Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.413
Filter
1.
Braz J Med Biol Res ; 57: e12874, 2024.
Article in English | MEDLINE | ID: mdl-38775545

ABSTRACT

More attention has been paid to immunotherapy for ovarian cancer and the development of tumor vaccines. We developed a trichostatin A (TSA)-modified tumor vaccine with potent immunomodulating activities that can inhibit the growth of ovarian cancer in rats and stimulate immune cell response in vivo. TSA-treated Nutu-19 cells inactivated by X-ray radiation were used as a tumor vaccine in rat ovarian cancer models. Prophylactic and therapeutic experiments were performed with TSA-modified tumor vaccine in rats. Flow cytometry and ELISpot assays were conducted to assess immune response. Immune cell expression in the spleen and thymus were detected by immunohistochemical staining. GM-CSF, IL-7, IL-17, LIF, LIX, KC, MCP-1, MIP-2, M-CSF, IP-10/CXCL10, MIG/CXCL9, RANTES, IL-4, IFN-γ, and VEGF expressions were detected with Milliplex Map Magnetic Bead Panel immunoassay. TSA vaccination in therapeutic and prophylactic models could effectively stimulate innate immunity and boost the adaptive humoral and cell-mediated immune responses to inhibit the growth and tumorigenesis of ovarian cancer. This vaccine stimulated the thymus into reactivating status and enhanced infiltrating lymphocytes in tumor-bearing rats. The expression of key immunoregulatory factors were upregulated in the vaccine group. The intensities of infiltrating CD4+ and CD8+ T cells and NK cells were significantly increased in the vaccine group compared to the control group (P<0.05). This protection was mainly dependent on the IFN-γ pathway and, to a much lesser extent, by the IL-4 pathway. The tumor cells only irradiated by X-ray as the control group still showed a slight immune effect, indicating that irradiated cells may also cause certain immune antigen exposure, but the efficacy was not as significant as that of the TSA-modified tumor vaccine. Our study revealed the potential application of the TSA-modified tumor vaccine as a novel tumor vaccine against tumor refractoriness and growth. These findings offer a better understanding of the immunomodulatory effects of the vaccine against latent tumorigenesis and progression. This tumor vaccine therapy may increase antigen exposure, synergistically activate the immune system, and ultimately improve remission rates. A vaccine strategy designed to induce effective tumor immune response is being considered for cancer immunotherapy.


Subject(s)
Cancer Vaccines , Hydroxamic Acids , Ovarian Neoplasms , Animals , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/prevention & control , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Rats , Hydroxamic Acids/therapeutic use , Hydroxamic Acids/pharmacology , Flow Cytometry , Cell Line, Tumor , Disease Models, Animal
2.
Org Lett ; 26(20): 4246-4250, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38738629

ABSTRACT

An oxidant-free approach to the synthesis of N-glyoxylyl peptides has been developed that utilizes the Lossen rearrangement of the N-terminal glycyl hydroxamic acid residue. The synthesis proceeds via an intramolecular redox mechanism to yield the glyoxylyl peptides, which are then subjected to various peptide cyclization procedures. The reaction scheme is suitable for oxidation-sensitive moieties including amino acids.


Subject(s)
Hydroxamic Acids , Oxidation-Reduction , Peptides , Hydroxamic Acids/chemistry , Hydroxamic Acids/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Molecular Structure , Cyclization
3.
Bioorg Chem ; 147: 107421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714118

ABSTRACT

Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Homeostasis , Hydroxamic Acids , Iron , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Iron/metabolism , Iron/chemistry , Cell Proliferation/drug effects , Homeostasis/drug effects , Structure-Activity Relationship , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/chemical synthesis , Molecular Structure , Apoptosis/drug effects , Anions/chemistry , Anions/pharmacology , Dose-Response Relationship, Drug , Animals , Cell Line, Tumor , Mice , Quinine/analogs & derivatives
4.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Article in English | MEDLINE | ID: mdl-38693852

ABSTRACT

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Subject(s)
Apoptosis , Histone Deacetylase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors , Urinary Bladder Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , DNA Damage/drug effects , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology
5.
Clin Exp Pharmacol Physiol ; 51(6): e13866, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719209

ABSTRACT

Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Macrophages , Reactive Oxygen Species , Staphylococcus aureus , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects , Mice , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Pneumonia, Staphylococcal/drug therapy , Pneumonia, Staphylococcal/microbiology , Pneumonia, Staphylococcal/metabolism , Indoles/pharmacology , Mice, Inbred C57BL , Phagocytosis/drug effects , Lung/drug effects , Lung/microbiology , Lung/metabolism , Lung/pathology
6.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 231-236, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678601

ABSTRACT

Epidural fibrosis (EF) is a chronic, progressive and severe disease. Histone deacetylase 6 (HDAC6) regulates biological signals and cell activities by deacetylating lysine residues and participates in TGF-ß-induced epithelial-mesenchymal transition (EMT). Nevertheless, the effect and mechanism of HDAC6 in EF remain unclear. To investigate the effect and mechanism of HDAC6 inhibition on repressing epidural fibrosis. HDAC6 expression and α-smooth muscle actin (α-SMA) in normal human tissue and human EF tissue were assessed by quantitative real-time PCR (qRT-PCR) and western blotting. Human fibroblasts were treated with TGF-ß ± HDAC6 inhibitors (Tubastatin) and fibrotic markers including collagen I, collagen III, α-SMA and fibronectin were assessed using western blotting. Then TGFß1 receptor (TGFß1-R), PI3K and Akt were analyzed using qRT-PCR and western blotting. Rats were undergone laminectomy± Tubastatin (intraperitoneally injection; daily for 7 days) and epidural scar extracellular matrix (ECM) expression was gauged using immunoblots. Increasing HDAC6 expression was associated with α-SMA enrichment. Tubastatin remarkably restrained TGF-ß-induced level of collagen and ECM deposition in human fibroblasts, and the discovery was accompanied by decreased PI3K and Akt phosphorylation. Moreover, Tubastatin also inhibited TGF-ß-mediated HIF-1α and VEGF expression. In the epidural fibrosis model, we found that Tubastatin weakened scar hyperplasia and collagen deposition, and effectively inhibited the process of epidural fibrosis. These results indicated that Tubastatin inhibited HDAC6 expression and decreased TGF-ß/ PI3K/ Akt pathway that promotes collagen and ECM deposition and VEGF release, leading reduction of myofibroblast activation. Hence, Tubastatin ameliorated epidural fibrosis development.


Subject(s)
Fibroblasts , Fibrosis , Histone Deacetylase 6 , Hydroxamic Acids , Signal Transduction , Animals , Humans , Male , Rats , Actins/metabolism , Epidural Space/pathology , Epidural Space/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibrosis/drug therapy , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transforming Growth Factor beta/drug effects , Transforming Growth Factor beta/metabolism
7.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673851

ABSTRACT

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


Subject(s)
HMGB1 Protein , Histone Deacetylases , Leukocyte Elastase , Macrophages , Sirtuin 1 , Humans , Acetylation , Cells, Cultured , Cystic Fibrosis/metabolism , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , HMGB1 Protein/metabolism , Hydroxamic Acids , Leukocyte Elastase/metabolism , Macrophages/metabolism , Monocytes/metabolism , Proteolysis , Pulmonary Disease, Chronic Obstructive/metabolism , Sirtuin 1/metabolism
8.
Biochim Biophys Acta Gen Subj ; 1868(6): 130614, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598971

ABSTRACT

BACKGROUND: Deregulation of cell death is a common characteristic of cancer, and resistance to this process often occurs in lung cancer. Understanding the molecular mechanisms underlying an aberrant cell death is important. Recent studies have emphasized the involvement of calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) in lung cancer aggressiveness, its influence on cell death regulation remains largely unexplored. METHODS: CAMSAP3 was knockout in lung cancer cells using CRISPR-Cas9 system. Cell death and autophagy were evaluated using MTT and autophagic detection assays. Protein interactions were performed by proteomic analysis and immunoprecipitation. Protein expressions and their cytoplasmic localization were analyzed through immunoblotting and immunofluorescence techniques. RESULTS: This study reveals a significant correlation between low CAMSAP3 expression and poor overall survival rates in lung cancer patients. Proteomic analysis identified high mobility group box 1 (HMGB1) as a candidate interacting protein involved in the regulation of cell death. Treatment with trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs) resulted in increased HMGB1 acetylation and its translocation to the cytoplasm and secretion, thereby inducing autophagic cell death. However, this process was diminished in CAMSAP3 knockout lung cancer cells. Mechanistically, immunoprecipitation indicated an interaction between CAMSAP3 and HMGB1, particularly with its acetylated form, in which this complex was elevated in the presence of TSA. CONCLUSIONS: CAMSAP3 is prerequisite for TSA-mediated autophagic cell death by interacting with cytoplasmic acetylated HMGB1 and enhancing its release. SIGNIFICANT: This finding provides molecular insights into the role of CAMSAP3 in regulating cell death, highlighting its potential as a therapeutic target for lung cancer treatment.


Subject(s)
HMGB1 Protein , Lung Neoplasms , Humans , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Acetylation , Autophagy , Cell Line, Tumor , Cell Death , A549 Cells , Hydroxamic Acids/pharmacology
9.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38565301

ABSTRACT

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Subject(s)
Carcinoma, Hepatocellular , Cytochrome P-450 CYP1A2 , DNA Methylation , Epigenesis, Genetic , Liver Neoplasms , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Sorafenib/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , DNA Methylation/drug effects , Cell Line, Tumor , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , DNA Methyltransferase 3A , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Decitabine/pharmacology , CpG Islands/genetics , Hydroxamic Acids/pharmacology , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/drug effects
10.
Daru ; 32(1): 263-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683491

ABSTRACT

BACKGROUND: Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES: The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS: The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS: The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 µM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 µM and 9.34 µM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION: The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Histone Deacetylase Inhibitors , Hydroxamic Acids , Molecular Docking Simulation , Phenanthrolines , Humans , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Dynamics Simulation , Histone Deacetylases/metabolism , Histone Deacetylases/chemistry , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/chemistry , Apoptosis/drug effects
11.
ACS Infect Dis ; 10(5): 1739-1752, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38647213

ABSTRACT

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Subject(s)
Aldose-Ketose Isomerases , Antimalarials , Fosfomycin , Hydroxamic Acids , Multienzyme Complexes , Plasmodium falciparum , Fosfomycin/pharmacology , Fosfomycin/analogs & derivatives , Fosfomycin/chemistry , Aldose-Ketose Isomerases/antagonists & inhibitors , Aldose-Ketose Isomerases/metabolism , Aldose-Ketose Isomerases/chemistry , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Antimalarials/pharmacology , Antimalarials/chemistry , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Multienzyme Complexes/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/enzymology , Models, Molecular , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Catalytic Domain , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism
12.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612894

ABSTRACT

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Subject(s)
Aminopeptidases , Insulin , High-Throughput Screening Assays , Insulin, Regular, Human , Coloring Agents , Hydroxamic Acids , Zinc
13.
Int J Biol Macromol ; 268(Pt 1): 131768, 2024 May.
Article in English | MEDLINE | ID: mdl-38663706

ABSTRACT

Copper(L2Cu) and vanadium(L2VOCl) complexes of N-p-tolylbenzohydroxamic acid (LH) ligand have been investigated for DNA binding efficacy by multiple analytical, spectral, and computational techniques. The results revealed that complexes as groove binders as evidenced by UV absorption. Fluorescence studies including displacement assay using classical intercalator ethidium bromide as fluorescent probe also confirmed as groove binders. The viscometric analysis too supports the inferences as strong groove binders for both the complexes. Molecular docking too exposed DNA as a target to the complexes which precisely binds L2Cu, in the minor groove region while L2VOCl in major groove region. Molecular dynamic simulation performed on L2Cu complex revealing the interaction of complex with DNA within 20 ns time. The complex stacked into the nitrogen bases of oligonucleotides and the bonding features were intrinsically preserved for longer simulation times. In-vitro cytotoxicity study was undertaken employing MTT assay against the breast cancer cell line (MCF-7). Potential cytotoxic activities were observed for L2Cu and L2VOCl complexes with IC50 values of showing 71 % and 74 % of inhibition respectively.


Subject(s)
Antineoplastic Agents , Copper , DNA , Hydroxamic Acids , Molecular Docking Simulation , Vanadium , Humans , Copper/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , DNA/chemistry , DNA/metabolism , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Vanadium/chemistry , Vanadium/pharmacology , Molecular Dynamics Simulation , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Ligands
14.
Int J Biol Macromol ; 269(Pt 2): 131948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688338

ABSTRACT

The process of wound healing includes the inflammatory stage, which plays an important role. Macrophages can promote inflammatory response and also promote angiogenesis, wound contraction and tissue remodeling required for wound healing. It is crucial to promote macrophages to polarize from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype at a critical time for the quality of wound healing. Because mesenchymal stem cell-derived exosomes have broad therapeutic prospects in the field of tissue repair and regeneration, in this study, we explored whether trichostatin A pretreated bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (T-Exo) could promote wound healing by binding to biomaterial scaffolds through certain anti-inflammatory effects. In the cell experiment, we established macrophage inflammation model and then treated with T-Exo, and finally detected the expression levels of macrophage polarization proteins CD206, CD86 and TNF-α, iNOS, and Arg-1 by Western Blot and immunofluorescence staining; detected the expression levels of inflammation-related genes TNF-α, iNOS, IL-1ß, IL-10 and anti-inflammatory genes CD206 and Arg-1 by qRT-PCR; explored the promoting ability of T-Exo to promote cell migration and tube formation by cell scratch experiment and angiogenesis experiment. The results showed that T-Exo could promote the polarization of M1 macrophages to M2 macrophages, and promote the migration and angiogenesis of HUVECs. Because TSA pretreatment may bring about changes in the content and function of BMSCs-derived exosomes, proteomic analysis was performed on T-Exo and unpretreated BMSCs-derived exosomes (Exo). The results showed that the differentially expressed proteins in T-Exo were related to some pathways that promote angiogenesis, cell migration, proliferation, and re-epithelialization. Then, exosome/collagen sponge (T-Exo/Col) biological scaffolds were prepared, and the physicochemical properties and biocompatibility of the scaffolds were investigated. Animal skin wound models were established, and the therapeutic effect and anti-inflammatory effect of T-Exo/Col in wound repair were evaluated by small animal in vivo imaging, H&E staining, Masson trichrome staining, immunohistochemical staining, Western Blot, and qRT-PCR. The results showed that T-Exo significantly promoted wound healing by inhibiting inflammation, thereby further promoting angiogenesis and collagen formation in vivo. Moreover, the existence of Col scaffold in T-Exo/Col enabled T-Exo to achieve a certain sustained release effect. Finally, we further explored whether TSA exerts beneficial effects by inhibiting HDAC6 gene of BMSCs, but the results showed that knockdown of HDAC6 gene would cause oxidative stress damage to BMSCs, which means that TSA does not produce these beneficial effects by inhibiting HDAC6 gene. What molecular mechanisms TSA exerts beneficial effects through needs to be further elucidated in the future.


Subject(s)
Collagen , Exosomes , Hydroxamic Acids , Macrophages , Mesenchymal Stem Cells , Skin , Tissue Scaffolds , Wound Healing , Exosomes/metabolism , Exosomes/drug effects , Wound Healing/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Animals , Macrophages/drug effects , Macrophages/metabolism , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Tissue Scaffolds/chemistry , Collagen/metabolism , Mice , Skin/drug effects , Skin/injuries , Skin/metabolism , Cell Movement/drug effects , Male , Macrophage Activation/drug effects , Neovascularization, Physiologic/drug effects , Humans , RAW 264.7 Cells
15.
Cells ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667323

ABSTRACT

Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an ADAM10-interacting protein to induce selective N-cadherin cleavage. We first demonstrated, in invasive T24 bladder cancer cells, that N-cadherin was cleaved by ADAM10 generating NTF in the extracellular environment and leaving a membrane-anchored CTF1 fragment and that Tspan15 is required for ADAM10 to induce the selective N-cadherin cleavage. Targeting N-cadherin function in cancer is relevant to preventing tumor progression and metastases. For antitumor molecules to inhibit N-cadherin function, they should be complete and not cleaved. We first showed that the GW501516, an agonist of the nuclear receptor PPARß/δ, decreased Tspan15 and prevented N-cadherin cleavage thus decreasing NTF. Interestingly, the drug did not modify ADAM10 expression, which was important because it could limit side effects since ADAM10 cleaves numerous substrates. By targeting Tspan15 to block ADAM10 activity on N-cadherin, GW501516 could prevent NTF pro-tumoral effects and be a promising molecule to treat bladder cancer. More interestingly, it could optimize the effects of the N-cadherin antagonists those such as ADH-1 that target the N-cadherin ectodomain.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Antigens, CD , Cadherins , Dipeptides , Hydroxamic Acids , Membrane Proteins , Tetraspanins , Urinary Bladder Neoplasms , Humans , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Cadherins/metabolism , Cell Line, Tumor , Membrane Proteins/metabolism , Neoplasm Invasiveness , Proteolysis/drug effects , Tetraspanins/metabolism , Tetraspanins/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics
16.
J Med Chem ; 67(8): 6610-6623, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38598312

ABSTRACT

Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Humans , Gram-Negative Bacteria/drug effects , Microbial Sensitivity Tests , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Escherichia coli/drug effects , Escherichia coli/enzymology , Crystallography, X-Ray , Drug Synergism , Hep G2 Cells , Models, Molecular , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemical synthesis , Zinc/chemistry
17.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674139

ABSTRACT

The role of metalloproteinases (MMPs) in hematological malignancies, like acute myeloid leukemia (AML), myelodysplastic neoplasms (MDS), and multiple myeloma (MM), is well-documented, and these pathologies remain with poor outcomes despite treatment advancements. In this study, we investigated the effects of batimastat (BB-94), an MMP inhibitor (MMPi), in single-administration and daily administration schemes in AML, MDS, and MM cell lines. We used four hematologic neoplasia cell lines: the HL-60 and NB-4 cells as AML models, the F36-P cells as an MDS model, and the H929 cells as a model of MM. We also tested batimastat toxicity in a normal human lymphocyte cell line (IMC cells). BB-94 decreases cell viability and density in a dose-, time-, administration-scheme-, and cell-line-dependent manner, with the AML cells displaying higher responses. The efficacy in inducing apoptosis and cell cycle arrests is dependent on the cell line (higher effects in AML cells), especially with lower daily doses, which may mitigate treatment toxicity. Furthermore, BB-94 activated apoptosis via caspases and ERK1/2 pathways. These findings highlight batimastat's therapeutic potential in hematological malignancies, with daily dosing emerging as a strategy to minimize adverse effects.


Subject(s)
Apoptosis , Hematologic Neoplasms , Phenylalanine/analogs & derivatives , Thiophenes , Humans , Apoptosis/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Cytostatic Agents/pharmacology , Cell Proliferation/drug effects , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , HL-60 Cells , Matrix Metalloproteinase Inhibitors/pharmacology , Cell Cycle Checkpoints/drug effects , MAP Kinase Signaling System/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology
18.
Exp Parasitol ; 259: 108727, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431113

ABSTRACT

Toxoplasmosis is a zoonosis that is a worldwide health problem, commonly affecting fetal development and immunodeficient patients. Treatment is carried out with a combination of pyrimethamine and sulfadiazine, which can cause cytopenia and intolerance and does not lead to a parasitological cure of the infection. Lysine deacetylases (KDACs), which remove an acetyl group from lysine residues in histone and non-histone proteins are found in the Toxoplasma gondii genome. Previous work showed the hydroxamate-type KDAC inhibitors Tubastatin A (TST) and Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) were effective against T. gondii. In the present study, the effects of three hydroxamates (KV-24, KV-30, KV-46), which were originally designed to inhibit human KDAC6, showed different effects against T. gondii. These compounds contain a heterocyclic cap group and a benzyl linker bearing the hydroxamic acid group in para-position. All compounds showed selective activity against T. gondii proliferation, inhibiting tachyzoite proliferation with IC50 values in a nanomolar range after 48h treatment. Microscopy analyses showed that after treatment, tachyzoites presented mislocalization of the apicoplast, disorganization of the inner membrane complex, and arrest in the completion of new daughter cells. The number of dividing cells with incomplete endodyogeny increased significantly after treatment, indicating the compounds can interfere in the late steps of cell division. The results obtained in this work that these new hydroxamates should be considered for future in vivo tests and the development of new compounds for treating toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Lysine/pharmacology , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Hydroxamic Acids/pharmacology , Vorinostat/pharmacology
19.
Drug Dev Res ; 85(2): e22172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488434

ABSTRACT

Epigenetic modifications play a significant role in cancer progression, making them potential targets for therapy. Histone deacetylase inhibitors have shown promise in inhibiting cancer cell growth, including in breast cancer (BC). In this research, we examined the potential of using suberoyl anilide hydroxamic acid (SAHA)-loaded ß-lg nanofibrils as a drug delivery system for triple-negative BC cell lines. We assessed their impact on cell cycle progression, apoptosis, levels of reactive oxygen species, and mitochondrial membrane potential in cancer cells. The combination of SAHA and ß-lg nanofibrils demonstrated enhanced efficacy in inhibiting cell growth, inducing cell cycle arrest, and promoting apoptosis (43.78%) compared to SAHA alone (40.09%). Moreover, it effectively targeted cancer cells without promoting drug resistance while using a low concentration of the nanofibrils. These findings underscore the promising potential of nanofibril-based drug delivery systems for BC treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Histone Deacetylase Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Hydroxamic Acids/pharmacology , Vorinostat/pharmacology , Vorinostat/therapeutic use , Cell Cycle , Apoptosis , Cell Proliferation , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
20.
Int Immunopharmacol ; 132: 111921, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38547770

ABSTRACT

Interleukin-1-beta (IL-1ß) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1ß would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1ß and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1ß and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1ß were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1ß, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1ß levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1ß and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1ß through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1ß in OSCC.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Hydroxamic Acids , Indoles , Interleukin-1beta , Mouth Neoplasms , Tumor Microenvironment , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Interleukin-1beta/metabolism , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Disease Progression , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Male , Tubulin/metabolism , Lipopolysaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...