Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.824
Filter
1.
PeerJ ; 12: e17541, 2024.
Article in English | MEDLINE | ID: mdl-38832034

ABSTRACT

Introduction: Oxidative and antioxidant pathways play essential roles in the development of alcohol-induced brain injury. The Nrf2 pathway is an endogenous antioxidant response pathway, but there has been little research on the role of Nrf2 in alcohol-related diseases. Thus, we examined the effects of alcohol and an Nrf2 agonist (TBHQ) on astrocyte function, mRNA expression, and metabolite content to further explore the protective mechanisms of Nrf2 agonists in astrocytes following alcohol exposure. Methods: CTX TNA2 astrocytes were cultured with alcohol and TBHQ and then subjected to transcriptome sequencing, LC-MS/MS analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and malondialdehyde (MDA) and superoxide dismutase (SOD) activity assays. Results: Alcohol exposure significantly increased malondialdehyde (MDA) levels while decreasing superoxide dismutase (SOD) levels in astrocytes. Treatment with TBHQ effectively reversed these effects, demonstrating its protective role against oxidative stress induced by alcohol. Transcriptome sequencing and qRT-PCR analysis revealed that TBHQ specifically upregulates genes involved in glutathione metabolism, including a notable increase in the expression of the glutathione S-transferase A5 (GSTA5) gene, which was suppressed by alcohol exposure. Additionally, metabolomic analysis showed that TBHQ regulates key components of ether lipid metabolism in alcohol-exposed astrocytes, with significant reductions in the levels of lysophosphatidylcholine (18:0) (LysoPC (18:0)) and 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, both of which are critical markers in the ether lipid metabolic pathway. Discussion: The findings underscore the role of TBHQ as an Nrf2 agonist in mitigating alcohol-induced oxidative damage in astrocytes by modulating glutathione metabolism and ether lipid metabolism. The regulation of GSTA5 gene expression emerges as a key mechanism through which Nrf2 agonists confer neuroprotection against oxidative stress and lipid oxidation. These insights pave the way for potential therapeutic strategies targeting the Nrf2 pathway to protect astrocytes from alcohol-induced damage.


Subject(s)
Astrocytes , Ethanol , Glutathione , NF-E2-Related Factor 2 , Oxidative Stress , Astrocytes/drug effects , Astrocytes/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Ethanol/pharmacology , Oxidative Stress/drug effects , Glutathione/metabolism , Hydroquinones/pharmacology , Signal Transduction/drug effects , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Malondialdehyde/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Cells, Cultured
2.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734619

ABSTRACT

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Subject(s)
Hydroquinones , Lipidomics , Melanosis , Quality of Life , Humans , Melanosis/drug therapy , Female , Adult , Hydroquinones/therapeutic use , Hydroquinones/administration & dosage , Tranexamic Acid/therapeutic use , Middle Aged , Melanins/metabolism , Male , Lipids/blood , Lipids/analysis , Epidermis/metabolism , Epidermis/drug effects , Epidermis/pathology , Phosphatidylethanolamines/metabolism , Phosphatidylcholines/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Lipid Metabolism/drug effects
3.
Eur Rev Med Pharmacol Sci ; 28(9): 3318-3329, 2024 May.
Article in English | MEDLINE | ID: mdl-38766790

ABSTRACT

OBJECTIVE: This study aimed to investigate the impact of tert-butylhydroquinone (TBHQ), chitosan, and their combination on memory and neurobiochemical parameters in a rat model. The primary objectives were to assess the cognitive effects of TBHQ, explore the cognitive-enhancing properties of chitosan, and evaluate the combined effects of these substances. MATERIALS AND METHODS: A rat model was employed for behavioral tests, biochemical analyses, and histological examinations. Rats were exposed to TBHQ, chitosan, or a combination of both, and cognitive function was assessed through behavioral tests. Biochemical analyses focused on neurobiochemical parameters associated with memory and oxidative stress. Histological examinations were conducted to observe any structural changes in the brain. RESULTS: TBHQ exposure was associated with memory impairments and increased oxidative stress, indicating potential neurotoxic effects. Chitosan supplementation demonstrated cognitive-enhancing effects and showed promise in mitigating the memory impairments and oxidative stress induced by TBHQ. The combination of chitosan and TBHQ presented a potential protective effect on neurological health. CONCLUSIONS: Chitosan supplementation alongside TBHQ may mitigate memory impairments and oxidative stress associated with TBHQ exposure in a rat model. The study provides valuable insights into the cognitive effects of TBHQ and the neuroprotective potential of chitosan, highlighting the need for further research to elucidate molecular pathways and clinical implications. These findings contribute to understanding chitosan's role in safeguarding neurological health in conditions where TBHQ exposure is a concern, warranting further investigations for translational applications in human health.


Subject(s)
Chitosan , Cognitive Dysfunction , Disease Models, Animal , Hydroquinones , Oxidative Stress , Animals , Hydroquinones/pharmacology , Hydroquinones/administration & dosage , Chitosan/pharmacology , Chitosan/chemistry , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Rats , Oxidative Stress/drug effects , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Rats, Sprague-Dawley
4.
Food Chem ; 452: 139548, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728894

ABSTRACT

In this study, an electrochemical sensor based on MoS2 with enhanced electrochemical signals from electrochemically activated carbon cloth (EACC) electrodes and cross-linked o-aminothiophenol functionalized AuNPs (o-ATP@AuNPs) was developed for the detection of the unsaturated vegetable oil antioxidant tert-butylhydroquinone (TBHQ). In this approach, carbon cloth is activated through the implementation of electrochemical methods, thereby effectively increasing its specific surface area. The resulting EACC, serving as an electrode substrate, enables the growth of additional nanomaterials and enhances conductivity. The incorporation of MoS2 effectively augments the sensitivity of the electrochemical sensor. Subsequently, MIP/MoS2/EMCC is formed via electropolymerization, utilizing TBHQ as the template molecule and o-ATP@AuNPs as the functional monomer. The SS bond of o-ATP ensures a strong and stable connection between MoS2 and o-ATP@AuNPs, thereby facilitating the immobilization of MIP. In addition, the high conductivity possessed by o-ATP@AuNPs could effectively improve the sensitivity of the electrochemical sensor. Under the optimal conditions, MIP/MoS2/EMCC could determine TBHQ in the range of 1 × 10-3 µM to 120 µM by differential pulse voltammetry (DPV) with a detection line of 0.72 nM. The proposed MIP/MoS2/EMCC is expected to be applied in the future for the selective and sensitive detection of TBHQ in vegetable oils.


Subject(s)
Electrochemical Techniques , Gold , Hydroquinones , Metal Nanoparticles , Hydroquinones/analysis , Hydroquinones/chemistry , Gold/chemistry , Electrochemical Techniques/instrumentation , Metal Nanoparticles/chemistry , Aniline Compounds/chemistry , Carbon/chemistry , Polymers/chemistry , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Limit of Detection , Electrodes
5.
Colloids Surf B Biointerfaces ; 239: 113962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749167

ABSTRACT

The undesirable and inevitable adhesion of marine organisms on submerged surfaces has seriously affect the environment, economy and society, so emerging and promising strategies for antifouling are required. Here, the novel and environmental strategy of the antibacterial and antialgal materials was proposed for the application of the antifouling coating without releasing harmful substances. The environment-friendly antifouling agent, the capsaicin derivative N-(2,5-dihydroxy-4-acrylamide meth-ylbenzyl)acrylamide (PHABA), was modified to the molecular chain of the polyurethane. The best tensile strength was up to 23.5 MPa of PUP-25% and the elongation at break was 415% of PUP-25%. The excellent wear resistance (300 wear cycles) and chemical solution resistance (H2SO4, NaOH, and NaCl solutions) revealed the applicability of the coating. PHABA would migrate to the surface of the polyurethane coating with time and enhanced the antibacterial and antialgal properties of the coating. PUP-25% prevented more than 90% of bacterial and algal adhesion, indicating the potential application of the antifouling coating.


Subject(s)
Anti-Bacterial Agents , Polyurethanes , Surface Properties , Polyurethanes/chemistry , Polyurethanes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydroquinones/chemistry , Hydroquinones/pharmacology , Microbial Sensitivity Tests , Bacterial Adhesion/drug effects , Biofouling/prevention & control , Acrylamide/chemistry , Acrylamide/pharmacology , Tensile Strength
6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 377-380, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38813631

ABSTRACT

OBJECTIVE: To investigate the effect of nuclear factor E2-related factor 2 (Nrf2) on the cellular tight junction protein Claudin-18 in endotoxin-induced acute lung injury (ALI). METHODS: Eighteen healthy male C57BL/6 mice were divided into control group, endotoxin-induced ALI model group (ALI group) and Nrf2 activator tert-butylhydroquinone (tBHQ) pretreatment group (tBHQ+ALI group) according to random number table method, with 6 mice in each group. Mice endotoxin-induced ALI model was reproduced by intraperitoneal injection of lipopolysaccharide (LPS, 15 mg/kg), and the mice in the control group was injected with an equal amount of phosphate buffer solution (PBS). The mice in the tBHQ+ALI group received three intraperitoneal injections of tBHQ (a total of 50 mg/kg) at an interval of 1 hour before molding. The last injection of tBHQ was accompanied by LPS of 15 mg/kg. The mice in the control group and model group were given equal amounts of PBS, and PBS or LPS was given at the last injection. The mice were sacrificed at 12 hours after LPS injection to take lung tissues. After the lung tissue was stained with hematoxylin-eosin (HE) staining, the pathological changes were observed under light microscopy, and the lung injury score was calculated. The lung wet/dry ratio (W/D) was determined. Nrf2 protein expression in the lung tissue was detected by Western blotting. Positive expression of Claudin-18 in the lung tissue was determined by immunohistochemistry. RESULTS: The lung tissue showed normal structure, without significant pathological change in the control group. Compared with the control group, the alveolar septum widened accompanied by inflammatory cell infiltration, capillary hyperemia and tissue edema in the ALI group, the lung injury score and lung W/D ratio were significantly increased (lung injury score: 6.50±1.05 vs. 1.83±0.75, lung W/D ratio: 3.79±0.22 vs. 3.20±0.14, both P < 0.01), and the Nrf2 protein expression and Claudin-18 positive expression in the lung tissue were significantly lowered [Nrf2 protein (Nrf2/ß-actin): 0.41±0.33 vs. 1.22±0.33, Claudin-18 (A value): 0.28±0.07 vs. 0.44±0.10, both P < 0.05]. After tBHQ pretreatment, the degree of lung histopathological injury was significantly reduced compared with the ALI group, the alveolar space slightly abnormal, inflammatory cell infiltration and tissue edema reduced, the lung injury score and lung W/D ratio were significantly decreased (lung injury score: 3.00±0.89 vs. 6.50±1.05, lung W/D ratio: 3.28±0.19 vs. 3.79±0.22, both P < 0.01), and Nrf2 protein expression and Claudin-18 positive expression in the lung tissue were significantly increased [Nrf2 protein (Nrf2/ß-actin): 1.26±0.09 vs. 0.41±0.33, Claudin-18 (A valure): 0.45±0.04 vs. 0.28±0.07, both P < 0.05]. CONCLUSIONS: Nrf2 alleviated pulmonary edema and improved endotoxin-induced ALI by up-regulating Claudin-18 expression.


Subject(s)
Acute Lung Injury , Claudins , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/chemically induced , Male , NF-E2-Related Factor 2/metabolism , Mice , Claudins/metabolism , Endotoxins/adverse effects , Endotoxins/toxicity , Disease Models, Animal , Lipopolysaccharides/adverse effects , Lipopolysaccharides/toxicity , Lung/metabolism , Lung/pathology , Up-Regulation , Tight Junctions/metabolism , Hydroquinones
7.
Exp Dermatol ; 33(4): e15069, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568090

ABSTRACT

Topicals and chemical peels are the standard of care for management of facial hyperpigmentation. However, traditional therapies have come under recent scrutiny, such as topical hydroquinone (HQ) has some regulatory restrictions, and high concentration trichloroacetic acid (TCA) peel pose a risk in patients with skin of colour. The objective of our research was to identify, investigate and elucidate the mechanism of action of a novel TCA- and HQ-free professional-use chemical peel to manage common types of facial hyperpigmentation. Using computational modelling and in vitro assays on tyrosinase, we identified proprietary multi-acid synergistic technology (MAST). After a single application on human skin explants, MAST peel was found to be more effective than a commercial HQ peel in inhibiting melanin (histochemical imaging and gene expression). All participants completed the case study (N = 9) without any adverse events. After administration of the MAST peel by a dermatologist, the scoring and VISIA photography reported improvements in hyperpigmentation, texture and erythema, which could be linked to underlying pathophysiological changes in skin after peeling, visualized by non-invasive optical biopsy of face. Using reflectance confocal microscopy (VivaScope®) and multiphoton tomography (MPTflex™), we observed reduction in melanin, increase in metabolic activity of keratinocytes, and no signs of inflammatory cells after peeling. Subsequent swabbing of the cheek skin found no microbiota dysbiosis resulting from the chemical peel. The strong efficacy with minimum downtime and no adverse events could be linked to the synergistic action of the ingredients in the novel HQ- and TCA-free professional peel technology.


Subject(s)
Hydroquinones , Hyperpigmentation , Melanins , Humans , Hyperpigmentation/drug therapy , Skin , Computational Biology , Biopsy
8.
Ecotoxicol Environ Saf ; 276: 116295, 2024 May.
Article in English | MEDLINE | ID: mdl-38581908

ABSTRACT

Leukemia caused by environmental chemical pollutants has attracted great attention, the malignant leukemic transformation model of TK6 cells induced by hydroquinone (HQ) has been previously found in our team. However, the type of leukemia corresponding to this malignant transformed cell line model needs further study and interpretation. Furthermore, the molecular mechanism of malignant proliferation of leukemic cells induced by HQ remains unclear. This study is the first to reveal the expression of aberrant genes in leukemic cells of HQ-induced malignant transformation, which may correspond to chronic lymphocytic leukemia (CLL). The expression of Linc01588, a long non-coding RNA (lncRNA), was significantly up-regulated in CLL patients and leukemic cell line model which previously described. After gain-of-function assays and loss-of-function assays, feeble cell viability, severe apoptotic phenotype and the increased secretion of TNF-α were easily observed in malignant leukemic TK6 cells with Linc01588 deletion after HQ intervention. The tumors derived from malignant TK6 cells with Linc01588 deletion inoculated subcutaneously in nude mice were smaller than controls. In CLL and its cell line model, the expression of Linc01588 and miR-9-5p, miR-9-5p and SIRT1 were negative correlation respectively in CLL and cell line model, while the expression of Linc01588 and SIRT1 were positive correlation. The dual-luciferase reporter assay showed that Linc01588 & miR-9-5p, miR-9-5p & SIRT1 could bind directly, respectively. Furthermore, knockdown of miR-9-5p successfully rescued the severe apoptotic phenotype and the increased secretion of TNF-α caused by the Linc01588 deletion, the deletion of Linc01588 in human CLL cell line MEC-2 could also inhibit malignant biological characteristics, and the phenotype caused by the deletion of Linc01588 could also be rescued after overexpression of SIRT1. Moreover, the regulation of SIRT1 expression in HQ19 cells by Linc01588 and miR-9-5 P may be related to the Akt/NF-κB pathway. In brief, Linc01588 deletion inhibits the malignant biological characteristics of HQ-induced leukemic cells via miR-9-5p/SIRT1, and it is a novel and hopeful clue for the clinical targeted therapy of CLL.


Subject(s)
Hydroquinones , Leukemia, Lymphocytic, Chronic, B-Cell , Mice, Nude , MicroRNAs , RNA, Long Noncoding , Sirtuin 1 , Sirtuin 1/genetics , Sirtuin 1/metabolism , MicroRNAs/genetics , Hydroquinones/toxicity , Humans , RNA, Long Noncoding/genetics , Animals , Cell Line, Tumor , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Apoptosis/drug effects , Female , Male , Cell Proliferation/drug effects
9.
Acc Chem Res ; 57(9): 1446-1457, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38603772

ABSTRACT

ConspectusEnzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMNhq) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.


Subject(s)
Oxidoreductases , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Free Radicals/chemistry , Free Radicals/metabolism , Biocatalysis , Flavins/chemistry , Flavins/metabolism , Hydroquinones/chemistry , Hydroquinones/metabolism , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/metabolism , Electron Transport
10.
Redox Biol ; 72: 103142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581860

ABSTRACT

Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.


Subject(s)
Blood Platelets , Hydroquinones , Membrane Potential, Mitochondrial , Mitochondria , Organophosphorus Compounds , Platelet Aggregation Inhibitors , Reactive Oxygen Species , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Hydroquinones/pharmacology , Hydroquinones/chemistry , Blood Platelets/metabolism , Blood Platelets/drug effects , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/chemistry , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Platelet Aggregation/drug effects , Platelet Activation/drug effects , Oxidative Phosphorylation/drug effects
11.
Anal Chem ; 96(19): 7497-7505, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687987

ABSTRACT

Redox potential plays a key role in regulating intracellular signaling pathways, with its quantitative analysis in individual cells benefiting our understanding of the underlying mechanism in the pathophysiological events. Here, a metal organic framework (MOF)-functionalized SERS nanopotentiometer has been developed for the dynamic monitoring of intracellular redox potential. The approach is based on the encapsulation of zirconium-based MOF (Uio-66-F4) on a surface of gold-silver nanorods (Au-Ag NRs) that is modified with the newly synthesized redox-sensitive probe ortho-mercaptohydroquinone (HQ). Thanks to size exclusion of MOF as the chemical protector, the nanopotentiometer can be adapted to long-term use and possess high anti-interference ability toward nonredox species. Combining the superior fingerprint identification of SERS with the electrochemical activity of the quinone/hydroquinone, the nanopotentiometer shows a reversible redox responsivity and can quantify redox potential with a relatively wide range of -250-100 mV. Furthermore, the nanopotentiometer allows for dynamic visualization of intracellular redox potential changes induced by drugs' stimulation in a high-resolution manner. The developed approach would be promising for offering new insights into the correlation between redox potential and tumor proliferation-involved processes such as oxidative stress and hypoxia.


Subject(s)
Gold , Metal-Organic Frameworks , Oxidation-Reduction , Silver , Zirconium , Metal-Organic Frameworks/chemistry , Humans , Gold/chemistry , Silver/chemistry , Zirconium/chemistry , Spectrum Analysis, Raman , Nanotubes/chemistry , Hydroquinones/chemistry , Metal Nanoparticles/chemistry
12.
Exp Neurol ; 377: 114795, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657855

ABSTRACT

Clinical studies have shown that traumatic brain injury (TBI) increases the onset of Parkinson's disease (PD) in later life by >50%. Oxidative stress, endoplasmic reticulum (ER) stress, and inflammation are the major drivers of both TBI and PD pathologies. We presently evaluated if curtailing oxidative stress and ER stress concomitantly using a combination of apocynin and tert-butylhydroquinone and salubrinal during the acute stage after TBI in mice reduces the severity of late-onset PD-like pathology. The effect of multiple low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on post-TBI neurodegeneration was also evaluated. The combo therapy elevated the level of phosphorylation at serine 129 (pS129) of α-Syn in the pericontusional cortex of male mice at 72 h post-TBI. Motor and cognitive deficits induced by TBI lasted at least 3 months and the combo therapy curtailed these deficits in both sexes. At 3 months post-TBI, male mice given combo therapy exhibited significantly lesser α-Syn aggregates in the SN and higher TH+ cells in the SNpc, compared to vehicle control. However, the aggregate number was not significantly different between groups of female mice. Moreover, TBI-induced loss of TH+ cells was negligible in female mice irrespective of treatment. The MPTP treatment aggravated PD-like pathology in male mice but had a negligible effect on the loss of TH+ cells in female mice. Thus, the present study indicates that mitigation of TBI-induced oxidative stress and ER stress at the acute stage could potentially reduce the risk of post-TBI PD-like pathology at least in male mice, plausibly by elevating pS129-α-Syn level.


Subject(s)
Antioxidants , Brain Injuries, Traumatic , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Animals , Male , Mice , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Female , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Phosphorylation/drug effects , Antioxidants/pharmacology , Sex Characteristics , Acetophenones/pharmacology , Acetophenones/therapeutic use , Acetophenones/administration & dosage , Thiourea/analogs & derivatives , Thiourea/pharmacology , Thiourea/therapeutic use , Thiourea/administration & dosage , Serine/metabolism , Hydroquinones/pharmacology , Hydroquinones/administration & dosage , Hydroquinones/therapeutic use , Drug Therapy, Combination , Oxidative Stress/drug effects
13.
Environ Res ; 252(Pt 1): 118860, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582422

ABSTRACT

The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 µM. The achieved sensitivities of 24.62 µA µM-1 cm-2 and 22.10 µA µM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 µM and 0.16 µM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.


Subject(s)
Antimony , Catechols , Electrochemical Techniques , Hydroquinones , Pyrolysis , Hydroquinones/chemistry , Hydroquinones/analysis , Catechols/analysis , Catechols/chemistry , Antimony/chemistry , Antimony/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Sulfides/chemistry
14.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542385

ABSTRACT

Vitiligo is a complex skin disorder that involves oxidative stress and inflammatory responses and currently lacks a definitive cure. Transcutaneous auricular vagus nerve stimulation (taVNS) is a noninvasive method for targeting the auricular branch of the vagus nerve and has gained widespread attention for potential intervention in the autonomic nervous system. Although previous research has suggested that vagus nerve stimulation can potentially inhibit inflammatory responses, its specific role and mechanisms in vitiligo treatment remain unknown. This study aimed to explore the therapeutic effects of taVNS in a mouse model of vitiligo induced by monobenzone. Initially, a quantitative assessment of the treatment effects on vitiligo mice was conducted using a scoring system, revealing that taVNS significantly alleviated symptoms, particularly by reducing the depigmented areas. Subsequent immunohistochemical analysis revealed the impact of taVNS treatment on melanocyte granules, mitigating pigment loss in the skin of monobenzone-induced vitiligo mice. Further analysis indicated that taVNS exerted its therapeutic effects through multiple mechanisms, including the regulation of oxidative stress, enhancement of antioxidant capacity, promotion of tyrosine synthesis, and suppression of inflammatory responses. The conclusions of this study not only emphasize the potential value of taVNS in vitiligo therapy, but also lay a foundation for future research into the mechanisms and clinical applications of taVNS.


Subject(s)
Vagus Nerve Stimulation , Vitiligo , Animals , Mice , Vitiligo/chemically induced , Vitiligo/therapy , Hydroquinones , Vagus Nerve
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124086, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38442618

ABSTRACT

Synthetic antioxidants serve as essential protectors against oxidation and deterioration of edible oils, however, prudent evaluation is necessary regarding potential health risks associated with excessive intake. The direct adsorption of antioxidants onto conventional surface-enhanced Raman scattering (SERS) substrates is challenging due to the presence of phenolic hydroxyl groups in their molecular structures, resulting in weak Raman scattering signals and rendering direct SERS detection difficult. In this study, a diazo derivatization reaction was employed to enhance SERS signals by converting antioxidant molecules into azo derivatives, enabling the amplification of the weak Raman scattering signals through the strong vibrational modes induced by the N = N double bond. The resulting diazo derivatives were characterized using UV-visible absorption and infrared spectroscopy, confirming the occurrence of diazo derivatization of the antioxidants. The proposed method successfully achieved the rapid detection of three commonly used synthetic antioxidants, namely butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and propyl gallate (PG) on interfacial self-assembled gold nanoparticles. Furthermore, rapid predictions of BHA, PG, and TBHQ within the concentration range of 1 × 10-6 to 2 × 10-3 mol/L were achieved by integrating a convolutional neural network model. The predictive range of this model surpassed the traditional quantitative method of manually selecting characteristic peaks, with linear coefficients (R2) of 0.9992, 0.9997, and 0.9997, respectively. The recovery of antioxidants in real soybean oil samples ranged from 73.0 % to 126.4 %. Based on diazo derivatization, the proposed SERS method eliminates the need for complex substrates and enables the analysis and determination of synthetic antioxidants in edible oils within 20 min, providing a convenient analytical approach for quality control in the food industry.


Subject(s)
Deep Learning , Hydroquinones , Metal Nanoparticles , Antioxidants/chemistry , Gold , Butylated Hydroxyanisole/analysis , Butylated Hydroxyanisole/chemistry , Propyl Gallate/analysis , Oils
16.
J Hazard Mater ; 469: 133962, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38452679

ABSTRACT

Tert-butyl hydroquinone (TBHQ) stand as one of the most widely used antioxidants in food and daily chemical products. Rapid and sensitive monitoring of TBHQ holds considerable importance in safeguarding human health due to its potential risks. In this study, we devised an alcogel-based colorimetric sensor enabling the portable and visual detection of TBHQ. The Ce-UiO-66 nanozyme exhibiting remarkable oxidase-like activity, was synthesized and characterized, facilitating the catalysis of TBHQ oxidation to 2-tert-butyl-1,4-benzoquinone (TBBQ). The ensuing chromogenic reaction between TBBQ and ethylenediamine produced a stable and colored product, serving as a reliable indicator for the rapid and specific detection of TBHQ. Building upon this discovery, a portable and low-cost colorimetric sensor was fashioned by integrating the nanozyme into κ-carrageenan alcogel, thereby enabling on-site TBHQ detection via a smartphone-based sensing platform. The colorimetric sensor exhibited a detection limit of 0.8 µg mL-1, demonstrating robust performance across various matrices such as edible oils, cosmetics, and surface water. Recoveries ranged from 84.9 to 95.5%, with the sensor's accuracy further validated through gas chromatography-mass spectrometry. Our study presents an effective approach to rapid and convenient monitoring of TBHQ, exhibiting good extensibility and practicability.


Subject(s)
Colorimetry , Hydroquinones , Humans , Hydroquinones/analysis , Antioxidants
17.
J Hazard Mater ; 468: 133795, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382342

ABSTRACT

Due to the potential environment and health risks of tert-butylhydroquinone (TBHQ), rapid, portable, selective and sensitive quantification of TBHQ in food and the environment are strictly essential. With this in mind, a selective, sensitive and rapid colorimetric TBHQ biosensor was developed using rationally designed copper-crosslinked carbon dot hydrogel nanozyme (BC-CDs@Cu). The BC-CDs@Cu had a high peroxidase-like activity toward the chromogenic reaction of hydrogen peroxide with dopamine via the generation of hydroxyl radicals and electron transfer process. The Michaelis-Menten constants of BC-CDs@Cu for dopamine and hydrogen peroxide were determined to be 0.86 and 0.91 mM. The added TBHQ markedly inhibited the BC-CDs@Cu-catalyzed dopamine oxidation by hydrogen peroxide, ascribing to the highly effective and rapid scavenging of hydroxyl radicals and the suppression of electron transfer. The inhibitory extent was applied for well quantifying TBHQ in the range of 0.5 - 20.0 µM with a detection limit of 70 nM. The proposed biosensor had a negligible response to various interfering substances. Moreover, a smartphone-assisted visual ratiometric biosensor was fabricated, and used to accomplish portable quantification of TBHQ in edible oils and water samples. This work reveals the enormous potential of hydrogel nanozyme, which will open a new situation for the detection of hazardous substances.


Subject(s)
Biosensing Techniques , Copper , Hydroquinones , Copper/pharmacology , Carbon , Hydrogen Peroxide , Hydrogels , Colorimetry , Dopamine , Smartphone , Antioxidants
18.
J Phys Chem A ; 128(8): 1491-1500, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38354404

ABSTRACT

Previously, we found that a Zn(II) complex with the redox-active ligand N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) was able to act as a functional mimic of superoxide dismutase, despite its lack of a redox-active transition metal. As the complex catalyzes the dismutation of superoxide to form O2 and H2O2, the quinol in the ligand is believed to cycle between three oxidation states: quinol, quinoxyl radical, and para-quinone. Although the metal is not the redox partner, it nonetheless is essential to the reactivity since the free ligand by itself is inactive as a catalyst. In the present work, we primarily use calculations to probe the mechanism. The calculations support the inner-sphere decomposition of superoxide, suggest that the quinol/quinoxyl radical couple accounts for most of the catalysis, and elucidate the many roles that proton transfer between the zinc complexes and buffer has in the reactivity. Acid/base reactions involving the nonmetal-coordinating hydroxyl group on the quinol are predicted to be key to lowering the energy of the intermediates. We prepared a Zn(II) complex with N-(2-hydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (Hpp1) that lacks this functional group and found that it could not catalyze the dismutation of superoxide; this confirms the importance of the second, distal hydroxyl group of the quinol.


Subject(s)
Ethylenediamines , Superoxide Dismutase , Zinc , Superoxide Dismutase/metabolism , Hydroquinones , Superoxides , Ligands , Hydrogen Peroxide , Oxidation-Reduction
19.
J Environ Sci (China) ; 141: 330-342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38408832

ABSTRACT

We have found recently that two-step intrinsic hydroxyl radical (·OH)-dependent chemiluminescence (CL) could be produced by carcinogenic tetrahaloquinone and H2O2. However, the first-step CL was too fast to clearly detect the stepwise generation of ·OH and CL, and to distinguish the exact dividing point between the first-step and second-step CL. Here we found that, extremely clear two-step intrinsic CL could be produced by the relative slow reaction of tetrabromohydroquinone (TBHQ) with H2O2, which was directly dependent on the two-step ·OH generation. Interestingly, the second-step, but not the first-step CL production of TBHQ/H2O2 (CRET donor) was markedly enhanced by fluorescein (a typical xanthene dye, CRET acceptor) through a unique chemiluminescence resonance energy transfer (CRET) process. The novel CRET system of TBHQ/H2O2/fluorescein was successfully applied for the sensitive detection of TBHQ with the detection limit as low as 2.5 µmol/L. These findings will help to develop more sensitive and highly efficient CL or CRET systems and specific CL sensor to detect the carcinogenic haloquinones, which may have broad environmental applications.


Subject(s)
Carcinogens , Hydroquinones , Luminescence , Hydrogen Peroxide , Fluoresceins
20.
J Pharm Biomed Anal ; 242: 116021, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38354540

ABSTRACT

Multicomponent drugs are medications that combine two or more active pharmaceutical ingredients in a single dosage form. These dosage forms improve the patient compliance, reduce the risk of drug interactions, and simplify dosing regimens. However, quality control of these multicomponent dosage forms can be challenging, especially if the final product contains four or more ingredients that are active (comprise stabilizers, preservatives, excipients, and other components). This problem can be more pronounced if the excipients can interfere with the analysis. In this work, a stability indicating assay method was developed and validated (according to the ICH International Guidelines) for the simultaneous determination of hydroquinone (HQ), tretinoin (TRT), hydrocortisone (HCA), butylated hydroxytoluene (BHT), methyl paraben (MP) and propyl paraben (PP) in commercially available pharmaceutical creams. The proposed method is based on gradient elution using X-Bridge C18 (150 × 4.6 mm, 5 µm) column with a flow rate of 1 mL/min. The linear ranges (µg/mL) were 240-560 for HQ, 24-56 for MP, 132-308 for HCA, 6-14 for PP, 12-28 for BHT, 6.6-15 for TRT. During the validation process, the intra- and interday precision and trueness (evaluated as recovery) were found to be below 2.0% and between 100-102%, respectively. System suitability tests (SST) allow validating the herein proposed procedure specifically for pharmaceutical and industrial applications. SST test shows that the reported procedure fulfill with the Guidelines, allowing excellent separation of the analytes with very sensitive, accurate (precise and true) and reproducible quantitation of each analytes. The method was successfully applied in forced degradation studies of the six analytes. Specifically, acid degradation slightly affected HCA and BHT (91% recovery), while alkaline degradation drastically reduced HCA recovery (5.5%) and moderately affected BHT (85%). Photodegradation primarily influenced TRT quantity, and oxidative degradation intensified the BHT peak (130%).


Subject(s)
Parabens , Tretinoin , Humans , Parabens/analysis , Tretinoin/analysis , Hydrocortisone/analysis , Butylated Hydroxytoluene , Excipients , Chromatography, High Pressure Liquid/methods , Hydroquinones/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...