Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.411
Filter
1.
Environ Geochem Health ; 46(7): 236, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849629

ABSTRACT

The significant increase in the pollution of heavy metals and organic pollutants, their stable nature, and their high toxicity are gradually becoming a global crisis. In a recent study, a comprehensive assessment of the spatial distribution of heavy metals and total petroleum hydrocarbons (TPHs), as well as an assessment of their ecological risks in the sediments of 32 stations located in commercial and industrial areas (Mainly focusing on petrochemical and power industries, desalination plants and transit Ports) of Hormozgan province (East and West of Jask, Bandar Abbas, Qeshm, and Bandar Lengeh) was performed during 2021-2022. The sediment samples were digested with HNO3, HCl and HF solvents. The concentration of heavy metals was determined with furnace and flame systems of atomic absorption spectrometer. The concentration of heavy metals showed significant spatial changes between stations. The ecological assessment indices between the regions indicated that the stations located in Shahid Bahonar Port, Suru Beach, and Khor gorsouzuan had a higher intensity of pollution than other places and significant risks of pollution, especially in terms of Cr and Ni. The average contamination degree (CD) (14.89), modified contamination degree (MCD) (2.48), pollution load index (PLI) (2.32), and potential ecological risk index (PERI) (100.30) showed the sediments in the area of Shahid Bahonar Port, Suru beach and Khor gorsouzuan, experience significant to high levels of pollution, especially Cr and Ni. Using contamination factor (CF) and Geoaccumulation index (Igeo), Cr was considered the most dangerous metal in the studied areas. Based on the global classification of marine sediment quality for the concentrations of TPHs, the sediments of the studied stations were classified as non-polluted to low pollution. In all regions, indices of the PELq (General toxicity) and CF (Contamination factor) were much lower than 0.1 and 1 respectively, showing the absence of adverse biological effects caused by TPHs in sediments. It is necessary to consider comprehensive and impressive strategies to control and reduce pollution of heavy metals, especially in the areas of Shahid Bahonar Port, Suru Beach, and Khor gorsouzuan, so that the sources of this pollution are required to be identified and managed.


Subject(s)
Geologic Sediments , Hydrocarbons , Metals, Heavy , Petroleum , Water Pollutants, Chemical , Metals, Heavy/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Iran , Risk Assessment , Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Petroleum/analysis , Environmental Monitoring , Petroleum Pollution/analysis
2.
PLoS One ; 19(5): e0302468, 2024.
Article in English | MEDLINE | ID: mdl-38696445

ABSTRACT

In order to further clarify the shale oil accumulation period of the Chang 7 member of the Mesozoic Triassic Yanchang Formation in the Zhijing-Ansai area of the central Ordos Basin, Using fluid inclusion petrography analysis, microscopic temperature measurement, salinity analysis and fluorescence spectrum analysis methods, combined with the burial history-thermal history recovery in the area, the oil and gas accumulation period of the Chang 7 member of the Yanchang Formation in the Zhijing-Ansai area was comprehensively analyzed. Sixteen shale oil reservoir samples of the Mesozoic Triassic Yanchang Formation in seven typical wells in the study area were selected.The results show that the fluid inclusions in the Chang 7 member of Yanchang Formation can be divided into two stages. The first stage inclusions mainly develop liquid hydrocarbon inclusions and a large number of associated brine inclusions, which are mainly beaded in fracture-filled quartz and fracture-filled calcite. The fluorescence color is blue and blue-green, and the homogenization temperature of the associated brine inclusions is between 90-110°C. The second stage inclusions are mainly gas-liquid two-phase hydrocarbon inclusions, gas inclusions and asphalt inclusions. Most of them are distributed in the fracture-filled quartz, and the temperature of the associated brine inclusions is between 120-130°C. Fluid inclusions in Chang 7 member of the Yanchang Formation can be divided into two stages. The CO2 inclusions and high temperature inclusions in the Chang 7 member of the Yanchang Formation are mainly derived from deep volcanic activity in the crust.


Subject(s)
Oil and Gas Fields , China , Geologic Sediments/analysis , Temperature , Petroleum/analysis , Hydrocarbons/analysis
3.
J Chromatogr A ; 1726: 464946, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38744185

ABSTRACT

On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak.


Subject(s)
Hydrocarbons , Mineral Oil , Chromatography, High Pressure Liquid/methods , Chromatography, Gas/methods , Mineral Oil/chemistry , Mineral Oil/analysis , Hydrocarbons/analysis , Nitrogen/analysis , Helium/chemistry , Hydrogen/chemistry , Flame Ionization/methods , Gases/chemistry
5.
PLoS One ; 19(5): e0300679, 2024.
Article in English | MEDLINE | ID: mdl-38820536

ABSTRACT

Road crack detection is one of the important parts of road safety detection. Aiming at the problems such as weak segmentation effect of basic U-Net on pavement crack, insufficient precision of crack contour segmentation, difficult to identify narrow crack and low segmentation accuracy, this paper proposes an improved U-net network pavement crack segmentation method. VGG16 and Up_Conv (Upsampling Convolution) modules are introduced as backbone network and feature enhancement network respectively, and the more abstract features in the image are extracted by using the Block depth separable convolution blocks, and the multi-scale features are captured and enhanced by higher level semantic information to improve the recognition accuracy of narrow cracks in the road surface. The improved network embedded the Ca(Channel Attention) attention mechanism in U-net's jump connection to enhance the crack portion to suppress background noise. At the same time, DG_Conv(Depthwise GSConv Convolution) module and UnetUp(Unet Upsampling) module are added in the decoding part to extract richer features through more convolutional layers in the network, so that the model pays more attention to the detailed part of the crack, so the segmentation accuracy can be improved. In order to verify the model's ability to detect cracks in complex backgrounds, experiments were carried out on CFD and Deepcrack datasets. The experimental results show that compared with the traditional U-net network F1-score and mIoU have increased by 13.6% and 9.9% respectively. Superior to advanced models such as U-net, Segnet and Linknet in accuracy and generalization ability, the improved model provides a new method for asphalt pavement crack detection. The model is more conducive to practical application and ground deployment, and can be applied in road maintenance projects.


Subject(s)
Hydrocarbons , Neural Networks, Computer , Hydrocarbons/analysis , Algorithms , Construction Materials/analysis , Humans
6.
Mar Pollut Bull ; 203: 116196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703624

ABSTRACT

Mangroves is an ecosystem which plays an economical role in Gabon for its watercourses where are used for fishing and marine traffic or as little bin for garbage and waste water disposal. These bad practices destroy that fragile ecosystem, perturbing like this carbon sequestration and biodiversity protection. Hence, the impact of the anthropogenic pollution stress of fishing engine oils so called hydrocarbons pollution on the chemical, microstructure and natural durability of Avicennia. germinans (L.)L. from Ambowé mangrove of the Estuary region of Gabon was studied. The results were compared with samples from Oveng and Mamboumba, two unpolluted sites of Libreville. Dichloromethane and hexane soluble extractives content decreased significantly (p < 0.05) in the polluted heartwoods, 5 ± 0,007 % et 2.11 ± 0,2 %, respectively. Confocal microscopy revealed for the first time the occurrence of rays and vessels opening in the polluted heartwood which could explain the loss of some extractives. That loss of extractives was supported by UV where a dramatic decrease of extractives was observed in the heartwood exposed to pollutants while no changes occurred in lignin. These changes on extractives content and wood microstructures would explain the high mass loss of the polluted heartwood exposed to Trametes versicolor (35.69 ± 6.27 %) and Rhodonia placenta (11.65 ± 6.62 %), these rot fungi provoked only mass losses <10 and 5 %, respectively for the unpolluted heartwoods.


Subject(s)
Avicennia , Estuaries , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Gabon , Hydrocarbons/analysis , Wetlands , Environmental Monitoring , Trees
7.
Waste Manag ; 181: 145-156, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608529

ABSTRACT

Landfill disposal is a major approach of disposing municipal solid waste (MSW) in China. In order to explore the impact of volatile organic compounds (VOCs) generated by landfill on the air quality of regional environment, Jiangcungou landfill in Xi'an and its surrounding area were taken as a research object to analyze the spatial distribution and seasonal variation patterns of non-methane hydrocarbon (NMHC) and VOCs components through seasonal sampling of regional NMHC concentration and VOCs concentration (116 species). CALPUFF model was adopted to analyze the regional dispersion characteristics of NMHC on landfill. In addition, propylene equivalent concentration (PEC) and maximum incremental reactivity (MIR) methods were used to estimate O3 formation potential of the landfill, while fraction aerosol coefficient (FAC) and SOA potential (SOAP) methods were used to estimate SOA formation potential of the landfill. It was indicated that, the component with the highest concentration of VOCs on the working surface and the surrounding area of landfill was p + m-xylene (41.0 µg/m3) and halohydrocarbon (111.2 µg/m3-156.3 µg/m3), respectively. The component with the greatest impact on the surrounding air was acetone, which accounts for 75 %-87 % of the corresponding substance concentration on the landfill. In summer, the surrounding area was affected most by NMHC from landfill, whose emissions contributed 9.5 mg/m3 to the surrounding area. The component making the largest contribution to O3 formation was p + m-xylene (8 %-24 %), while ethylbenzene was the component making the largest contribution to SOA formation (20 %-24 %).


Subject(s)
Air Pollutants , Environmental Monitoring , Refuse Disposal , Solid Waste , Volatile Organic Compounds , Waste Disposal Facilities , Volatile Organic Compounds/analysis , China , Solid Waste/analysis , Air Pollutants/analysis , Refuse Disposal/methods , Seasons , Hydrocarbons/analysis
8.
Chemosphere ; 357: 142057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636920

ABSTRACT

Recent leaks of underground fuel storage tanks in the Pearl Harbor region have led to direct release of un-weathered petroleum hydrocarbons (PHCs) into drinking water sources, which then directly underwent chlorination disinfection treatment. Since the control of disinfection byproducts (DBPs) traditionally focuses natural organic matters (NOM) from source water and little is known about the interactions between free chlorine and un-weathered PHCs, laboratory chlorination experiments in batch reactors were conducted to determine the formation potential of DBPs during chlorination of PHC-contaminated drinking water. Quantitative analysis of regulated DBPs showed that significant quantities of THM4 (average 3,498 µg/L) and HAA5 (average 355.4 µg/L) compounds were formed as the result of chlorination of un-weathered PHCs. Amongst the regulated DBPs, THM4, which were comprised primarily of chloroform and bromodichloromethane, were more abundant than HAA5. Numerous unregulated DBPs and a large diversity of unidentified potentially halogenated organic compounds were also produced, with the most abundant being 1,1-dichloroacetone, 1,2-dibromo-3-chloropropane, chloropicrin, dichloroacetonitrile, and trichloracetonitrile. Together, the results demonstrated the DBP formation potential when PHC-contaminated water undergoes chlorination treatment. Further studies are needed to confirm the regulated DBP production and health risks under field relevant conditions.


Subject(s)
Disinfection , Drinking Water , Halogenation , Hydrocarbons , Petroleum , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Drinking Water/chemistry , Water Purification/methods , Petroleum/analysis , Hydrocarbons/analysis , Disinfectants/analysis , Disinfectants/chemistry , Chlorine/chemistry , Trihalomethanes/analysis , Trihalomethanes/chemistry
9.
Anal Methods ; 16(18): 2938-2947, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38668806

ABSTRACT

The nature and proportions of hydrocarbons in the cuticle of insects are characteristic of the species and age. Chemical analysis of cuticular hydrocarbons allows species discrimination, which is of great interest in the forensic field, where insects play a crucial role in estimating the minimum post-mortem interval. The objective of this work was the differentiation of Diptera order insects through their saturated cuticular hydrocarbon compositions (SCHCs). For this, specimens fixed in 70 : 30 ethanol : water, as recommended by the European Association for Forensic Entomology, were submitted to solid-liquid extraction followed by dispersive liquid-liquid microextraction, providing preconcentration factors up to 76 for the SCHCs. The final organic extract was analysed by gas chromatography coupled with flame ionization detection (GC-FID), and GC coupled with mass spectrometry was applied to confirm the identity of the SCHCs. The analysed samples contained linear alkanes with the number of carbon atoms in the C9-C15 and C18-C36 ranges with concentrations between 0.1 and 125 ng g-1. Chrysomya albiceps (in its larval stage) showed the highest number of analytes detected, with 21 compounds, while Lucilia sericata and Calliphora vicina the lowest, with only 3 alkanes. Non-supervised principal component analysis and supervised orthogonal partial least squares discriminant analysis were performed and an optimal model to differentiate specimens according to their species was obtained. In addition, statistically significant differences were observed in the concentrations of certain SCHCs within the same species depending on the stage of development or the growth pattern of the insect.


Subject(s)
Diptera , Gas Chromatography-Mass Spectrometry , Hydrocarbons , Animals , Hydrocarbons/analysis , Diptera/chemistry , Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Forensic Entomology/methods , Principal Component Analysis , Discriminant Analysis
10.
Sci Total Environ ; 930: 172371, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38631638

ABSTRACT

Oil has been extracted from the Western Amazon since the 1920s, leading to severe environmental contamination due to frequent occurrence oil spills and the dumping of produced water. Local inhabitants, along with environmental and human rights organizations, have reported the adverse effects of oil-related pollution on their livelihoods and the ecosystems they depend on. Here, we study accumulation of oil-related heavy metals in wildlife, and its subsequent incorporation into the trophic chain. We analysed the concentration of 14 heavy metals (Cd, Cr, Hg, As, Ni, V, Ba, Se, Be, Fe, Cu, Zn, Mn, Al) in liver samples from 78 lowland pacas (Cuniculus paca) hunted for subsistence in an oil-polluted area from the northern Peruvian Amazon where oil has been extracted since the 1970s (n = 38), and two control areas, the Yavari-Mirín River basin (n = 20), and the Pucacuro River basin (n = 20). Pacas in the oil-polluted area have significantly higher concentrations of Cd (P < 0.01) and Ba (P < 0.0001) compared to those in control areas, suggesting bioaccumulation of oil-related pollution. Conversely, Se levels were significantly lower in the oil-polluted area (P < 0.0001), likely due to the sequestration of Se by other heavy metals, particularly Cd. Additionally, minor variations in other heavy metals, e.g., Fe and Zn, were observed in pacas from the oil-polluted area, whereas control areas showed higher concentrations of Ni and Cu. Mn and Al levels did not significantly differ between the study areas. These results underscore the impact of oil extraction on the absorption and assimilation of heavy metals in wildlife, point at oil activities as the source of the high and unsafe blood Cd levels reported for the indigenous population of the studied oil extraction area and raise concerns about the long-term health risks from oil extraction posed to local Indigenous People who rely on subsistence hunting.


Subject(s)
Environmental Monitoring , Metals, Heavy , Metals, Heavy/analysis , Peru , Animals , Hydrocarbons/analysis , Petroleum Pollution , Water Pollutants, Chemical/analysis
11.
Ann Work Expo Health ; 68(4): 397-408, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38536905

ABSTRACT

BACKGROUND: This study was conducted as an effort to develop a Korean construction job exposure matrix (KoConJEM) based on 60 occupations recently consolidated by the construction workers mutual aid association for use by the construction industry. METHODS: The probability, intensity, and prevalence of exposure to 26 hazardous agents for 60 consolidated occupations were evaluated as binary (Yes/No) or four categories (1 to 4) by 30 industrial hygiene experts. The score for risk was calculated by multiplying the exposure intensity by the prevalence of exposure. Fleiss' kappa for each hazardous agent and occupation was used to determine agreement among the 30 experts. The JEM was expressed on a heatmap and a web-based dashboard to facilitate comparison of factors affecting exposure according to each occupation and hazardous agent. RESULTS: Awkward posture, heat/cold, heavy lifting, and noise were hazardous agents regarded as exposure is probable by at least one or more experts in all occupations, while exposure to asphalt fumes was considered hazardous in the smallest number of occupations (n = 5). Based on the degree of agreement among experts, more than half of the harmful factors and most occupations showed fair to good results. The highest risk value was 16 for awkward posture for most occupations other than safety officer. CONCLUSIONS: The KoConJEM provides information on the probability, intensity, and prevalence of exposure to harmful factors, including most occupations employing construction workers; therefore, it may be useful in the conduct of epidemiological studies on assessment of health risk for construction workers.


Subject(s)
Construction Industry , Occupational Exposure , Occupations , Humans , Occupational Exposure/statistics & numerical data , Occupational Exposure/analysis , Republic of Korea , Occupations/statistics & numerical data , Hazardous Substances/analysis , Risk Assessment/methods , Posture , Hydrocarbons/analysis , Judgment , Air Pollutants, Occupational/analysis , Occupational Health , Prevalence
12.
Environ Toxicol Chem ; 43(6): 1352-1363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38546229

ABSTRACT

Technical complexity associated with biodegradation testing, particularly for substances of unknown or variable composition, complex reaction products, or biological materials (UVCB), necessitates the advancement of non-testing methods such as quantitative structure-property relationships (QSPRs). Models for describing the biodegradation of petroleum hydrocarbons (HCs) have been previously developed. A critical limitation of available models is their inability to capture the variability in biodegradation rates associated with variable test systems and environmental conditions. Recently, the Hydrocarbon Biodegradation System Integrated Model (HC-BioSIM) was developed to characterize the biodegradation of HCs in aquatic systems with the inclusion of key test system variables. The present study further expands the HC-BioSIM methodology to soil and sediment systems using a database of 2195 half-life (i.e., degradation time [DT]50) entries for HCs in soil and sediment. Relevance and reliability criteria were defined based on similarity to standard testing guidelines for biodegradation testing and applied to all entries in the database. The HC-BioSIM soil and sediment models significantly outperformed the existing biodegradation HC half-life (BioHCWin) and virtual evaluation of chemical properties and toxicities (VEGA) quantitative Mario Negri Institute for Pharmacological Research (IRFMN) models in soil and sediment. Average errors in predicted DT50s were reduced by up to 6.3- and 8.7-fold for soil and sediment, respectively. No significant bias as a function of HC class, carbon number, or test system parameters was observed. Model diagnostics demonstrated low variability in performance and high consistency of parameter usage/importance and rule structure, supporting the generalizability and stability of the models for application to external data sets. The HC-BioSIM provides improved accuracy of Persistence categorization, with correct classification rates of 83.9%, and 90.6% for soil and sediment, respectively, demonstrating a significant improvement over the existing BioHCWin (70.7% and 58.6%) and VEGA (59.5% and 18.5%) models. Environ Toxicol Chem 2024;43:1352-1363. © 2024 Concawe. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Biodegradation, Environmental , Geologic Sediments , Hydrocarbons , Machine Learning , Soil Pollutants , Geologic Sediments/chemistry , Hydrocarbons/metabolism , Hydrocarbons/analysis , Soil Pollutants/analysis , Soil Pollutants/metabolism , Soil/chemistry
13.
Environ Res ; 252(Pt 1): 118724, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38518917

ABSTRACT

The interactive effects between the emerging contaminant antibiotic resistance genes (ARGs) and the traditional pollutant total petroleum hydrocarbons (TPHs) in contaminated soils remain unclear. The synergistic removal of TPHs and ARGs from composted contaminated soil, along with the microbial mechanisms driven by the addition of biogas slurry, have not yet been investigated. This study explored the impact of biogas slurry on the synergistic degradation mechanisms and bacterial community dynamics of ARGs and TPHs in compost derived from contaminated soil. The addition of biogas slurry resulted in a reduction of targeted ARGs and mobile genetic elements (MGEs) by 9.96%-95.70% and 13.32%-97.66%, respectively. Biogas slurry changed the succession of bacterial communities during composting, thereby reducing the transmission risk of ARGs. Pseudomonas, Cellvibrio, and Devosia were identified as core microorganisms in the synergistic degradation of ARGs and TPHs. According to the partial least squares path model, temperature and NO3- indirectly influenced the removal of ARGs and TPHs by directly regulating the abundance and composition of host microbes and MGEs. In summary, the results of this study contribute to the high-value utilization of biogas slurry and provide methodological support for the low-cost remediation of contaminated soils.


Subject(s)
Biofuels , Composting , Hydrocarbons , Petroleum , Soil Microbiology , Soil Pollutants , Wetlands , Petroleum/analysis , Soil Pollutants/analysis , Hydrocarbons/analysis , Drug Resistance, Microbial/genetics , China , Rivers/microbiology , Rivers/chemistry , Soil/chemistry , Genes, Bacterial
14.
J Environ Manage ; 353: 120188, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38308990

ABSTRACT

With the global emphasis on environmental protection and increasingly stringent emission regulations for internal combustion engines, there is an urgent need to overcome the problem of large hydrocarbon (HC) emissions caused by unstable engine cold starts. Synergistic engine pre-treatment (reducing hydrocarbon production) as well as after-treatment devices (adsorbing and oxidizing hydrocarbons) is the fundamental solution to emissions. In this paper, the improvement of hydrocarbon emissions is summarized from two aspects: pre-treatment and after-treatment. The pre-treatment for engine cold start mainly focuses on summarizing the intake control, fuel, and engine timing parameters. The after-treatment mainly focuses on summarizing different types of adsorbents and modifications (mainly including different molecular sieve structures and sizes, preparation conditions, silicon aluminum ratio, ion exchange modification, and heterogeneity, etc.), adsorptive catalysts (mainly including optimization of catalytic performance and structure), and catalytic devices (mainly including coupling with thermal management equipment and HC trap devices). In this paper, a SWOT (strength, weakness, opportunity, and threat) analysis of pre-treatment and after-treatment measures is conducted. Researchers can obtain relevant research results and seek new research directions and approaches for controlling cold start HC emissions.


Subject(s)
Automobiles , Gasoline , Gasoline/analysis , Vehicle Emissions/analysis , Adsorption , Hydrocarbons/analysis
15.
J Contam Hydrol ; 262: 104310, 2024 03.
Article in English | MEDLINE | ID: mdl-38335897

ABSTRACT

The solvent-based sampling method for collecting gas-phase volatile organic compounds (VOCs) and conducting compound-specific isotope analysis (CSIA) was deployed during a controlled field study. The solvent-based method used methanol as a sink to accumulate petroleum hydrocarbons during the sampling of soil air and effluent gas. For each gaseous sample collected, carbon isotope analysis (δ13C) was conducted for a selection of five VOCs (benzene, toluene, o-xylene, cyclopentane and octane) emitted by a synthetic hydrocarbon source emplaced in the subsurface. The δ13C values obtained for gaseous VOCs (collected from soil gas and effluent gas) were compared to measurements obtained for the same VOCs present in the source material (none aqueous phase liquid - NAPL) and dissolved in groundwater to evaluate the reliability of the solvent-based sampling method in providing accurate isotope measurements. Since the NAPL source was composed of only 12 VOCs, potential bias related to the analytical procedure (such as co-elution) were avoided, hence emphasizing on field-related bias. This field evaluation demonstrated the capacity of the solvent-based method to produce precise and accurate δ13C measurements. The isotopic discrepancies between the gaseous and the NAPL values were < 1 ‰ for 39 out of the 41 comparison points, thus deemed not statistically different based on a common isotopic uncertainty error of ±0.5 ‰. Moreover, the current field study is the first field study to report δ13C measurements for up to five gas-phase VOCs obtained from the same sample, which appears to be of interest for VOC fate or forensic studies. The possibility to use several VOC isotopic measurements enabled by the sampling method would contribute to strengthen the connection assessment between gaseous VOCs and the suspected emitting source. Accordingly, the field results presented herein support the application of this sampling methodology to conduct CSIA assessment in the frame of VOC vapor studies.


Subject(s)
Volatile Organic Compounds , Solvents/analysis , Volatile Organic Compounds/analysis , Reproducibility of Results , Carbon Isotopes/analysis , Hydrocarbons/analysis , Gases/analysis , Soil
16.
Environ Sci Pollut Res Int ; 31(15): 22759-22773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409383

ABSTRACT

Petroleum hydrocarbon (PHC) contamination is a widespread and severe environmental issue affecting many countries' resource sectors. PHCs are mixtures of hydrocarbon compounds with varying molar masses that naturally attenuate at different rates. Lighter fractions attenuate first, followed by medium-molar-mass constituents, while larger molecules remain for longer periods. This results in significant regulatory challenges concerning residual hydrocarbons in long-term contaminated soils. This study examined the potential risks associated with residual PHC and its implications for risk-based management of heavily contaminated soils (23,000-26,000 mg PHC/kg). Ecotoxicological properties, such as seedling emergence and growth of two native plant species-small Flinders grass (Iseilema membranaceum) and ruby saltbush (Enchylaena tomentosa)-and earthworm survival tests in PHC-contaminated soils, were assessed. Additionally, the effects of aging on the attenuation of PHC in contaminated soils were evaluated. Toxicity responses of plant growth parameters were determined as no-observed-effect concentrations: 75%-100% for seedling emergence, < 25%-75% for plant shoot height, and 75%-100% for earthworm survival. After 42 weeks of aging, the total PHC levels in weathered soils decreased by 14% to 30% and by 67% in diesel-spiked soil due to natural attenuation. Dehydrogenase enzyme activity in soils increased during the initial aging period. Furthermore, a clear shift of bacterial communities was observed in the soils following aging, including enrichment of PHC-resistant and -utilizing bacteria-for example, Nocardia sp. This study underscores the potential of natural attenuation for eco-friendly and cost-effective soil management, underlining that its success depends on site-specific factors like water content and nutrient availability. Therefore, we recommend detailed soil assessments to evaluate these conditions prior to adopting a risk-based management approach.


Subject(s)
Petroleum , Soil Pollutants , Soil Pollutants/analysis , Hydrocarbons/analysis , Environmental Pollution , Soil , Environmental Monitoring/methods , Petroleum/analysis , Bacteria , Biodegradation, Environmental , Soil Microbiology
17.
J Environ Manage ; 353: 120196, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38290259

ABSTRACT

The introduction of EPS recovered from waste sludge may have an impact on the process of microbial remediation of oil-contaminated seawater. This study investigated the effect of EPS on the self-remediation capacity of diesel-polluted seawater in Jiaozhou Bay. Hydrocarbon attenuation and microbial activity were monitored in seawater collected from five islands after diesel and N, P addition, with and without EPS, incubated under aerobic conditions. Compared to seawater without EPS, degradation of TPH (total petroleum hydrocarbon) doubled and improved degradation of non-volatile (C16-C24) hydrocarbons to some extent in EPS-added seawater. The introduction of EPS led to changes in microbiota richness and diversity, significantly stimulating the growth of Proteobacteria and Firmicutes phyla or Bacillus and Pseudomonas genera. RT-qPCR analysis indicated EPS caused higher increases in cytochrome P450 gene copies than alkB. Prediction of alkane decay genes from 16S rRNA sequencing data revealed that EPS addition obviously promoted genes related to ethanol dehydrogenation function in the microbial community. Additionally, EPS enhanced the enzymatic activities of alkane hydroxylase, ethanol dehydrogenase, phosphatase and lipase, but increased protease and catalase inconspicuously. The above outlook that environmental sustainability of EPS from waste sludge for diesel-contaminated seawater remediation may provide new perspectives for oil spill bioremediation.


Subject(s)
Petroleum , Soil Pollutants , Sewage , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , RNA, Ribosomal, 16S/genetics , Bays , Seawater/chemistry , Seawater/microbiology , Biodegradation, Environmental , Hydrocarbons/analysis , Ethanol/analysis , Petroleum/analysis , Soil Microbiology , Soil Pollutants/analysis
18.
Environ Geochem Health ; 46(1): 22, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169010

ABSTRACT

The levels, spatial distribution, and sources of petroleum hydrocarbons and phthalates were assessed in surface sediment samples from the urban lagoon of Obhur near Jeddah, the largest city on the Red Sea coast of Saudi Arabia. The lagoon was divided into the inner zone, middle zone, and outer zone based on its geomorphological features and developmental activities. n-Alkanes, hopane and sterane biomarkers, and unresolved complex mixture were the major petroleum hydrocarbon compounds of the total extractable organic matter. Phthalates were also measured in the sediment samples. In the three zones, n-alkanes ranged from 89.3 ± 88.5 to 103.2 ± 114.9 ng/g, whereas the hopane and sterane biomarkers varied from 69.4 ± 75.3 to 77.7 ± 69.9 ng/g and 72.5 ± 77.9-89.5 ± 82.2 ng/g, respectively. The UCM concentrations ranged from 821 ± 1119 to 1297 ± 1684 ng/g and phthalates from 37.4 ± 34.5 65 ± 68 ng/g. The primary origins of these anthropogenic hydrocarbons in the lagoon sediments were petroleum products (boat engine discharges, boat washing, lubricants, and wastewater flows) and plasticizers (plastic waste and litter). The proportions of anthropogenic hydrocarbons derived from petroleum products in the sediment's TEOM ranged from 43 ± 33 to 62 ± 15%, while the percentages for plasticizers varied from 2.9 ± 1.2 to 4.0 ± 1.6%. The presence and inputs of these contaminants from petroleum and plastic wastes in the lagoon's sediments will eventually have an impact on its habitats, including the benthic nursery and spawning areas.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum/analysis , Indian Ocean , Saudi Arabia , Plasticizers , Geologic Sediments , Water Pollutants, Chemical/analysis , Hydrocarbons/analysis , Alkanes/analysis , Biomarkers , Pentacyclic Triterpenes , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis
19.
J Chromatogr A ; 1715: 464600, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38176352

ABSTRACT

An automated implementation for a subfractionation of mineral oil aromatic hydrocarbons (MOAH) into a mono-/di-aromatic fraction (MDAF) and a tri-/poly-aromatic fraction (TPAF) is presented, which is highly demanded by the European Food Safety Authority (EFSA) respecting the genotoxic and carcinogenic potential of MOAH. For this, donor-acceptor-complex chromatography (DACC) was used as a selective stationary phase to extend the conventional instrumental setup for the analysis of mineral oil hydrocarbons via on-line coupled liquid chromatography-gas chromatography-flame ionization detection (LC-GC-FID). A set of six new internal standards was introduced for the verification of the MOAH fractionation and a quantification of MDAF and TPAF, respectively. The automated DACC approach was applied to representative petrochemical references as well as to food samples, such as rice and infant formula, generally showing well conformity with results obtained by state-of-the-art analysis using two-dimensional GC (GCxGC). Relative deviations of DACC/LC-GC-FID compared to GCxGC-FID methods regarding the ≥ 3 ring MOAH content ranged between -50 and +6 % (median: -2 %, all samples, only values above limit of quantification). However, crucial deviations mainly result from "border-crossing" substances, e.g., dibenzothiophenes or partially hydrogenated MOAH. These substances can cause overestimations of ≥ 3 ring MOAH fraction during GCxGC analysis due to co-elution, which is mostly avoided using the DACC approach. Furthermore, the DACC approach can help to minimize underestimations of toxicologically relevant ≥ 3 ring MOAH caused by an unavoidable loss of MOAH during epoxidation, since natural olefins, such as terpenes, predominantly elute in MDAF, which was exemplarily shown for an olive oil and a terpene reference. The presented approach can be implemented easily in existing LC-GC-FID setup for an automated and advanced screening of MOAH to lower the need for elaborate GCxGC analysis also in routine environments.


Subject(s)
Hydrocarbons, Aromatic , Mineral Oil , Humans , Mineral Oil/analysis , Food Contamination/analysis , Hydrocarbons, Aromatic/analysis , Chromatography, Gas/methods , Chromatography, Liquid/methods , Hydrocarbons/analysis , Terpenes/analysis
20.
Mar Pollut Bull ; 199: 115990, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176163

ABSTRACT

One year after the emergency diesel fuel spill in Norilsk, hydrocarbon concentrations in bottom sediments of the Norilsk-Pyasina water system decreased. However the average concentrations of hydrocarbons in surface sediments decreased in the same sequence (µg/g) as in 2020: the mouth of the Ambarnaya R. (835, σ = 1788) > Bezymyanny Cr.-the Daldykan R.-the Ambarnaya R. (306, σ = 273) > the Pyasina R. (23, σ = 20) > the Pyasino Lake (12, σ = 8). Concentrations decreased due to degradation of low molecular weight hydrocarbons. The content of polycyclic aromatic hydrocarbons in 2021 also changed in a smaller range (0-1027 ng/g) than in 2020 (0-3865 ng/g). Petroleum origin of polycyclic aromatic hydrocarbons in the sediments of the Ambarnaya R. (including the mouth), Bezymyanny Cr. and the Daldykan R. is confirmed by the dominance of alkylated naphthalene homologues in their composition. Hydrocarbons accumulation in some layers of the sedimentary column is caused not only by the spill of diesel fuel, but also by the organic matter from the surrounding swamps, from wetlands and floodplain lakes, as well as by the burial of the surface layer by the 2021 flood.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Gasoline , Water , Geologic Sediments , Hydrocarbons/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...