Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-34913859

ABSTRACT

This paper describes a novel species isolated in 2011 and 2012 from nursery-grown Hydrangea arborescens cultivars in Flanders, Belgium. After 4 days at 28 °C, the strains yielded yellow, round, convex and mucoid colonies. Pathogenicity of the strains was confirmed on its isolation host, as well as on Hydrangea quercifolia. Analysis using MALDI-TOF MS identified the Hydrangea strains as belonging to the genus Xanthomonas but excluded them from the species Xanthomonas hortorum. A phylogenetic tree based on gyrB confirmed the close relation to X. hortorum. Three fatty acids were dominant in the Hydrangea isolates: anteiso-C15 : 0, iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). Unlike X. hortorum pathovars, the Hydrangea strains were unable to grow in the presence of lithium chloride and could only weakly utilize d-fructose-6-PO4 and glucuronamide. Phylogenetic characterization based on multilocus sequence analysis and phylogenomic characterization revealed that the strains are close to, yet distinct from, X. hortorum. The genome sequences of the strains had average nucleotide identity values ranging from 94.35-95.19 % and in silico DNA-DNA hybridization values ranging from 55.70 to 59.40 % to genomes of the X. hortorum pathovars. A genomics-based loop-mediated isothermal amplification assay was developed which was specific to the Hydrangea strains for its early detection. A novel species, Xanthomonas hydrangeae sp. nov., is proposed with strain LMG 31884T (=CCOS 1956T) as the type strain.


Subject(s)
Hydrangea , Phylogeny , Xanthomonas , Bacterial Typing Techniques , Base Composition , Belgium , DNA, Bacterial/genetics , Fatty Acids/chemistry , Hydrangea/microbiology , Nucleic Acid Hybridization , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Xanthomonas/cytology , Xanthomonas/isolation & purification
2.
Mol Biol Rep ; 40(7): 4173-80, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23644981

ABSTRACT

Nursery growing as well as common landscape hydrangeas are all susceptible to leaf spot fungus Cercospora hydrangeae. Warm and rainy weather causes the fungal spores to germinate quickly and spread over the plant leaves forming small purple or brown spots. Although Hydrangea plants are not killed by leaf spot, it detracts from the value of plants through the reduction of flowering and plant vigor. The aim of our study was to isolate, characterize and investigate the expression profile of Hydrangea macrophylla resistance (R) gene transcripts under C. hydrangeae fungus infection and examine their evolutionary relationships by phylogenetic analysis. R-genes are thought to be one of the components of the genetic resistance in plants and most of them encode nucleotide binding site-leucine rich repeat (NBS-LRR) proteins. A cDNA-NBS strategy was carried out using as template cDNAs isolated from control and infected plant leaves. The cDNA-NBS profiling gave an excellent bands reproducibility. Twenty new transcripts corresponding to NBS-LRR proteins were identified only in infected plants. The extent of positivity between the aminoacid sequences at NBS region varied from 45 to 90 %, which indicates the diversity among the RGAs. The results of this paper will provide a genomic framework for the further isolation of candidate disease resistance NBS-encoding genes in Hortensia, and contribute to the understanding of the evolutionary mode of NBS-encoding genes in Hydrangeaceae crops.


Subject(s)
Ascomycota/physiology , Gene Expression Regulation, Plant , Genes, Plant , Hydrangea/genetics , Hydrangea/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Binding Sites , DNA, Complementary , Hydrangea/classification , Leucine-Rich Repeat Proteins , Molecular Sequence Data , Phylogeny , Proteins/genetics , Proteins/metabolism , Transcription, Genetic
3.
Commun Agric Appl Biol Sci ; 74(3): 729-38, 2009.
Article in English | MEDLINE | ID: mdl-20222557

ABSTRACT

Botrytis cinereo is a common aggressive saprophyte fungus which also invades injured plant tissues, causing Botrytis blight (Grey mould) in many ornamental plants, including potted flowering plants. Several B. cinerea isolates from potted plants (Pelargonium x hortorum, Lantana camara, Lonicera japonica, Hydrangea macrophylla, and Cyclamen persicum) affected by Botrytis blight in the south of Spain were studied and identified by PCR. The isolates showed phenotypic differences between them, as previously reported by the authors. In this work we demonstrate that these isolates show different temperature-dependent growth phenomena, expressed as mycelial growth rates, conidiation (measured as the number of conidia per colony and time of appearance), mass of both aerial and submerged mycelia, and sclerotia production. Growth rates were assessed from differences in colony area and mass of both aerial and submerged mycelium growing in potato dextrose agar culture medium (PDA). Three temperatures were used to measure these variables (6, 16, and 26 degrees C) and to establish the differences among isolates by modelling the effects of temperature on the growth variables. B. cinerea showed a high degree of phenotypic variability and differences in its growth kinetics, depending on temperature and isolate in question. The isolate from P. x hortorum showed the greatest conidiation although this process did not depend on the temperatures assayed. The growth rate of the isolates from P. x hortorum was the highest. The growth rates in all the isolates were determined and the growth kinetics could be fitted to a typical equation of fungi growing on solid culture medium. The isolate from P. x hortorum was the most vigorous, while the least vigorous was the isolate from L. japonica. A relationship between mycelial growth rate, conidiation and aerial mycelium could be established. A temperature of 26 degrees C accelerated sclerotia production, but only in the isolate from C. persicum. Such phenotypical variability and differences in growth rates may result in a differential response in plant-pathogen interactions when isolates attack hosts at different temperatures, meaning that a variety of plant protection strategies should be considered when B. cinerea attacks these potted plants.


Subject(s)
Botrytis/growth & development , Plants/microbiology , Botrytis/cytology , Botrytis/isolation & purification , Cyclamen/microbiology , Hydrangea/microbiology , Kinetics , Mycelium/growth & development , Pelargonium/microbiology , Spain , Temperature , Thermodynamics
4.
Phytopathology ; 98(7): 769-75, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18943252

ABSTRACT

A Japanese hydrangea phyllody (JHP) disease found throughout Japan causes economic damage to the horticultural industry. JHP phytoplasma-infected Japanese hydrangea plants show several disease symptoms involved in floral malformations, such as virescence, phyllody and proliferation. Here, we cloned and characterized the antigenic membrane protein (Amp) gene homolog from the JHP phytoplasma (JHP-amp), expressed the JHP-Amp protein in Escherichia coli cells, and then obtained an antibody against JHP-Amp. The antibody against JHP-Amp had no cross-reactions with the antibody against the Amp protein from a closely related onion yellows phytoplasma. This serologic specificity is probably due to the high diversity of the hydrophilic domains in the Amp proteins. The in situ detection of the JHP-Amp protein revealed that the JHP phytoplasma was localized to the phloem tissues in the malformed flower. This study shows that the JHP-Amp protein is indeed a membrane protein, which is expressed at detectable level in the JHP phytoplasma-infected hydrangea.


Subject(s)
Bacterial Proteins/metabolism , Flowers/microbiology , Hydrangea/microbiology , Membrane Proteins/metabolism , Phytoplasma/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Blotting, Western , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Japan , Membrane Proteins/genetics , Membrane Proteins/immunology , Phloem/microbiology , Phytoplasma/genetics , Plant Diseases/microbiology , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...