Regulation
3.
Cell Mol Life Sci ; 78(4): 1275-1304, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33034696

ABSTRACT

Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.


Subject(s)
Aging/genetics , Biological Evolution , Longevity/genetics , Mammals/genetics , Animals , Caulobacter crescentus/genetics , Caulobacter crescentus/growth & development , Elephants/genetics , Elephants/growth & development , Escherichia coli/genetics , Escherichia coli/growth & development , Fibroblasts/metabolism , Humans , Hydra/genetics , Hydra/growth & development , Mammals/growth & development , Mice , Mole Rats/genetics , Mole Rats/growth & development , Turtles/genetics , Turtles/growth & development
4.
Epigenetics Chromatin ; 13(1): 43, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046126

ABSTRACT

BACKGROUND: Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. RESULTS: To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. CONCLUSIONS: The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.


Subject(s)
Enhancer Elements, Genetic , Epigenome , Gene Expression Regulation, Developmental , Histone Code , Hydra/genetics , Animals , Epigenesis, Genetic , Hydra/growth & development , Organogenesis , Wnt Signaling Pathway
5.
Curr Biol ; 30(19): 3713-3723.e3, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32795440

ABSTRACT

Hydra vulgaris exhibits a remarkable capacity to reassemble its body plan from a disordered aggregate of cells. Reassembly begins by sorting two epithelial cell types, endoderm and ectoderm, into inner and outer layers, respectively. The cellular features and behaviors that distinguish ectodermal and endodermal lineages to drive sorting have not been fully elucidated. To dissect this process, we use micromanipulation to position single cells of diverse lineages on the surface of defined multicellular aggregates and monitor sorting outcomes by live imaging. Although sorting has previously been attributed to intrinsic differences between the epithelial lineages, we find that single cells of all lineages sort to the interior of ectodermal aggregates, including single ectodermal cells. This reveals that cells of the same lineage can adopt opposing positions when sorting as individuals or a collective. Ectodermal cell collectives adopt their position at the aggregate exterior by rapidly reforming an epithelium that engulfs cells adhered to its surface through a collective spreading behavior. In contrast, aggregated endodermal cells persistently lose epithelial features. These non-epithelialized aggregates, like isolated cells of all lineages, are adherent passengers for engulfment by the ectodermal epithelium. We find that collective spreading of the ectoderm and persistent de-epithelialization in the endoderm also arise during local wounding in Hydra, suggesting that Hydra's wound-healing and self-organization capabilities may employ similar mechanisms. Together, our data suggest that differing propensities for epithelialization can sort cell types into distinct compartments to build and restore complex tissue architecture.


Subject(s)
Cell Movement/physiology , Hydra/metabolism , Regeneration/physiology , Animals , Cell Adhesion/physiology , Cell Differentiation/physiology , Ectoderm/cytology , Ectoderm/metabolism , Endoderm/cytology , Endoderm/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelium/metabolism , Hydra/growth & development
6.
RNA ; 26(5): 550-563, 2020 05.
Article in English | MEDLINE | ID: mdl-32075940

ABSTRACT

Transposable elements (TEs) can damage genomes, thus organisms use a variety of mechanisms to repress TE expression. The PIWI-piRNA pathway is a small RNA pathway that represses TE expression in the germline of animals. Here we explore the function of the pathway in the somatic stem cells of Hydra, a long-lived freshwater cnidarian. Hydra have three stem cell populations, all of which express PIWI proteins; endodermal and ectodermal epithelial stem cells (ESCs) are somatic, whereas the interstitial stem cells have germline competence. To study somatic function of the pathway, we isolated piRNAs from Hydra that lack the interstitial lineage and found that these somatic piRNAs map predominantly to TE transcripts and display the conserved sequence signatures typical of germline piRNAs. Three lines of evidence suggest that the PIWI-piRNA pathway represses TEs in Hydra ESCs. First, epithelial knockdown of the Hydra piwi gene hywi resulted in up-regulation of TE expression. Second, degradome sequencing revealed evidence of PIWI-mediated cleavage of TE RNAs in epithelial cells using the ping-pong mechanism. Finally, we demonstrated a direct association between Hywi protein and TE transcripts in epithelial cells using RNA immunoprecipitation. Altogether, our data reveal that the PIWI-piRNA pathway represses TE expression in the somatic cell lineages of Hydra, which we propose contributes to the extreme longevity of the organism. Furthermore, our results, in combination with others, suggest that somatic TE repression is an ancestral function of the PIWI-piRNA pathway.


Subject(s)
Cell Lineage/genetics , DNA Transposable Elements/genetics , Hydra/genetics , RNA, Small Interfering/genetics , Animals , Argonaute Proteins/genetics , Ectoderm/growth & development , Ectoderm/metabolism , Endoderm/growth & development , Endoderm/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Silencing , Hydra/growth & development , RNA Interference , Stem Cells/cytology
7.
Dev Biol ; 458(2): 200-214, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31738910

ABSTRACT

Much of boundary formation during development remains to be understood, despite being a defining feature of many animal taxa. Axial patterning of Hydra, a member of the ancient phylum Cnidaria which diverged prior to the bilaterian radiation, involves a steady-state of production and loss of tissue, and is dependent on an organizer located in the upper part of the head. We show that the sharp boundary separating tissue in the body column from head and foot tissue depends on histone acetylation. Histone deacetylation disrupts the boundary by affecting numerous developmental genes including Wnt components and prevents stem cells from entering the position dependent differentiation program. Overall, our results suggest that reversible histone acetylation is an ancient regulatory mechanism for partitioning the body axis into domains with specific identity, which was present in the common ancestor of cnidarians and bilaterians, at least 600 million years ago.


Subject(s)
Body Patterning/physiology , Hydra/growth & development , Hydra/metabolism , Acetylation , Animals , Cell Differentiation , Cnidaria/metabolism , Head/growth & development , Histones/genetics , Hydra/genetics , Regeneration , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism
8.
Biophys J ; 117(8): 1514-1523, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31570230

ABSTRACT

Morphogenesis involves the dynamic interplay of biochemical, mechanical, and electrical processes. Here, we ask to what extent can the course of morphogenesis be modulated and controlled by an external electric field? We show that at a critical amplitude, an external electric field can halt morphogenesis in Hydra regeneration. Moreover, above this critical amplitude, the electric field can lead to reversal dynamics: a fully developed Hydra folds back into its incipient spheroid morphology. The potential to renew morphogenesis is reexposed when the field is reduced back to amplitudes below criticality. These dynamics are accompanied by modulations of the Wnt3 activity, a central component of the head organizer in Hydra. The controlled backward-forward cycle of morphogenesis can be repeated several times, showing that the reversal trajectory maintains the integrity of the tissue and its regeneration capability. Each cycle of morphogenesis leads to a newly emerged body plan in the redeveloped folded tissue, which is not necessarily similar to the one before the reversal process. Reversal of morphogenesis is shown to be triggered by enhanced electrical excitations in the Hydra tissue, leading to intensified calcium activity. Folding back of the body-plan morphology together with the decay of a central biosignaling system, indicate that electrical processes are tightly integrated with biochemical and mechanical-structural processes in morphogenesis and play an instructive role to a level that can direct developmental trajectories. Reversal of morphogenesis by external fields calls for extending its framework beyond program-like, forward-driven, hierarchical processes based on reaction diffusion and positional information.


Subject(s)
Electricity , Hydra/growth & development , Morphogenesis , Animals , Calcium/metabolism , Hydra/metabolism , Wnt3 Protein/metabolism
9.
Essays Biochem ; 63(3): 407-416, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31462530

ABSTRACT

Cnidarians, members of an early-branching metazoan phylum, possess an extracellular matrix (ECM) between their two epithelial cell layers, called the mesoglea. The cnidarian ECM, which is best studied in Hydra, contains matrix components reflective of both interstitial matrix and basement membrane. The identification of core matrisome components in cnidarian genomes has led to the notion that the basic composition of vertebrate ECM is of highly conserved nature and can be traced back to pre-bilaterians. While in vertebrate classes ECM factors have often diverged and acquired specialized functions in the context of organ development, cnidarians with their simple body plan retained direct links between ECM and morphogenesis. Recent advances in genetic manipulation techniques have provided tools for systematically studying cnidarian ECM function in body axis patterning and regeneration.


Subject(s)
Body Patterning/physiology , Extracellular Matrix/metabolism , Hydra/growth & development , Hydra/metabolism , Animals , Extracellular Matrix Proteins/metabolism , Head/physiology , Regeneration/physiology
10.
Nat Commun ; 10(1): 3257, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332174

ABSTRACT

How multicellular organisms assess and control their size is a fundamental question in biology, yet the molecular and genetic mechanisms that control organ or organism size remain largely unsolved. The freshwater polyp Hydra demonstrates a high capacity to adapt its body size to different temperatures. Here we identify the molecular mechanisms controlling this phenotypic plasticity and show that temperature-induced cell number changes are controlled by Wnt- and TGF-ß signaling. Further we show that insulin-like peptide receptor (INSR) and forkhead box protein O (FoxO) are important genetic drivers of size determination controlling the same developmental regulators. Thus, environmental and genetic factors directly affect developmental mechanisms in which cell number is the strongest determinant of body size. These findings identify the basic mechanisms as to how size is regulated on an organismic level and how phenotypic plasticity is integrated into conserved developmental pathways in an evolutionary informative model organism.


Subject(s)
Body Size/physiology , Hydra/metabolism , Receptor, Insulin/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway/physiology , Animals , Body Size/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hydra/genetics , Hydra/growth & development , Insulin/metabolism , Receptor, Insulin/genetics , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/genetics , Temperature , Transforming Growth Factor beta/genetics , Wnt Signaling Pathway/genetics
11.
Science ; 365(6451)2019 07 26.
Article in English | MEDLINE | ID: mdl-31346039

ABSTRACT

The adult Hydra polyp continually renews all of its cells using three separate stem cell populations, but the genetic pathways enabling this homeostatic tissue maintenance are not well understood. We sequenced 24,985 Hydra single-cell transcriptomes and identified the molecular signatures of a broad spectrum of cell states, from stem cells to terminally differentiated cells. We constructed differentiation trajectories for each cell lineage and identified gene modules and putative regulators expressed along these trajectories, thus creating a comprehensive molecular map of all developmental lineages in the adult animal. In addition, we built a gene expression map of the Hydra nervous system. Our work constitutes a resource for addressing questions regarding the evolution of metazoan developmental processes and nervous system function.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Hydra/growth & development , Hydra/genetics , Stem Cells/cytology , Animals , Hydra/cytology , Single-Cell Analysis , Transcriptome
12.
FEBS J ; 286(12): 2295-2310, 2019 06.
Article in English | MEDLINE | ID: mdl-30869835

ABSTRACT

The c-Myc protein is a transcription factor with oncogenic potential controlling fundamental cellular processes. Homologs of the human c-myc protooncogene have been identified in the early diploblastic cnidarian Hydra (myc1, myc2). The ancestral Myc1 and Myc2 proteins display the principal design and biochemical properties of their vertebrate derivatives, suggesting that important Myc functions arose very early in metazoan evolution. c-Myc is part of a transcription factor network regulated by several upstream pathways implicated in oncogenesis and development. One of these signaling cascades is the Wnt/ß-Catenin pathway driving cell differentiation and developmental patterning, but also tumorigenic processes including aberrant transcriptional activation of c-myc in several human cancers. Here, we show that genetic or pharmacological stimulation of Wnt/ß-Catenin signaling in Hydra is accompanied by specific downregulation of myc1 at mRNA and protein levels. The myc1 and myc2 promoter regions contain consensus binding sites for the transcription factor Tcf, and Hydra Tcf binds to the regulatory regions of both promoters. The myc1 promoter is also specifically repressed in the presence of ectopic Hydra ß-Catenin/Tcf in avian cell culture. We propose that Hydra myc1 is a negative Wnt signaling target, in contrast to vertebrate c-myc, which is one of the best studied genes activated by this pathway. On the contrary, myc2 is not suppressed by ectopic ß-Catenin in Hydra and presumably represents the structural and functional c-myc ortholog. Our data implicate that the connection between ß-Catenin-mediated signaling and myc1 and myc2 gene regulation is an ancestral metazoan feature. Its impact on decision making in Hydra interstitial stem cells is discussed.


Subject(s)
Hydra/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics , Transcriptional Activation/genetics , Animals , Body Patterning/genetics , Gene Expression Regulation/genetics , Hydra/growth & development , Wnt Signaling Pathway/genetics , beta Catenin/genetics
13.
Nat Commun ; 10(1): 312, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659200

ABSTRACT

Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when ß-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/ß-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via ß-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/ß-catenin signaling, a function conserved across eumetazoan evolution.


Subject(s)
Hydra/genetics , Intercellular Signaling Peptides and Proteins/genetics , Wnt3 Protein/genetics , beta Catenin/genetics , Animals , Biological Evolution , Body Patterning/genetics , Gene Expression Regulation, Developmental , Head/growth & development , Head/physiology , Hydra/growth & development , Intercellular Signaling Peptides and Proteins/metabolism , Planarians/genetics , RNA Interference , Regeneration/physiology , Signal Transduction , Wnt3 Protein/metabolism , Zebrafish/embryology , Zebrafish/genetics , beta Catenin/metabolism
14.
J Genet ; 97(4): 911-924, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30262703

ABSTRACT

Our previous study based on the transcriptome profiling indicated that a fragment of α-crystallin type heat shock protein (α-Hsp) gene was one of the numerous cDNA sequences expressed differentially at various stages of head regeneration in Hydra vulgaris. To further investigate the role that which α-Hsp plays during hydra regeneration, a full-length cDNA of α-Hsp gene of H. vulgaris was isolated by the rapid amplification of cDNA ends (RACE) technique. The full-length cDNA of α-Hsp gene was 1156 bp, containing a 765 bp open-reading frame (ORF), which encodes a polypeptide of 254 amino acid residues with a molecular weight of 29.27 kDa. Further, the ORF was subcloned into the plasmid pET-42a(+), and the recombinant plasmid pET-42a(+)-α- Hsp was transformed to Escherichia coli BL21(DE3), then the fusion protein GST-α-Hsp was expressed mainly in the form of a soluble molecule after induction by isopropyl-ß-d-thiogalactopyranoside. In addition, BALB/Cmice were immunized with the fusion protein to prepare the polyclonal antiserum which was used as the primary antibody for whole-mount immunohistochemical assay. The results from the immunohistochemical assay showed that α-Hsp had expressedmainly at the wound site and nearby area of hydra after decapitation operation, and both quantitative real-time polymerase chain reaction (qPCR) analysis and immunohistochemical assay revealed that the expression level of α-Hsp increased gradually during the early period of hydra regeneration, then reached a peak at 24 h after decapitation operation, while decreased during the late regeneration period. Moreover, it indicated an important role of α-Hsp gene in hydra head regeneration that RNA interference (RNAi)-mediated α-Hsp silencing led to the obvious delay of the regeneration of head structures in H. vulgaris. In conclusion, our results gave the hint that α-Hsp could be related to wound healing and tissue remodelling at early regeneration stages, and may lay the foundation for further studies about the physiological function and role of α-Hsp during hydra regeneration.


Subject(s)
Head/growth & development , Hydra/genetics , Regeneration/genetics , alpha-Crystallins/genetics , Amino Acid Sequence/genetics , Animals , Cloning, Molecular , DNA, Complementary/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Heat-Shock Proteins/genetics , Hydra/growth & development
15.
Elife ; 72018 05 31.
Article in English | MEDLINE | ID: mdl-29848439

ABSTRACT

Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.


Subject(s)
Biological Evolution , Chlorella/metabolism , Hydra/metabolism , Symbiosis , Animals , Chlorella/drug effects , Chlorella/genetics , Conserved Sequence , Darkness , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation , Genome , Hydra/drug effects , Hydra/genetics , Hydra/growth & development , Molecular Sequence Annotation , Nitrates/metabolism , Nitrogen/metabolism , Photosynthesis/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , Species Specificity , Sugars/pharmacology , Symbiosis/drug effects , Symbiosis/genetics
16.
Bioessays ; 40(7): e1700204, 2018 07.
Article in English | MEDLINE | ID: mdl-29869336

ABSTRACT

The convergence of morphogenesis into viable organisms under variable conditions suggests closed-loop dynamics involving multiscale functional feedback. We develop the idea that morphogenesis is based on synergy between mechanical and bio-signaling processes, spanning all levels of organization: molecular, cellular, tissue, up to the whole organism. This synergy provides feedback within and between all levels of organization, to close the loop between the dynamics of the morphogenesis process and its robust functional outcome. Hydra offer a powerful platform to explore this direction, thanks to their simple body plan, extraordinary regeneration capabilities, and the accessibility and flexibility of their tissues. Our recent experiments show that structural inheritance of the actomyosin organization directs body-axis formation during Hydra regeneration. Morphogenesis is then stabilized through dynamic cytoskeletal reorganization induced by the inherited structure. The observed cytoskeletal stability and reorganization capabilities suggest that mechanical feedback integrates with biochemical processes to establish viable patterns and ensure canalization.


Subject(s)
Hydra/growth & development , Mechanical Phenomena , Morphogenesis/genetics , Regeneration/genetics , Animals , Hydra/genetics , Regeneration/physiology
17.
Lipids ; 53(4): 447-456, 2018 04.
Article in English | MEDLINE | ID: mdl-29741213

ABSTRACT

Hydra, as sit-and-wait predators with limited food selectivity, could serve as model organisms for the analysis of the effect of a particular dietary component on growth and reproduction. We investigated the effect of food quality and of diets enriched with palmitic (PAM) or α-linolenic acid (ALA) on the life history traits of two hydra species: Hydra oligactis and Hydra vulgaris. We tested the hypothesis that a diet enriched with polyunsaturated fatty acids (PUFA) can stimulate growth and reproduction in simple metazoans with a sit-and-wait type of predatory strategy. Our results revealed that a diet based on Artemia nauplii, which are not a natural food for freshwater hydra, stimulated growth, asexual reproduction, and survival in hydra. Artemia nauplii were characterized by the highest lipid content of all used food sources. The analysis of the fatty acid content of hydra indicated the domination the n-6 fatty acids over n-3 (eicosapentaenoic acid [EPA], docosahexaenoic acid [DHA], and ALA). Arachidonic acid appeared to be the dominant PUFA in Hydra, irrespective of diet supplementation with palmitic acid or ALA. The dietary supplementation of ALA negatively affected the survival, asexual reproductive rate, and size of clonal offspring of H. oligactis and had no effect on the life history traits of H. vulgaris. Our results also suggest that the hydras are not able to efficiently convert ALA into other essential fatty acids, such as EPA and DHA. To our knowledge, this is the first report about the adverse effects of n-3 fatty acid supplementation in primitive metazoans such as hydra.


Subject(s)
Hydra/drug effects , Hydra/physiology , Palmitic Acid/pharmacology , Reproduction, Asexual/drug effects , alpha-Linolenic Acid/pharmacology , Animals , Hydra/growth & development , Survival Analysis
18.
PLoS One ; 13(3): e0193545, 2018.
Article in English | MEDLINE | ID: mdl-29494699

ABSTRACT

This study aims to contribute to the understanding of the impact of Didymosphenia geminata massive growths upon river ecosystem communities' composition and functioning. This is the first study to jointly consider the taxonomic composition and functional structure of diatom and macroinvertebrate assemblages in order to determine changes in community structure, and the food web alterations associated with this invasive alga. This study was carried out in the Lumbreras River (Ebro Basin, La Rioja, Northern Spain), which has been affected by a considerable massive growth of D. geminata since 2011. The study shows a profound alteration in both the river community composition and in the food web structure at the sites affected by the massive growth, which is primarily due to the alteration of the environmental conditions, thus demonstrating that D. geminata has an important role as an ecosystem engineer in the river. Thick filamentous mats impede the movement of large invertebrates-especially those that move and feed up on it-and favor small, opportunistic, herbivorous organisms, mainly chironomids, that are capable of moving between filaments and are aided by the absence of large trophic competitors and predators -prey release effect-. Only small predators, such as hydra, are capable of surviving in the new environment, as they are favored by the increase in chironomids, a source of food, and by the reduction in both their own predators and other midge predators -mesopredator release-. This change in the top-down control affects the diatom community, since chironomids may feed on large diatoms, increasing the proportion of small diatoms in the substrate. The survival of small and fast-growing pioneer diatoms is also favored by the mesh of filaments, which offers them a new habitat for colonization. Simultaneously, D. geminata causes a significant reduction in the number of diatoms with similar ecological requirements (those attached to the substrate). Overall, D. geminata creates a community dominated by small organisms that is clearly different from the existing communities in the same stream where there is an absence of massive growths.


Subject(s)
Diatoms/growth & development , Invertebrates/growth & development , Rivers/chemistry , Animals , Biodiversity , Food Chain , Hydra/growth & development , Introduced Species , Invertebrates/classification
19.
Environ Pollut ; 234: 487-494, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29216486

ABSTRACT

Microplastic pollution has been a growing concern in the aquatic environment for several years. The abundance of microplastics in the environment has invariably led them to interact with a variety of different aquatic species. The small size of microplastics may make them bioavailable to a great range of species however, the impact this may have is not fully understood. Much of the research on microplastic pollution has focused on the marine environment and species with little research undertaken in freshwater. Here we examine the effect of microplastics on the freshwater cnidarian, Hydra attenuata. This study also describes the development and use of a bioassay to investigate the impact of microplastic on freshwater organisms. Hydra attenuata play a vital role in the planktonic make up of slow moving freshwater bodies which they inhabit and are sensitive environmental indicators. Hydra attenuata were exposed to polyethylene flakes (<400 ìm) extracted from facewash at different concentrations (Control, 0.01, 0.02, 0.04, 0.08 g mL-1). The ecologically relevant endpoint of feeding was measured by determining the amount of prey consumed (Artemia salina) after 30 and 60 min. The amount of microplastics ingested was also recorded at 30 min and 60 min. After which Hydra attenuata were transferred to clean media and observed after 3, 24, 48 & 96 h with changes in their morphology and reproduction (Hydranth numbers) recorded. The results of this study show that Hydra attenuata are capable of ingesting microplastics, with several individuals completely filling their gastric cavities. Significant reductions in feeding rates were observed after 30 min in 0.02 & 0.08 g mL-1 and after 60 min in 0.04 & 0.08 g mL-1 exposures. Exposure to the microplastics caused significant changes to the morphology of Hydra attenuata, however these changes were non-lethal. This study demonstrates that freshwater Hydra attenuata is capable of ingesting microplastics and that microplastic can significantly impact the feeding of freshwater organisms.


Subject(s)
Hydra/drug effects , Hydra/physiology , Plastics/pharmacology , Water Pollutants, Chemical/pharmacology , Animals , Artemia/drug effects , Artemia/physiology , Environmental Monitoring , Feeding Behavior/drug effects , Fresh Water/analysis , Hydra/growth & development , Plastics/analysis , Polyethylene/analysis , Polyethylene/toxicity , Reproduction/drug effects , Water Pollutants, Chemical/analysis
20.
Nat Commun ; 8(1): 698, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28951596

ABSTRACT

Colonization of body epithelial surfaces with a highly specific microbial community is a fundamental feature of all animals, yet the underlying mechanisms by which these communities are selected and maintained are not well understood. Here, we show that sensory and ganglion neurons in the ectodermal epithelium of the model organism hydra (a member of the animal phylum Cnidaria) secrete neuropeptides with antibacterial activity that may shape the microbiome on the body surface. In particular, a specific neuropeptide, which we call NDA-1, contributes to the reduction of Gram-positive bacteria during early development and thus to a spatial distribution of the main colonizer, the Gram-negative Curvibacter sp., along the body axis. Our findings warrant further research to test whether neuropeptides secreted by nerve cells contribute to the spatial structure of microbial communities in other organisms.Certain neuropeptides, in addition to their neuromodulatory functions, display antibacterial activities of unclear significance. Here, the authors show that a secreted neuropeptide modulates the distribution of bacterial communities on the body surface during development of the model organism Hydra.


Subject(s)
Anti-Bacterial Agents/metabolism , Hydra/microbiology , Microbiota , Neurons/metabolism , Neuropeptides/metabolism , Animals , Comamonadaceae , Ectoderm/cytology , Ectoderm/metabolism , Epithelium/metabolism , Gram-Positive Bacteria , Hydra/growth & development , Hydra/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...